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RADIUS CONSTANTS FOR A CLASS OF ANALYTIC FUNCTIONS
ASSOCIATED WITH A MULTIPLIER LINEAR OPERATOR

Poonam Sharma and Ankita *

Abstract. The purpose of this paper is to find radius constants for a Janowski type
class HE"H()\, A, B) involving a multiplier linear operator for functions f satisfying certain
conditions on its coefficients. The sharpness of the results are verified. Some consequent
results are also mentioned.
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1. Introduction

Let A denotes a class of functions of the form
(1.1) fzy=z+ Z anZ"
n=2

which are analytic in the open unit disk U = {z: |z] < 1}. A subclass of univalent
functions f € A is denoted by S. Bieberbach conjectured that a function f € S of
the form (1.1) satisfies the coefficient condition: |a,| < n (n > 2) which was proved
by de Branges [4]. But it was observed that this coefficient condition is not sufficient
for the functions f to be in the class S. For example, functions

z

f1(2) = 2+ 27%, f2(z) = 22 — -

satisfy coefficient condition |an| < n but their derivatives vanish inside U, hence,
the functions f; and f, are not in the class S. Thus, we needed to find the least
upper bound r(f) of r € (0,1) such that f € A satisfying the condition [an| < n be
univalent in U, = {z: |z] < r} and is called the radius of univalence or the radius
constant for f € § or S— radius. Gavrilov [10] showed that radius of univalence
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for functions f € A of the form (1.1) satisfying |an| < n, is the real root ry = 0.164
(approx.) of the equation 2(1 -1 — (1+7r) = 0 and the result is sharp for the
function f,. Gavrilov also obtained the radius of univalence of functions f € A
satisfying another inequality |a,| < M (M > 0,n > 2). Landau [14] obtained the
radius of univalence for functions f € A satisfying )f(z)) < M. Various subclasses
of S have been defined and studied so far, well known out of which are the
classes of starlike and convex functions, denoted, respectively, by S7 and CV
(see Duren [7]). Yamashita [28] showed that the radius of univalence obtained
by Gavrilov is same as the radius of starlikeness for functions f € A satisfying
lan] < nor |am| < M . Yamashita [28] also determined the radius of convexity, for
functions f € A satisfying |ay| < n, which is the real root ry = 0.090 of the equation
2(1 = r)* = (1 + 4r + r?) = 0, while the radius of convexity for functions f € A
satisfying |an| < M is the real root of (M + 1) (1 - N —M@1+r) =

The second coefficient a, of f € A given by (1.1), determines some important
properties such as growth and distortion estimates of the function f. By fixing the
second coefficient, let Ap denotes a subclass of the class ‘A whose members are of
the form

f@=2+) 22" (al=20,0<b<1).

n=2

Several authors have investigated various properties of univalent functions and its
subclasses by fixing the second coefficient; for detail see [1, 2, 11, 15, 16, 23, 26]. In
[23], Ravichandran obtained the sharp radii of starlikeness and convexity of order
a (0 < a < 1) for functions f € A, satisfying the condition |a,| < n or |an| < M or
lan] < M/n for n > 3. Further, in [16], radius constants are obtained for functions
f € Ay satisfying the condition |a,| < cn+d (c,d > 0) or |an| < ¢/n (¢ > 0) for n > 3.

Let f and g be analytic in U. Then we say f is subordinate to g, written
f(z) < g(z) (z € U), if there is an analytic function w with w(0) = 0 and |w(z)| < 1,
such that f(z) = g(w(z)). In particular, if g is univalent in U, then f is subordinate
to g provided f(0) = g(0) and f(U) € g(U). The concept of subordination can be
found in [17]. Involving subordination, a brief history for various subclasses of S
may be found in [1].

In geometric function theory, various linear operators, associated with some
geometric properties of the image domain are studied. For the purpose of this
paper, we consider a multiplier linear operator 7, IE"P : A — A, defined recently in

[21] (see also [22], [25]), forme Z = {...,,-2,-1,0,1,2, ..} and for u > -1, k > 0, by

gnie =1, m=0,
z
1— L L —
12) gr i@ =42 k{ CRIMOA,  meZ={-1,-2,..,

@) = f ( 2 g f(z)) mezZ =112, )
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The series representation of 7 Ii“y f(z) for f(z) of the form (1.1) is given by

(1.3) j&f(z):z+2(l+k(n_1)) anz".
n=2

+1 "

The multiplier operator 7, IZ”H generalizes several previously studied operators
in various papers some of which are as follows:

(i) I =D (m e Np = {0,1,2,..) [18]
(i) J7, = D™ (M € No) [24]
(iii) JT, = D" [27]
(iv) J7, =17 (m € No, 1 > 0) [5, 6]
(v) Jih = I." (n € Ny, k > 0) [3,20]
(vi) I =L0,, (n€Ng,a>0)[13]
(vii) J77 =17 (n € No) [8]

(viii) J70f(2) = 7" (n € No, A > 0) [24]

Involving the operator 7, m#, we define a Janowski type class HL“H(A, A,B) as
follows:

Definition 1.1. A function f € A is said to be in class H{(”y(/\, A, B), if it satisfies for
A>0,-1<B<A<1,asubordination:

’

1= ) ITH@) + Az (jg;l f(z)) A

<
If,‘yf(z) 1+Bz

(1.4) (zeU).

Note that on giving appropriate values to the parameters involved in the afore-
mentioned class H{(”y(/\, A, B), we find several previously defined classes. Some of
these are as follows:

(i) H),(0,A,B) = ST [A,B], H!(0,A,B) = CV[A, B] studied by Janowski [12].

(i) H?/O(a, 1-28,-1) = L(a, ) (o = 0,8 € R\ {1}) studied by Nargesi et al. [16]
(119)).

(iii) H?,O(O’ 1-a,0), H},O(O, 1-a,0) (0 < a < 1) studied by Ravichandran [23].
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Denote HI’(T,‘F(/\, 1-28,-1)= HlTy(A’ﬁ) (0<B<1l)and HI’(T,‘F(/\, 0)= HL',‘H(A). Func-
tions in the class H{(“H(A, p) satisfy

’

(1= )T (@) + Az (jg;l f(z))

(1.5) Re j& )

>p (zeU).

Since, for-1<D<B<A<C<(1-28)<1,

1+Az 1+4Cz 1+(1-28)z 1+z
< .
1+Bz<1+Dz = 1-z <1—z O<p<Lzel),

we observe that
H" (1,A,B) € HI" (,C, D),

and
HI’(T,‘H(/\, A,B)C HL',‘H(A, B) c H{:y()\).

But the reverse inclusion is true in some disk Uy,. According to [9], we have follow-
ing inclusions:

(i) HP (A,C,D) C HY (A, A,B) in Uy, where 1, = min (5258 5, 1)-

.o . _ . A_B
(ii) HI’(T,‘y(A,,B) C HI’(T,‘F(/\, A, B) in Uy,, where r; = min (W’ 1).

(iii) HP,(1) € HY (A, A B) in Uy, where rs = min (74585, 1).

We note that the functions belonging to a class, satisfy certain coefficient con-
dition, for example, if f € A of the form (1.1) is convex (univalent) in U, then
lan] < n (n > 2) and if it is starlike in U, then |ap| <1 (n > 2). Also, if f satisfies
[f@)] < M (M>0;z€U), then |as] < M (n>2), and if Re(f'(z)) > 0 in U, then
lanl £ 2/n (n > 2).

The purpose of this paper is to find results on HE,‘H(/\, A, B)—radius for the func-
tions satisfying certain conditions on the coefficients a, (n > 2), which presumingly
arise for the functions belonging to various classes. Motivated with the work [16]
and [23], for f € A of the form (1.1), satisfying certain conditions on the coefficients
an (n>2), HE,‘H(/\, A, B)— radius is obtained by using the sufficient coefficient con-
dition for the class H{(T,‘H(/\, A, B) which is also obtained in this paper. The sharpness
of the radii results are verified. Some consequent results are also mentioned.

2. Coefficient Inequality
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Theorem2.1. Lety>-1,k>0,A>0andlet-1<B<0,B<A<1.If f e Aofthe
form (1.1) satisfies the inequality

(o8]

k(n=D\[ ,m
(2.1) ;[A—1+(1—B)(1—/\+/\n)(1+ =3 )]Gkry(n)lanlsA—B,
where
mo k(n—1)\"
(2.2) ek,y(n)_(nTH ) ,

then f € H{(“H(/\,A, B).
Proof. To prove f € H{(”H(A, A, B), from the class condition (1.4), we need to show

1-P(2)

(23) Sl = 'm

'<1,

where

’

(1= NT @) + A2 (T 1)
ke[ @)

Observe from (1.1) that if a, = 0 (n > 2), then P(z) = 1 (z € U) which verifies (2.3),
and if there is some a, # 0 (n > 2), then from (2.1) it follows that

2.4) P(z) =

(o)

k(n-1
Z{A—B(l—/\+/\n)(1+ L”H))}@'k‘jy(nﬂanl

n=2
< nz_;‘ [A— 1+(1-B)( —/\+/\n)(1 + k:lngll)) o, () [an|

(2.5) < A-B.

Now, on writing the series expressions from (1.3) in (2.4), we get

E fa-aam(1+452) <1} o, (™

_ - _ _ k(n-1) 1
A B+n§2{A B(1—A+An)(1+4 )}efk*jy (n) anz"

S =

which in view of (2.5), proves

éz{(l - An) (1 4D) 1) o ()

S < <1

o B_gz{A— B(1-A+An) (1+52)bor () fa| )

if (2.1) holds. This completes the proof of Theorem 2.1. [
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3. Radius Constant

Theorem 3.1. Let f € A be of the form (1.1) and let for some m € Z, u > -1,k > 0,
GL“H (n) (n > 2) be given by (2.2). If jap| = 2% (0 <b < 1)and

o

lan| < eﬁ’n‘tﬁ) (n>3,c>0,d>0),then H{(”y(/\, A, B)—radius is the real root in (0, 1), given
k,u 7

by the equation

[(c+d+1)(A—B)+(2c—2b+d){(1—B)(1+/\)(1+K)+A—1}r](1—r)4

= (1-B)AcK(1+4r+r?)+(1-B){c(A+K—21K) + AdK} (1 - r?)
+[{c(1—/\)(1—K)+d(/\+K—2)LK)}(1—B)+c(A—1)](1—r)2
(3.1) +d{1-N1-K(1-B)+A-1}(1-r)?,

_ Kk ;
where K = T The result is sharp.
Proof. Letry € (0,1) be the HL“H(A, A, B)— radius. Then, we show that

f(roz)
o

€ H{(“H(A, A, B). Hence, from the coefficient inequality (2.1), we show

o)

S, ::Z[A—1+(1—B)(1—A+An)(1+

n=2

kLnJ:ll))] Ok, (M lanl 5™ < A= B.

Applying conditions |ap| = #b(z) (0<b<1)andlay| < % (n>3,c>0,d>0),0on

putting ﬁ = K, we obtain

S < {A=1+1-B)(1+A)(1+K)2brg+AcK(1-B) ) n’ry”!
n=3

+(1=B)[c{A(1-2K) + K} +dAK] Z 2!
n=3

+[{c(1—/\)(1—K)+d(/\+K—Z)LK)}(l—B)+c(A—1)]Z‘nr3‘1

n=3

+d{A—1+(1—A)(1—K)(1—B)}Zr8’1

n=3
and on using the expansions

o)

1

2 - n—ll
(3.2) T o

n=1




(3.3)

(3.4)

(3.5)

we get

Sy

IA
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(1 - r0)4 n=1

{A-1+(1-B)(1+A)A+K)}2bry

1+4rg+r13
+AcK (1 = B){ ————2 ~1-8rg
1—I’0)

+(1—B)[c{A(l—2K)+K}+dAK]{ 11”0)3 —1—4r0}
+[{c1-AD)A-K)+d(A+K=-2AK)}(1=-B)+c(A—-1)]

1
TR

1
+d{A—1+(1—A)(1—K)(1—B)}{m—1—r0}

c+dB-A)+2b-2c-d){1-B)1+A)A+K+A-1}rg
+[AeK (1 = B) (1 + 4rg + 13) + (1 = B) {c {A (1 — 2K) + K} + dAK} (1 - 12)
+[c@ =N A=-K +dA+K=-2AK)} (1 =B)+c(A=1)](1-ry)?

+d{(1-) (1 -K)(1-B)+A-1}(1-1)’|

A —

B

1
(1-r)!

if ry satisfy (3.1). Sharpness can be verified for the function fy(z) such that

jg‘y(fo(z)) =z-2b7* - Z(cn +d)z".
n=3

Since, for this function

T (fo(@) =2-2b(1 +K) 22 Z 1+K(n—-1)}(cn+d)z"
n=3
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where K = ,u_f—l and atz = rp € (0, 1), satisfying (3.1), we get

(L= )T fo(2) + Az (jk“jf fo(Z)) N, A_B
(3.6) 1- ===

— = >0,
jlzly fo(2) Dr, 1-B
where Ny, and Dy, are given by
1+4rg+ 12
Ny, = (2b—2c—d){(1+)L)K+)L}r0+/\cK74
(I-ro)
OO+ K — 2AK) + dAK) 0
(I-ro)
1
—{c(A+K-AK) —d (A + K-2AK)} —
(e +K=AK) ~d (1 + ) G
1
- K- AK
d(A+K-A )1_rO
and
c d

Dy, = Jy,(fo@) = 1+ ¢ +d) - (2b-2c —d)ro - AR 1-1

Thus, for the function fy(z) at z = ry, satisfying (3.1),

(1= T o(@) + Az (5 o fo(Z)) 1+ AWE)

Pi(2):= @) ~ 1+BwQ)

where
1- P1(Z) -1

BPi(z) - A
This completes the proof of Theorem 3.1. [

w(z) =

Remark 3.1.

(i) Takingm =0,k =1, u =0, A = 0in Theorem 3.1, we get the radius result obtained by
Nargesi et al. [16, Theorem 6, p. 4].

(ii) Takingm=0,k=1,u=0,A=1-28(0 < B <1),B = —-1in Theorem 3.1, we get the
radius result obtained by Nargesi et al. [16, Theorem 2, p. 2].

On giving special values: ¢ = 1, d = 0 in Theorem 3.1, we get following result.

Corollary 3.1. Let f € A be of the form (1.1) and let for some m € Z, u > -1,
k>0, G”‘y (n) (n > 2) be given by (2.2). If |ay| = sz—kzz)(o <hb<1),lay emL(n) (n>3),
v, K, ki

then H{(T,‘H(/\, A, B)— radius is the real root in (0, 1), given by the equation
RA-B)+2(1-b{1-B)A+A)A+K)+A-1}r]1-n*
= AK(1-B)(1+4r+r?)+(1-B)(A+K=-21K)(1-r?)
+{(1-M)A-K@1-B)+A-1}(1-r?,
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where K = —5. The result is sharp.

Further, giving special values: ¢ = 0,d = M in Theorem 3.1, we get the following
result.

Corollary 3.2. Let f € A be of the form (1.1) and Iet for some meZ u>-1,
k > 0,00, (n) (n>2) be given by (2.2). If |a] = . (2)(0 < 1), bl < 7%
7 K,

(n>3,M > 0), then H{(”H(/\, A, B)— radius is the real root in (0, 1), given by the equation

(M+1D)A-B)+(M=2D){1-B)1+AM)(1+K +A=1}r](1-r*
= AMK(1 - )(1—r)+M(A+K—2/\K)(1—B)(1—r) +
M{(l—A)(l—K)(l—B)+A—1}(1—r)3,

where K = —=. The result is sharp.

Remark 3.2.

(i) For b = 1 Corollary 3.1 provides the HL‘?H (A, A, B)— radius if the function 7, l:”,p f(z) is
univalent (convex) in U.

(ii) Takingm=0,k=1, u=0,A=0,A=1-a (0 <a<1),B=0in Corollary 3.1, we get
the radius result obtained by Ravichandran [23, Theorem 2.1, p. 29] for starlikeness
of order a and for parabolic-starlikeness, which also includes the cases when b = 0
and 1, respectively, [23, Corollaries 2.1.1 and 2.1.2, p. 31, 32], and whenb =1,a =0
[28, Theorem 2, p. 454].

(iii) Takingm =0, k=1, u=0,A1=0,A=1-a (0<a<1),B = 0in Corollary 3.2, we
get the radius result obtained by Ravichandran [23, Theorem 2.2, p. 32] which also
includes the case when b = % [23, Corollary 2.2.1, p. 33] ([28, Theorem 2, p. 454] if
b=Ya=0).

(iv) Takingm=1,k=1, u=0,1=0,A=1-a (0<a<1),B =0in Corollary 3.1, we
get result [23, Theorem 3.1, p. 34] for convexity of order a and for uniform convexity,
which includes the cases when b = 1 and 0, respectively, [23, Corollaries 3.1.1 and 3.1.2,
p. 35, 36], and when b = 1, @ = 0 [28, Theorem 2, p. 454].

(v) Ontakingm=1,k=1,u=0,A=0A=1-a(0<a<1),B =0in Corollary 3.2,
we get result [23, Theorem 3.2, p. 36] which includes the cases when b = % and a = 0,
respectively, in [23, Corollary 3.2.1, p. 37] and [28, Theorem 2, p. 454].

Theorem 3.2. Let f € A be of the form (1. 1) and let for somem € Z, u > -1, k >
0, GL"P (n) (n > 2) be given by (2.2). If |ay| = 9m (2) (0<h<1),

lan] < (n>3,c>0), then HL‘?P(A,A B)— radius is the real root in (0, 1), given by

_c
n QE,L (n)

the equation

c+1)(A—B)— (2b——){(1+A)(1+K)(1—B)+A 1}](1—r)2

= AcK(1-B)+c(A+K-=2AK)(1-B)(1-r)

log(1—r)
r

(3.7) —-c{1-A)A-K)(1-B)+A-1} (1-r1)?,
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_ _k ;
where K = T The result is sharp.

Proof. Let rgbe HE‘H(A, A, B)—radius. Then, we show that % € H{(”H(/\, A, B). From
the coefficient inequality (2.1), we show that

o)

S, ::Z[A—1+(1—B)(1—A+An)(1+

n=2

k(n=D\| m et
eS| )]Gk,y(n)lanlrO <A-B.

Applying the conditions [a] = gz (N > 2,0 <b < 1)and fan| < iy (123,62 0),
k,u k,u

a calculation shows on using the expansions (3.2), (3.3), (3.4) and (on integrating
(3.2)):

on putting ﬁ =K, that

S3

IA

{(T+A)A+K)(@@A-B)+A—-1}2brg

+Z{(1—/\+/\n)(1—K+Kn)(1—B)+A_1}%r8—1
n=3
= {1+ (1 +K)(1-B)+A-1}2bry

1
AcK(1-B -1-2
KA ){(1—r0)2 rO}

+c()L+K—2/\K)(1—B){(1 1r)—1—r0}
— 10

—c{(1—A)(1—K)(1—8)+A—1}{M+1+@}

o 2

- c(B—A)+(2b—%){(1+A)(1+K)(1—B)+A—1}r0
1

+AcK (1 - B) (1—r0)2 +c()L+K—2/\K)(1—B)1_rO

log (1 —rp)

(1= (1=K 1-B)+ A~ 1) ——
0

= A-B

if ry satisfy (3.1). Sharpness can be verified for the function f(z) such that

— C
I (h(2) =2 - 207 - Z 2",
n=3
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Since, for the function f;(z),

m+1 — 5 _ 2 _ - _ E n
I (@) =2-20(1+K)z nZ;(l K+Kn) =2",
where K = PL atz =rp €(0,1), satisfying (3.7), we get

+17

’

_ m+1 m+1
R A ) BN
T @ Dy, 1-B

Ny, and Dy, are given by

Ni, = (Zb— %)(A+K+/\K)ro+)\cK

(1-ro)’
log (1 —ro)
+Cc (A + K=2AK) +Cc(A+K=-AK) ——
1-r1 o
log(1-r
Dy, :1+c—(2b—3)ro+cM.
2 )

This completes the proof of Theorem 3.2. [

Remark 3.3.

(i) Takingm =0,k=1,u=0,A =a,A=1-2,B = —1in Theorem 3.2, we get the result
of Nargesi et al. [16, Theorem 3, p. 3] for the class L(a, )
(ii) Takingm =0,k =1, u =0, A = 0 in Theorem 3.2, we get result [16, Theorem 7, p. 5]
for the class ST [A,B].
(iii) Takingm =0,k=1, u=0,A=0,A=1-a(0<a<1),B=0,c=Min Theorem 3.2,
we get a result of Ravichandran [23, Theorem 2.3, p. 34].
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