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Abstract. This paper considers and proposes an innovated method of structure-

criterion switching control for the self-optimized blind decision feedback equalizer 

(DFE) scheme which operates by switching between adaptation modes according to the 

mean square error (MSE) convergence state. The new switching control shortens the 

blind acquisition period time of the DFE and, consequently, speeds up its effective 

convergence rate. The switching control is based on the variable switching threshold 

which combines the commonly used MSE estimate of the DFE’s output and a posteriori 

error of the all-pole whitener performing front-end amplitude equalization during the 

blind operation mode. The efficiency of the DFE switching control is verified by 

simulations of single-carrier system transmitting QAM signals over multipath channels. 

Key words: Blind equalization, decision feedback equalizer, maximum joint entropy,     

operation mode switching control. 

1. INTRODUCTION 

In this paper, we have addressed the new method for the convergence rate increasing 

of the Decision Feedback Equalizer (DFE) scheme which is based on the improvement of 

the equalizer’s operation mode switching control. With respect to the earlier version [1], 

presented at the 5
th

 IcETRAN2017 conference, this paper includes a new set of case 

studies followed by the most recent simulation results.   

The convergence rate of the blind equalization is, besides its complexity, an issue of 

the utmost importance from the perspective of its usage in today communication systems 

continually striving for the increased data throughput and frequency efficiency [2]. 

Because of that, the frequency efficiency advantages, achieved by removing a training 

sequence from the system [3], [4], have to be followed by an adequate equalization 

convergence rate if we want to preserve the benefits of the blind equalization.    
To reconstruct an unknown source signal, blind equalizers use the higher-order 

statistics of channel outputs as well as some knowledge of the given signal statistic. In 
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such environment the resulting symbol-by-symbol based blind algorithms are typically 

characterized by the relative low convergence rate and high residual mean square error 

(MSE) [3], [4] compared to the conventional pilot-trained equalizers employing the 

second-order statistic based algorithms [5]. As a way to mitigate these drawbacks two-

steps adaptation strategy is commonly used dividing blind equalization task between 

blind and decision-directed operation modes [4], [6]. At the initial (blind) operation 

mode, the equalizer adjusts its adaptive parameters to open “eye diagram” enough and 

then, depending on convergence state, switches adaptation to the decision-directed (DD) 

operation mode that should guarantee both the successful proceeding of the convergence 

process and the maximal reduction of the output MSE. In such scenario, blind equalizers 

must be provided by an algorithm estimating some measure of convergence state or 

signal quality as well as an appropriate performance threshold to decide operation mode 

switching. This task, as well as blind equalization alone, is not so easy because it depends 

on unknown system parameters, such as a source signal and channel characteristic. 

The operation mode switching control based on the online MSE estimation of the 

equalizer’s output and its comparison with in advance selected threshold level is an often 

used method because of its simplicity [6]. On the other hand, this scheme strongly depends 

on both the applied MSE estimation efficiency and the heuristically selected threshold level 

according to the given signal statistic and the assumed channel characteristics. An 

alternative but more complex approach is to join an equalizer’s operation mode switching 

control with its blind adaptation algorithm aiming at the soft switching scheme [7], [8] 

which eliminates the above mentioned difficulties and possibly improves equalization 

performance. In [7], the noise-predictive Decision Feedback Equalizer (DFE) smoothly 

transforms the equalization process between its two extreme stages: blind linear and DD 

steady state. For that purpose, the equalizer employs the soft decision device defined by the 

linear convex function combining identity function (linear) and hard decision (nonlinear) 

device. In [8], using a similar convex mixing rule, the soft switching blind equalization is 

considered more generally in the context of linear blind equalization. This soft-switching 

scheme combines the outputs of two linear equalizers working in parallel: one adapted 

blindly and the other adapted using the DD-LMS algorithm minimizing MSE. Both 

schemes aggregate the equalizer’s adaptation algorithm and the operation mode control 

function into one adaptation task not needing a switching threshold. 

In this paper we have considered the blind DFE, called Soft-DFE [9], using the 

operation mode switching control scheme based on both the on-line estimation of MSE 

and the variable switching threshold [1], [10]. The purpose of using the variable threshold 

instead of a fixed one includes several goals such as relaxing the issue of MSE threshold level 

selection and speeding up the equalizer’s effective convergence rate all with minimal 

computation complexity rate. Besides, these goals have been concerned with keeping the error 

propagation phenomenon [11] - a major drawback of blind DFE equalization - under the 

control guaranteeing high values of equalization successfulness. 

The paper is organized as follows. Section 2 describes the Soft-DFE structure-criterion 

optimization scheme. In Section 3 the insufficiency of the existing switching control is 

addressed and then the innovated control that combines the variable threshold with online 

MSE estimation is introduced. In Section 4 the efficiency of the threshold variable switching 

control is verified by simulations. 
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2. SOFT-DFE: BACKGROUND AND PROBLEM DEFINITION 

2.1. Structure-criterion optimization 

A simplified based-band model of a single-carrier QAM (quadrature amplitude 

modulated) system with the Soft-DFE is presented in Fig. 1 where the in-phase and 

quadrature components of complex-valued  symbols { }na , generated in time intervals of T 

seconds, are independent identically distributed real zero-mean variables with a finite 

variance and sub-Gaussian distribution, the time-invariant channel pulse response { }nh
 

represents combined effects of the transmitter filter, channel impulse response and anti-alias 

filter at the receiver side and the noise is a zero-mean white Gaussian process independent 

of the source data. The signal ( )x t  at the input of the equalizer’s feedforward part given by 

the fractionally-spaced equalizer (FSE) is sampled at the rate 2/T and its odd and even 

samples 0 ,( / 2) n ix t nT iT x   , 1,2i  , are alternatively shifted to the delay lines of the 

corresponding FIR filters presented by coefficient vectors ic . 

 

Fig. 1 Simplified model of transmission system with DFE (Soft-DFE) 

The operation of Soft-DFE is based on the principles of the Self-Optimized DFE 

scheme [6] which, in order to eliminate the error propagation effects, optimizes both the 

structure and the cost criteria according to its convergence state. Specifically, the Soft-

DFE optimizes both the filter structure including four FIR filters, two in FFF 

(feedforward) and two in FBF (feedback) part, and the combination of three cost criteria: 

Joint Entropy Maximization (JEM) [12], Constant Modulus [13] and minimum MSE 

(MMSE) [5]. Also, besides blind and tracking operation modes, which are commonly 

performed by blind equalizers, the new soft-transition mode has been introduced into the 

Soft-DFE scheme in order to mitigate the error propagation effects caused by a rapid 

structure-criterion switching from the blind to decision-directed adaptation mode. At the 

beginning of the blind mode, the Soft-DFE transforms its structure into the cascade of 

four linear signal transformers - the gain control (GC), whitener (WT), blind equalizer 

(TE) and phase rotator (PR) - operating independently of each other except of the GC-WT 

pair, Fig. 2a. Effectively, in the blind mode the Soft-DFE acts as a T/2-FSE linear 

equalizer [14] dividing the equalization task between the whitener of the received signal 

and the TE equalizer where the WT-JEM and the TE-CM, respectively, performs the 

channel amplitude and phase equalization. In the next soft-transition mode the Soft-DFE 

proceeds to adapt filters combining the MMSE and JEM criteria, Fig. 2b. Finally, in the 

tracking mode, the Soft-DFE continues to converge to the MMSE steady-state using the 

DD-LMS algorithm. 
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(a)           (b)    

Fig. 2 Soft-DFE structure-criterion transformation:  

(a) blind mode and (b) soft-transition mode (SFBF with JEM, dotted line)  

and tracking mode (FBF with DD-LMS, solid lines) 

The phase rotator PR is realized as a modified variant of the decision-directed phase-

locked loop [15] that, using the reduced signal constellation based only on the symbols 

with the largest energy [16], aims to evade catastrophic effects being caused by the 

carrier phase estimation exploiting an insufficiently open signals; this is particularly 

critical for high-order signal constellations such as 64-QAM and higher. 

2.2. Algorithms 

In this subsection, the adaptation algorithms used by the Soft-DFE are revisited in the 

order following the operation mode switching.  

Gain control. The gain control GC is realized as a single-coefficient equalizer [6] 

which has a task to recover the power of the source signal. The GC operation is enhanced 

by the whitener’s outputs ,n iu , 1, 2i  , and given by the recursion 

 
2 2

, 1 , ,[ ]i n i n G i n aG G u     , , 1 , 1i n i ng G   (1) 

where G  
is the adaptation step size and 

2
a  is the variance of source symbols  na . 

JEM whitening algorithm. The whitener WT of the received signal is realized as all-

pole filter (equalizer) to compensate for the channel amplitude distortion, i.e., recover the 

second order statistic of the given source signal by using the entropy-based JEM cost 

[12]. The corresponding stochastic-gradient JEM whitening algorithm (JEM-VL) [16] is 

given by 

 , , , ,

T

i n i n i n i nu x b u , 1, 2i   (2) 
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where , , ,1 , ,[ ,..., ]T

i n i n i n Nu uu  and , , ,1 , ,[ ,..., ]Ti n i n i n Nb bb  are, respectively, whitener’s 

regression and coefficient vectors, 0n   is the time-variable leaky factor, 
W  is the free 

parameter representing the slope of the employed neuron function, BB  is a step-size, N  

is the span of the whitener delay line given in T periods and the superscripts T and * 

signify, respectively, the transpose and conjugation. The specific of the JEM-VL 

algorithm, besides the slope W  
controlling its entropic capability, is its variable leaky 

factor n . Acting in opposition to the entropy-gradient term, the leaky term n nb  controls 
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the magnitudes of whitener coefficients avoiding superfluous coefficients to degrade the 

equalizer convergence process. The undesirable influence of superfluous coefficients is 

particularly exposed at the time of equalizer switching from the blind to decision-directed 

operation mode. 

The adaptation of the leaky n  is based on the analysis of the whitener’s a posteriori 

errors and the heuristic punish/award rule [17] which decides when and how much to 

increase or decrease the leaky factor. Accordingly, the leaky adaptation rule in JEM-VL 

comprises  the  following  three  operations:  the calculation  of  a posteriori  errors  with 

( > 0) and without ( = 0) coefficient leakage, decisions when and decisions how much 

to increase or decrease leaky. The a posteriori error VL
ne  estimate for  > 0 in JEM-VL is 

given by 

 1

T

n n n nu x  b u  (4) 

 
2

(1 )VL

n n W ne u u   (5) 

and the corresponding a posteriori error W
ne  estimate for 0n   in (3) (corresponds to the 

original whitening algorithm JEM-W [9]) is given by  

 
2 *

1 (1 )n n BB n W nu u    b b u  (6) 

 1

T

n n n nu x  b u  (7) 

 
2

(1 )W

n n W ne u u   (8) 

It should be noted that the a posteriori errors, given in (5) and in (8), are obtained 

using the same current value of the whitener input xn; in the above recursions the 

indexing 1, 2i   is omitted for simplicity. 

In the next step, based on the comparison of the achieved a posteriori errors, the “if-

else” relation 

 If 
VL W
n ne e  then 

  set 1 max( ,0)n n dm m l    

 else 

  set 1 min( , )n n um m l M    

                end if  (9) 

decides when to decrease or to increase the leaky factor and, finally, the quantized function 

 max( ) ( / )n n nf m m M    (10) 

estimates how much to decrease or to increase the leaky factor employing parameters

0( , , , )d um l l M  , max   and 0,...,nm M  is an independent variable. 

CMA algorithm. The constant modulus algorithm (CMA) is realized in its commonly 

used variant for dispersion function of order p=2 [13] 
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where ci,n = [ci,0,..., ci,M1]
T

 
is the coefficient vector of FFF, FB  is an adaptation step-size 

and the constant CR  is the kurtosis of the source signal which represents the source 

probability density function (PDF) distance measure from normality [18]. Assuming the 

amplitude equalization is done efficiently by the GC-WT pair, the T/2-FSE-CMA has the 

task to equalize for a channel phase distortion by retrieving the kurtosis statistic of the 

source signal [19]. 

Soft JEM algorithm. The performing of the Soft-DFE in the soft-transition mode is 

characterized by the SFBF equalizer behaviour operating between the original soft FBF 

equalizer maximizing the joint entropy of the neuron outputs [9] and a hard DD FBF 

equalizer suffering from incorrect decisions ˆ
na . The operation of the SFBF is described 

by the following relations 

 ˆexp( )T
n n n ny j c u  (13) 

 1
ˆT

n n n nz y  b a  (14) 

 
2 *

1
ˆ1n n BS n D n nz z 

     
  

b b a  (15) 

where ˆ
n  is a carrier phase estimate, 1

ˆ ˆ ˆ[ ,..., ]Tn n n Na a a  is the vector of previously 

detected symbols, BS is a step size and 
D  is the neuron slope which is determined by 

the given source statistic [20]. 

Tracking mode. In the tracking mode, the Soft-DFE approaches to the MMSE steady-

state and continues to follow slow-time channel variations using DD-LMS algorithms in 

its both FFF and FBF parts optimizing jointly the MMSE criterion given by 

  2ˆ ˆ( , , )MMSE n n n n nJ E z a  c b  (16) 

It should be noted that despite the Soft-DFE strives to reach a global MMSE solution, 

the local solutions cannot be avoided at all because the Soft-DFE’s final convergence 

state depends on the local ( )JEMJ b  and ( )CMJ c  criteria. 

3. SWITCHING CONTROL WITH VARIABLE THRESHOLD 

The Soft-DFE controls the convergence state using the MSE monitor which estimates 

online the output MSE and, according to the a priori selected MSE threshold levels (TL), 

switches the structure and adaptation criterion through three operation modes. To switch 

from the blind to soft-transition mode and from the soft-transition to tracking mode, the 

monitor, respectively, compares the estimated MSE with TL1 and TL2 thresholds. Also, 
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to switch the PR operation between a reduced and full signal constellation, the MSE is 

compared with threshold TL3. Since the latter indicates the signal constellation opening, 

it is also utilized as a measure of equalization successfulness, given by the equalization 

success index (ESI), which is defined by the ratio of the number of successful equalizations 

and the total number of Monte Carlo runs. Thus, the Soft-DFE controls its convergence 

process completely by MSE thresholds satisfying the relation TL1>TL2>TL3. 

3.1. MSE switching control 

The online estimation of the MSE in the blind mode is given by the relation 

  
2

, , 1 (1 )B n B n n CMSE MSE y R       (17) 

where the forgetting factor  > 0 regulates a quality of estimation process, and typically 

takes values little less than 1.0. The same MSE estimation principle is also used during 

the next soft-transition and tracking modes provided that the error  ˆ
nnz a  is substituted 

for the error  n Cy R  in (17). 

The quality of ,B nMSE  estimate obtained by (17) suffers from several weaknesses. 

Firstly, the ,B nMSE
 
is a crude estimate of the MSE for all non-constant modulus QAM 

signals (except for 4-QAM) because the term  n Cy R  on the right-hand side of (17) is 

not a real error but a dispersion measure of the modulus of symbol estimates with respect 

to the constant 
CR . Secondly, the ,B nMSE  estimate aggregates the MSE affected by the 

cascaded GC-WT-TE (see Fig. 2a) with the dominate influence of the TE-CMA algorithm 

which is based on the fourth-order statistic represented by the constant CR  (12). In other 

words, the estimate ,B nMSE  relays mostly on the outlier sensitive kurtosis statistic [18] 

neglecting the second-order statistic being reconstructed by the WT-JEM. 

To illustrate the Soft-DFE convergence behaviour controlled by the MSEB,n  estimator,  

we have presented in Fig. 3 the results of the convergence tests carried out for three 

different heuristically selected thresholds TFMSE TL1  using system in Fig. 1 with 64-

QAM signal and Mp-E channel; see channel amplitude in Fig. 5 in the next section. If we 

suppose the optimal mean square error ,B optMSE  is achievable during the blind mode if 

the equalizer’s coefficients reached the optimal setup then the three typical equalization 

scenarios are possible: 1) for TF ,MSE B optMSE  the equalizer successfully switches 

operation from the blind to the DD operation mode, 2) for TF ,MSE B optMSE  the equalizer 

stays longer in the blind mode than in the case 1) or, possibly, it will never reach the soft-

transition mode and the equalization will be ended in failure and, finally, 3) for 

TF ,MSE B optMSE  the equalizer switches operation to the DD mode faster than in the 

case 1) but, the MMSE steady-state performance is not guaranteed, and even some 

pathological states are possible. As can be seen from the presented convergence curves 

the threshold TL1=8.02 dB is selected to be the best threshold. 
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Fig. 3 MSE convergence curves obtained for three different fixed thresholds TL1; 

Soft-DFE single run test for 64-QAM signal and Mp-E channel 

3.2. Variable threshold 

In order to compensate for insufficiency of the ,B nMSE  estimation given by (17), we 

have combined a fixed threshold TLMSE , generally different from the threshold TFMSE , 

with the whitener’s a posteriori errors , 1
VL
i ne   introducing in such a way the variable 

threshold TLVMSE  [10]  

  TLV TL 1, 1 2, 1MSE MSE VL VL
n nS e e     (18) 

which includes two terms, the fixed threshold TLMSE  and the  variable term  1, 1 2, 1
VL VL

n nS e e   

where S  is a small positive scale factor. 

It is worth noting that the scaling factor S should be selected through the analysis of the 

ratio between the sum of a posteriori errors and the MSETL threshold. The first verifications of 

the variable threshold model have proved its efficiency for the S values scaling down a 

posteriori term to a level comparable with the MSETL term. The full exploration of the 

variable threshold usage and its limitations need to be a subject of further study. 

The above innovation of the blind mode threshold comes from the fact that a 

posteriori errors of the WT-JEM carry up-to-date information on the second-order 

statistics missing to the ,B nMSE  (17). A posteriori errors of the JEM-VL algorithm are 

functions of WT-JEM outputs which are almost free from ISI disturbance (outliers) 

coming from channel amplitude characteristics. As it is mentioned in the previous section 

JEM-VL provides efficient compensation for frequency-selective channels.  

Practically, by introducing the whitener’s a posteriori errors as a variable threshold term 

we have created the switching control that directly reflects the recovery of both the second-

order and four-order statistics of the applied source data. Using the variable threshold, the 

switching control responds as follows: for a lower a posteriori error the TLVMSE  becomes 

higher, which shortens the blind equalization time and, hence, speeds up the equalizer 

convergence rate, and reverse, for a higher a posteriori error the TLVMSE  becomes lower 

which lengthens the blind acquisition time and slows the equalizer convergence. 

Effectively, from the perspective of the MSE estimation quality, the MSETLV becomes more 

robust against the dispersion of magnitudes ny  of symbol estimates. 
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To avoid the false equalizer switching 

through the operation modes, which could be 

caused by the non-stationarity of the MSE data, 

the Soft-DFE switching control implementation 

is based on the multiple checking of the 

threshold level passage. According to the 

switching rule presented in Fig. 4, the equalizer 

is allowed to switch from the blind to the soft-

transition mode if and only if the ,B nMSE  

satisfies , TLVMSEB nMSE   during the K 

equalizer’s update iterations where K is an 

integer larger than 1. The same switching rule is 

valid for the Soft-DFE switching from the soft-

transition to the tracking operation mode but it 

is less critical than the former from the 

perspective of convergence rate. 

4. SIMULATION RESULTS 

The efficiency of the innovated structure-criterion switching control and its impact on 

the equalizer’s convergence rate is verified by the software simulator of the QAM system 

presented in Fig. 1. The simulations are carried out using 16- and 64-QAM signals and 

the multi-path channel adding the white Gaussian noise determined by the signal-to-noise 

ratio (SNR). The selection of Soft-DFE dimensions and parameters is done aiming at the 

best compromise between the convergence rate achievements and the equalization 

successfulness defined by ESI. The frequency selective Mp-(A, C, E) channels, whose 

normalized amplitude characteristics are presented in Fig. 5, are design in a way to 

gradually increase ISI severity from Mp-A to Mp-E.  

 

 

Fig. 5 Normalized attenuation characteristics of Mp-(A, C, E) channels 

 

Fig. 4 Soft-DFE rule switching from  

blind to soft-transition mode 
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The Soft-DFE parameters are given as follows. The filter tapped-delay line span, in T 

intervals, for FBF is 5 for both QAM signals and for FFF is 23 and 24, respectively, for 16- 

and 64-QAM signals. The FBF is initialized for all zero coefficient-values while the 

initialization of the FFF is realized by two strategies: 1) double-spike initialization (DS) with 

two central reference tapes 1, 2, 0.707r rc c   and 2) single-spike initialization (SS) with a 

single central reference tape 
1, 1.0rc  . The adaptation steps for the GC, JEM, CMA and 

LMS algorithms are selected in a way to optimize their efficiency through the corresponding 

operation modes. It is of particular importance for GC, JEM and CMA algorithms which 

divide the blind equalization task into several simpler subtasks. For example, the GS uses two 

adaptation steps  
11 20{2 ,2 }G
   for both signals. The first step, applied at the early 

beginning of the blind mode, is much larger than the second one aiming to prevent the WT 

and TE equalizers from taking over the gain control function. The adaptation steps of JEM, 

CMA and LMS algorithms are selected in order to produce the best response of the FBF and 

FFF filters through three operation modes. Depending on the 16- and 64-QAM signals, they 

are selected as follows: 1) for FBF { 19

,16 2BB  , 
22

,64 2BB  },  { 18

,16 2BS  , 21

,64 2BS  },  

{
14

,16 2BT  ,
13

,64 2BT  } and 3) for FFF {
16

,16 2FB  ,
21

,64 2FB  }, {
15

,16 2FS  ,
20

,64 2FS  }, {
13

,16 2FT  ,
16

,64 2FT  }; the second subscripts of adaptation steps, B, S 

and T, respectively signify blind, soft-transition and tracking modes. The leaky parameters are 

given by {
0 40m  , 5dl  , 40ul  , 400M  , 11

max 2  } for both signals. The selection of 

neuron slopes { , }W D   is done according to the considerations given in [16], [20]. The slope 

D , which depends mostly on the given signal constellation , takes values 12 and 1.95, 

respectively, for 16- and 64-QAM constellations. On the other hand, the slope 
W , together 

with the threshold parameters S and K, is used as a tool to optimize an initial convergence rate 

of the equalizer, see TABLE 1. 

The comparison of the Soft-DFE performance achieved by the fixed (TLF) and 

variable (TLV) switching controls are given in the terms of the PDF histograms of the 

blind acquisition period time, MSE convergence and equalization successfulness ESI. 

The comparison tests are carried out for SS and DS equalizer initialization methods, 

(16,64)-QAM signals and switching control parameters {MSETF/MSETL, S, K} as given 

in Table 1. The motivation to test the switching control for two initialization methods 

comes from the fact that the success and speed of convergence of FSE-CMA equalization 

are strongly affected by the coefficient initialization [14]. The presented PDH histograms 

and ESI tests are obtained for 10000 and MSE convergence curves for 200 independent 

Monte Carlo runs. 

   Table 1 System setups: switching control parameters 

QAM/Soft-DFE MSETF/MSETL W  K S 

16QAM-TLF 1.30 dB 7.5 95 0 

16QAM-TLV 2.30 dB 9 105 0.00145 

64QAM-TLF 8.02 dB 2.4 95 0 

64QAM-TLV 8.61 dB 2.8 105 0.00165 
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Fig. 6 presents the PDF histograms of the blind acquisition period time obtained with 

TLF and TLV switching controls for the 64-QAM signal. The histogram obtained by TLF 

control demonstrates a positive skewness caused by FSE-CMA kurtosis outliers in 

contrast to the histograms obtained by TVL control which are much more symmetrical; 

the latter is obviously affected by a posteriori variable threshold term in (18). The more 

quantitative measure of the switching control impact on the blind acquisition time is 

provided by Mean and standard deviation (SD) statistic presented in Table 2 for (16,64)-  

 

           

(a) Channel Mp-A 

            

(b) Channel Mp-C 

            

(c) Channel Mp-E 

Fig. 6 PDF histograms of blind acquisition period time for TLF and TLV thresholds and 

SS initialization: 64-QAM, SNR=30 dB, a) Mp-A, b) Mp-C, c) Mp-E 
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Table 2 Blind mode statistic, [T]: (16, 64)-QAM, SS 

Mean, STD/Channel Mp-A Mp-C Mp-E 

16-QAM 

Mean: TLF 3146 4264 3317 
STD: TLF 759 1314 843 
Mean: TLV 2778 2957 2684 
STD: TLV 232 301 173 

64-QAM 

Mean: TLF 4776 8431 6103 
STD: TLF 1893 2507 1795 
Mean: TLV 4691 6422 4585 
STD: TLV 1142 1049 793 

QAM signals and SS initialization method. The presented results emphasize an 
important decrease of Mean and SD in the case of the TLV control. For example, for the 
TLV control and 64-QAM signal, Mean and SD values are, respectively, 18% and 51.8% 
smaller (averaged over all channels) with respect to the TLF control.  

The impact of the operation mode switching control on the equalizer convergence rate is 
presented in Figures 7 and 8. In Fig. 7, the convergence curves obtained for TLF and TLV 
controls and SS and DS initializations in the case of the 16-QAM signal are given. As can 
be seen, the convergence rates achieved by the TLV control are significantly higher than by 
the TLF for both SS and DS initialization provided that the residual MSE is not sacrificed 
and, also, the best results are reached for SS-TLV combination. The similar results are 
achieved for the 64-QAM signal, Fig. 8. In this case, for the sake of the figure clarity, only 
the convergence curves obtained by the TLV control and for SS and DS initializations are 
presented. It is worth noting that the equalizer converges faster by TLV control because the 

            
(a) Channel Mp-A    (b) Channel Mp-C 

 
(c) Channel Mp-E 

Fig. 7 Comparison of MSE convergence curves obtained using TLF and TLV controls 

and (SS, DS) initializations: 16-QAM, SNR=25 dB, a) Mp-A, b) Mp-C, c) Mp-E 
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blind mode time has been made shorter as a result of the improved switching control. Also, 
these results have proved an efficiency of the GC-WT amplitude equalizer that has been 
insufficiently visible unless the TLV control has been applied. 

 

Fig. 8 Comparison of MSE convergence curves obtained using TLV control and (SS, DS) 

initializations: 64-QAM, SNR=30 dB, Mp-(A,C,E) 

The results of ESI tests are given in Table 3. The purpose of these tests is to prove 
that the new TLV control does not degrade the equalization successfulness; the results for 
both the TLF and the TLF methods are practically same for parameters selected in Table 
1. It is of an essential importance because we have used different control switching 

parameters (W , S, K) aiming to achieve the best convergence performance by both 
methods and, at the same time, to preserve the equalization efficiency. 

Table 3 Equalization Success Index [%]  

ESI/Channel Mp-A Mp-C Mp-E 

16-QAM 

SS-TF 99.99 99.80 100 

SS-TV 99.99 99.75 100 

DS-TF 99.97 99.91 99.16 

DS-TV 100 99.87 98.94 

64-QAM 

SS-TLF 100 99.68 98.83 

SS-TLV 100 99.80 98.64 

DS-TLF 100 99.69 98.65 

DS-TLV 100 99.84 98.03 

CONCLUSIONS 

Our goal in this paper was to increase the convergence rate of the blind Soft-DFE 

equalizer by improving its operation mode switching control. The performing of the 

online MSE estimator monitoring the equalizer’s convergence state is enhanced by the 

innovated switching control that combines the fixed value threshold term with the a 

posteriori error of the all-pole amplitude equalizer coefficient updates. In this innovation 

the robust second-order statistic of a posteriori errors is employed to compensate for the 

undesirable effects of the outlier sensitive kurtosis statistic of FSE-CMA outputs. It is 

verified by different simulation setups that the simple MSE estimation method combined 
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with the variable up-to-date threshold information significantly reduces the blind mode 

operation time and, hence, greatly improves the effective equalizer convergence rate. 

Acknowledgement: The paper is a part of the research done within the project TR 32037, 2011-

2018, The Ministry of education, science and technological development of the Republic of Serbia. 

The authors thank to the anonymous reviewers for their valuable suggestions and comments. 

REFERENCES 

[1] V. R. Krstić, N. Bogdanović, “On structure-criterion switching control for self-optimized decision 

feedback equalizer”, In Proceedings of conference papers IcETRAN 2017, Srbija, June 5-8, 2017. 

[2] V. Savaux, F. Bader, J. Palicot, “OFDM/OQAM Blind Equalization Using CNA Approach”, IEEE 
Trans. Signal Processing, vol. 64, no. 9, pp. 2324-2333, 2016. 

[3] J. R. Treichler, M. G. Larimore and J. C. Harp, “Practical Blind Demodulators for High-Order QAM 

Signals,” In Proceedings of the IEEE, vol. 86, no. 10, pp. 1907-1926, 1998. 
[4] Z. Ding, Y. G. Li, Blind Equalization and Identification. Signal Processing and Communication Series, 

Marcel Dekker, 2001. 

[5] S.U.H. Qureshi, "Adaptive Equalization," In Proceedings of the IEEE, vol. 73, pp.1349-1387, Sept. 1985. 
[6] J. Labat, O. Macchi and C. Laot, “Adaptive decision feedback equalization: can you skip the training 

period?,” IEEE Trans. Commun., vol. 46, no. 7, pp. 921-930, Jul, 1998. 

[7] A. Goupil and J. Palicot, “An Efficient Blind Decision Feedback Equalizer,” IEEE Commun. Letters, vol. 
14, no. 5, pp. 462-464, 2010. 

[8] M. T. M. Silva, J. Arenas-García, “A Soft-Switching Blind Equalization Scheme via Convex Combination of 

Adaptive Filters,” IEEE Trans. Signal Processing, vol. 61, no. 5, pp. 1171-1182, March 1, 2013. 
[9] V. R. Krstić. and M. L. Dukić, “Blind DFE With Maximum-Entropy Feedback,” IEEE Signal Processing 

Letters, vol. 16, no 1, pp. 26-29, Jan. 2009. 

[10] V. R. Krstić, “Fast start-up blind DFE equalizer,” Pending Patent RS, P-2017/0205, Feb. 2017. 
[11] J. G. Proakis, Digital Communications.3rded. New York: McGraw-Hill, 1995. 

[12] Y. H. Kim, H. S. Shamsunder, “Adaptive algorithms for channel equalization with soft decision 
feedback,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 9, pp. 1660-1669, 1998. 

[13] D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data 

Communication Systems”, IEEE Trans. Commun., 1980, vol. 18, no. 11, pp. 1867-1875, 1980. 
[14] C. R. Johnson, Jr. et al., “The core of FSE-CMA Behavior Theory”. In S. Haykin (Ed.), Unsupervised 

adaptive filtering, Vol. II Blind deconvolution, pp. 13-112. New York: John Wiley & Sons, 2000. 

[15] S. Abrar, A. Zerguine, A. K. Nandi, “Blind adaptive carrier phase recovery for QAM signals,” Digital 
Signal Processing, vol. 49, pp.  65-85, 2016. 

[16] V. R. Krstić, A. M. Stevanović and B. Lj. Odadžić, “A Variable Leaky Entropy-Based Whitening 

Algorithm for Blind Decision Feedback Equalization”, Wireless Personal Communications, vol. 95, issue 
2, pp. 931-946, July 2017.  

[17] M. Kamenetskyand, B. Widrow, “A Variable Leaky LMS Adaptive Algorithm”, In Proceedings of the 

Thirty-Eighth Asilomar Conference on Signal, Systems and Computers, Nov. 2004, vol.1, pp. 125-126. 
[18] L. T. DeCarlo, “On the meaning and use of kurtosis,” Psychological Methods, vol. 2, no. 3, pp. 292-307, 

1997.  

[19] O. Shalvi, E. Weinstein, "New Criteria for Blind Deconvolution of Nonminimum Phase Systems 
(Channels)," IEEE Trans. Inf. Theory, vol. 36, pp.312-321, March 1990. 

[20] V. R. Krstić, M. L. Dukić, ”Decision Feedback Blind Equalizer with Tap-Leaky Whitening for Stable 

Structure-Criterion Switching.” International Journal of Digital Multimedia Broadcasting 
Volume 2014, Article ID 987039, 10 pages, 2014. 

 


