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Abstract. Some kinds of statistical unbounded convergence were studied and investi-
gated with respect to the solid topology and order convergence. In this paper, we study
the concept of statistical unbounded order convergence in Riesz spaces by a topology-
free technique with the order convergence on Riesz spaces. Moreover, we give some
relations with other kinds of statistical convergences.
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1. Introduction and Preliminaries

Statistical convergence is a generalization of the ordinary convergence of a real
sequence. It was introduced by Steinhaus in [17]. It is enough to mention the
theory of statistical convergence (cf. [8, 9, 14]). On the other hand, Riesz space
(or, vector lattice) is another concept of functional analysis that was introduced by
F. Riesz [15]. Then many others have developed the subject. An ordered vector
space has many applications in measure theory, Banach space, operator theory,
and applications in economics (cf. [1, 2, 4, 10, 11, 21]). Recently, the concept
of statistical unbounded convergence on Banach lattice has been studied by some
authors (cf. [19, 20]). The main aim of the present paper is to extend the concepts
of statistical unbounded order convergence in Riesz spaces.
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For the definition of statistical convergence, the important point is the natural
density of subsets of natural numbers. Recall that the density of a subset K of N is
the limit limn→∞

1
n |{k ≤ n : k ∈ K}| whenever this unique limit exists. Also, it is

mostly abbreviated by δ(K), where |{k ≤ n : k ∈ K}| is the cardinality of K and it
does not exceed n. A sequence (xn) of real numbers is called statistical convergent
to a real number x if, for every ε > 0, we have

lim
n→∞

1

n

∣∣{k : n ≥ k, |xn − x| > ε}
∣∣ = 0.

A lot of generalizations and applications of statistical convergence have been inves-
tigated by several authors (cf. [3, 5, 6, 7, 12, 18, 19, 20]). Throughout this paper,
the vertical bar of sets will stand for the cardinality of the given sets.

A real-valued vector space E with an order relation is called an ordered vector
space if, for each x, y ∈ E with x ≤ y, we have x + z ≤ y + z and αx ≤ αy for all
z ∈ E and α ∈ R+. A vector subspace F of an ordered vector space E is majorizing
E if, for every x ∈ E there exists some y ∈ F with such that y ≤ x. An ordered
vector space E is called Riesz space or vector lattice if, for any two vectors x, y ∈ E,
the infimum and the supremum

x ∧ y = inf{x, y} and x ∨ y = sup{x, y}

exist in E, respectively. A vector lattice is called σ-order complete if every nonempty
bounded above countable subset has a supremum (or, equivalently, whenever every
nonempty bounded below countable subset has an infimum). A subvector lattice
F of a vector lattice E is called order dense in E if, for every 0 < x ∈ E, there
exists some y ∈ F such that 0 < y ≤ x. For an element x in a vector lattice E, the
positive part, the negative part, and module of x are respectively

x+ := x ∨ 0, x− := (−x) ∨ 0 and |x| := x ∨ (−x).

Thus, in the present paper, the vertical bar |·| of elements in vector lattices will stand
for the module of the given elements. Take a nonempty subset A of a vector lattice
E. Then its disjoint complement is denoted by Ad := {x ∈ E : x ⊥ y for all y ∈ A}.
If |x| ∧ |y| = 0 holds for any two elements x and y then they are called disjoint (or,
symbols x ⊥ y). A characterization of statistical convergence on vector lattices was
introduced by Ercan in [7], and also, Şençim and Pehlivan studied the statistical
order convergence on Riesz spaces; see [18]. Moreover, statistical convergence was
introduced and studied by Aydın in [3] concerning unbounded order convergence on
locally solid Riesz spaces. Also, Wang et al. studied unbounded order convergence
on locally on Banach lattice in [19, 20].

We turn our attention to unbounded order convergence. The uo-convergence
was introduced in [13] under the name of individual convergence. We refer the
reader for an exposition on uo-convergence to [10]. The order convergence and
uo-convergence is crucial for this paper, and so, we continue with their definitions.

Definition 1.1. Let (xn) be a sequence in a vector lattice E. Then it is called
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(1) order convergent to x ∈ E if there exists another sequence yn ↓ 0 (i.e.,
inf yn = 0 and yn ↓) such that |xn − x| ⩽ yn holds for all n ∈ N, and

abbreviated as xn
o−→x,

(2) unbounded order convergent to x ∈ E if |xn − x| ∧ u
o−→ 0 for every u ∈ E+,

and so, we write xn
uo−→x.

It is clear that the order convergence implies the uo-convergence by virtue of
|xn − x| ∧ u ≤ |xn − x| for any elements in vector lattices. The converse need not
be true in general. To see this, we give the following example.

Example 1.1. Consider the sequence (en) of the standard unit vectors in c0. Then we
have en

uo−→ 0 because uo-convergence in c0 is equivalent to the coordinate-wise conver-
gence; see [10, p.22]. But, it is not convergent in the order convergence because (en) is
not order bounded in c0.

It is clear that uo-convergence is equivalent to order convergence for order bounded
sequences.

2. The statistical uo-convergence

We begin the section with the notion of statistical monotonicity. It was introduced
in [16] for real sequences. We take the following notions from [18].

Definition 2.1. Let E be a vector lattice and (xn) be a sequence in E. Then (xn)
is called

(a) statistical monotone convergent to x ∈ E if there exists a subset J = {j1 <
j2, · · · } in N such that δ(J) = 1 and (qjn)j ↓ x, and we abbreviate it as
qn ↓st x,

(b) statistical order converges to x ∈ E if there are a sequence qn ↓st 0 and a subset

δ(J) = 1 of N such that |xn − x| ≤ qn for all n ∈ J , and we write xn
st-o−−→x.

One can observe that every order convergent monotone sequence in vector lat-
tices is statistical monotone convergent to its order limit. Motivated from above
definitions, we give the following main notion of this paper, which is also introduced
by Wang et al., in [20].

Definition 2.2. Let E be a vector lattice and (xn) be a sequence in E. Then
(xn) is called statistical unbounded order convergent (or, statistical uo-convergent,
shortly) to x ∈ E if, for every u ∈ E+, there exists a sequence qn ↓st 0 and a subset
J of the natural numbers with δ(J) = 1 such that

|xjn − x| ∧ u ⩽ qjn

for all jn ∈ J . We abbreviate it as xn
st-uo−−−→x.
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It is clear that that the statistical uo-convergence can be redefined as follows: if,
for each u ∈ E+, there exists a sequence qn ↓st 0 such that δ

(
{n ∈ N : |xn−x| ∧u ≰

qn}
)
= 0 then xn

st-uo−−−→x.

Example 2.1. Let’s consider the vector lattice E := R the set of all real numbers. Take
a sequence (xn) in E denoted by n3 whenever n = k3 for some k ∈ N, and otherwise
denoted by 1/(1 + 2n). Now, we choose a sequence (qn) such that

qn :=

{
n, n = k3

1
n
, otherwise

.

It is clear that qn ↓st 0. Also, when we consider the set J as {1, n ∈ N : n ̸= k3 for some k ∈
N}, it can be seen that δ(J) = 1 and |xjn | ∧ u ≤ qjn for all u ∈ E+ and for every jn ∈ J .

So, we obtain xn
st-uo−−−→ 0.

Proposition 2.1. Every uo-convergent sequence in a vector lattice is statistical
uo-convergent to its uo-limit.

Proof. Let (xn) be uo-convergent to x and u be a fixed positive element in a vector

lattice E. Then it follows from Definition 1.1 (2) that |xn − x| ∧ u
o−→ 0. Thus, by

Definition 1.1 (1), there exists a sequence yn ↓ 0 in E such that |xn − x| ∧ u ⩽ yn
holds for all n ∈ N. Since (yn) is decreasing and order convergent to zero, we have

yn ↓st 0. Let’s take the subset J as N. Then we get the desired, xn
st-uo−−−→x, result

because u ∈ E+ is arbitrary.

Corollary 2.1. The order convergence implies the statistical unbounded order con-
vergent in vector lattices.

Corollary 2.2. The statistical order convergence implies statistical uo-convergence.

3. Main Results

Theorem 3.1. The lattice operations are continuous with the statistical uo-conve-
rgence.

Proof. It is enough to show the continuity of the supremum operation. The other

cases are analogies. Suppose that xn
st-uo−−−→x and yn

st-uo−−−→ y hold in a vector lattice
E. Fix u ∈ E+. Then there exist sequences qn ↓st 0 and pn ↓st 0, and subsets J
and K of the natural numbers with δ(J) = δ(K) = 1 such that |xjn − x| ∧ u ⩽ qjn
and |xkn

− y| ∧ u ⩽ pkn
for all jn ∈ J and kn ∈ K. Choose M = J ∩K. Thus, we

have δ(M) = 1, |xnm
− x| ∧ u ⩽ qnm

and |xnm
− y| ∧ u ⩽ pnm

for every nm ∈ M .
Thus, it follows from [2, Thm.1.2(2)] that

|xnm
∨ ynm

− x ∨ y| ∧ u ≤ |xnm
− x| ∧ u+ |ynm

− y| ∧ u

≤ qnm
+ pnm

for each m ∈ N. Let consider a new sequence rn := qn + pn then we have |xnm ∨
ynm

− x∨ y| ∧ u ≤ rnm
and rn ↓st 0. Hence, we obtain xn ∨ yn

st-uo−−−→x∨ y in E.
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Corollary 3.1. If xn
st-uo−−−→x holds in vector lattices then we have

(i) (xn)
+ st-uo−−−→x+,

(ii) (xn)
− st-uo−−−→x−,

(iii) |xn|
st-uo−−−→|x|.

It is not hard to see that a subsequence of a statistical uo-convergent sequence
needs not be uo-convergent (cf. [18, Exam.4]).

The following basic results are motivated by their analogies from vector lattice
theory.

Theorem 3.2. Let E be a vector lattice. If xn
st-uo−−−→x and yn

st-uo−−−→ y hold in E
then we have the following results:

(i) xn
st-uo−−−→x iff (xn − x)

st-uo−−−→ 0 iff |xn − x| st-uo−−−→ 0;

(ii) The statistical uo-limit is linear;

(iii) The statistical uo-convergent has a unique limit;

(iv) The positive cone E+ is closed under the statistical uo-convergence;

(v) Suppose 0 ≤ xn ≤ yn, and so, we have x ≤ y.

Proof. The first three properties are straightforward. For (iv), take a non-negative

and statistical uo-convergent sequence xn
st-uo−−−→x in E. Then it follows from Corol-

lary 3.1 that xn = x+
n

st-uo−−−→x+. Moreover, by applying (iii), we obtain x = x+.
So, we get the desired, x ∈ E+, result.

(v) Assume 0 ≤ xn ≤ yn. Then, by applying Corollary 3.1, we have xn =

|xn|
st-uo−−−→|x|. Thus, we can see that x = |x| ≥ 0 due to the uniqueness of statistical

uo-limit. As a result, we obtain y ≥ x because of 0 ≤ yn − xn
st-uo−−−→ y − x.

Be reminded that a positive vector e > 0 in a vector lattice is called weak order
unit whenever, for each positive element x, we have x ∧ ne ↑ x.

Theorem 3.3. Let e be a weak order unit and (xn) be a sequence in a σ-order

complete vector lattice E. Then xn
st-uo−−−→ 0 if and only if |xn| ∧ e statistical order

converges to zero.

Proof. Suppose xn
st-uo−−−→ 0. Then it is not hard to see |xn| ∧ e

st-o−−→ 0. For the
converse, assume that |xn|∧e is statistical order convergent to 0 in E. So, following
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from Definition 2.1(b), there exists a sequence qn ↓st 0 and a subset δ(J) = 1 such
that |xjn | ∧ e ⩽ qjn for all jn ∈ J . Take a fixed u ∈ E+. Thus, the inequality

|xjn | ∧ u ≤ |xjn | ∧ (u− u ∧ ne) + |xjn | ∧ (u ∧ ne)

≤ (u− u ∧ ne) + n(|xjn | ∧ e),

holds for any j ∈ J and n ∈ N. Since E is σ-order complete, we have

lim sup
j

|xjn | ∧ u ≤ (u− u ∧ ne) + n lim sup
j

(|xjn | ∧ e)

for every n ∈ N. On the other hand, there is another subset K of N such that
δ(K) = 1 and (qkn

)k ↓ 0 because of qn ↓st 0. Next, choose M = J ∩ K. Then
δ(M) = 1 and |xnm |∧e ⩽ qmn for allm ∈ N, and so, we obtain lim sup

m
(|xmn |∧e) = 0.

Also, we see
lim sup

m
|xmn | ∧ u ≤ (u− u ∧ ne)

holds for all n ∈ N. Take pn := (u−u∧ne). Then one can see that (pn) ↓ 0, and so,

pn ↓st 0 since e is the weak order unit. Therefore, we obtain the desired, xn
st-uo−−−→ 0,

result because u is arbitrary.

Recall that a subset A of a vector lattice E is called solid if, for each x ∈ A and
y ∈ E, |y| ≤ |x| implies y ∈ A. A solid vector subspace of a vector lattice is referred
to as an ideal. An order closed ideal is called a band (cf. [1]).

Remark 3.1. Let A be an ideal in a vector lattice E and (an) be a sequence in A. One
can observe that if an

o−→ 0 in A then an
o−→ 0 in E. Hence, it clear that an ↓st 0 in A implies

an ↓st 0 in E. For the converse, if an
o−→ 0 in E and order bounded then an

o−→ 0 in A, and
so, an ↓st 0 in E implies an ↓st 0 in A for order bounded sequences.

Thanks to Remark 3.1, we give the following two results.

Theorem 3.4. Let A be an ideal in an σ-order complete vector lattice and (xn)

be a sequence in A. Then xn
st-uo−−−→ 0 in A if and only if xn

st-uo−−−→ 0 in E.

Proof. Suppose that xn
st-uo−−−→ 0 hold in A. Then, for arbitrary u ∈ A+, there exists

a sequence qn ↓st 0 in A and a subset J of the natural numbers with δ(J) = 1 such
that |xjn | ∧ u ≤ qjn for all j ∈ N. Also, since qn ↓st 0 holds, there is a subset K in
N such that δ(K) = 1 and (qkn

)k ↓ 0 in A. Then, by previous remark, (qkn
)k ↓ 0 in

E. Now, let’s take 0 ≤ w ∈ Ad and H = J ∩K. Then we have

|xnh
| ∧ (u+ w) = |xnh

| ∧ u ≤ qnh

for each h ∈ N. Now, choose arbitrary z ∈ E+ and a ∈ (A ⊕ Ad)+. Then we have
z ∧ a ∈ (A⊕Ad)+. So, there exists a sequence tn ↓st 0 in E and a subset δ(M) = 1
such that

|xnm | ∧ (z ∧ a) ≤ tnm
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for all nm ∈ M . It means that(
inf
m

sup
i≥m

|xni
| ∧ z

)
∧ a = inf

m
sup
i≥m

(|xni
| ∧ (z ∧ a)) ≤ tnm

holds for every nm ∈ M in E. Since (A ⊕ Ad) is order dense in E for any ideal A
in E, it follows from [2, Thm.1.36.] that (A⊕Ad)d = {0}. So, we obtain

inf
m

sup
i≥m

(|xni
| ∧ z) ≤ tnm

for each m ∈ N in E because a is arbitrary. As a result, we obtain the desired,

xn
st-uo−−−→ 0 in E, result.

For the converse implication, assume (xn) is statistical uo-converges to 0 in E.
Fix any u ∈ A+. Then there exists a sequence rn ↓st 0 in E and a subset J of the
natural numbers with δ(J) = 1 such that |xjn | ∧ u ≤ rjn for all j ∈ N. Thus, the

previous remark implies rn ↓st 0 in A, and so, we get xn
st-uo−−−→ 0 in A whenever we

take, in a special case u ∈ A.

Proposition 3.1. Let E be a vector lattice. If xn
st-uo−−−→x in E then PB(xn)

st-uo−−−→
PB(x) for every the corresponding band projection of a projection band B in E.

Proof. It is well known that 0 ≤ PB ≤ I holds, and PB is a lattice homomorphism
(cf. [2, Thm.1.144]). Following from the inequality

|PB(xα)− PB(x)| = PB |xα − x| ≤ |xα − x|,

it is clear that PB(xα)
st-uo−−−→PB(x).

Theorem 3.5. Let E be a vector lattice, F be a sublattice of E and (fn) be a

sequence in F . If fn
st-uo−−−→ 0 in F then fn

st-uo−−−→ 0 in E in each of cases; F is
majorizing in E, or F is a projection band in E.

Proof. Fix an element u ∈ E+. Assume F is majorizing in E. Then there exists
w ∈ F with u ≤ w. On the other hand, there exists a sequence qn ↓st 0 and a subset

δ(J) = 1 such that |fjn | ∧ w ⩽ qjn for all jn ∈ J in consequence of fn
st-uo−−−→ 0.

Hence, it follows from the inequality

|fjn | ∧ u ≤ |fjn | ∧ w

that fn
st-uo−−−→ 0 in E.

Now, assume that F is a projection band in E. Chose F = F dd. Then we have
E = F ⊕ F d. Hence, we can write u = u1 + u2 with u1 ∈ F and u2 ∈ F d. Hence,
we obtain

|fn| ∧ u = |fn| ∧ (u1 + u2) = |fn| ∧ u1

because of fn ∧ u2 = 0. Hence fn
st-uo−−−→ 0 in E.
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Proposition 3.2. Let (xn) be a disjoint sequence in a vector lattice E. Then (xn)
statistical uo-converges to zero.

Proof. Suppose (xn) is a disjoint sequence. Then it follows from [10, Cor.3.6.]
that (xn) is uo-convergent to 0 in E. Now, by using Proposition 2.1, we can get

xn
st-uo−−−→ 0.
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