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Abstract. In this study, we observe the change of roughness degree for the rough
Hausdorff convergence of a sequence, consisting of the product of a sequence of sets
and a sequence of real numbers. Then we prove that the rough Hausdorff convergence
is preserved under the operators of addition, union, Cartesian product and convex hull.
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1. Introduction

The concept of convergence of sequences of sets was first introduced by Painleve
in 1902 using the concepts of lower and upper limits of a sequence of sets. Kura-
towski [6] mentioned this convergence in his book and contributed to the making of
this theory more known. The practical difficulty of calculating a limit in this way
has led to the need for the concept of distance between two sets. First, Hausdorff
gave the definition of the Hausdorff distance by using the excess of a set A over
a set B. The concept of Hausdorff convergence was defined using this distance.
Then, the notion of Hausdorff convergence is expressed in different ways by using
the equivalent definitions of this distance. On the other hand, in 1966, Wijsman
[12] gave the concept of Wijsman convergence, which corresponds to the pointwise
convergence of sequences created from distance functions. In 1998, Apreutesei [1]
stated that the image of a Hausdorff convergent sequence in metric spaces under
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a uniform continuous function also preserves Hausdorff convergence. He [2] exam-
ined the basic properties for the classical Hausdorff limits of sequences of sets. In
2012, Nuray and Rhoades [7] combined the statistical convergence theory with the
theories of Kuratowski, Hausdorff and Wijsman convergence, which are the most
widely used in set theory.

In 2001, the idea of rough convergence of a sequence was first given by Phu [10]
in normed linear spaces. We note that a convergent (or non-convergent) sequence
can have different rough limits with a certain degree of roughness. In 2008, Aytar
[3] extended this theory to the statistical convergence theory. Recently, the rough
convergence theory has started to be applied in set theory as well. Ölmez and Aytar
[8] applied the rough convergence theory to the theory of Wijsman convergence.
Subramanian and Esi [11] extended the definition of rough Wijsman convergence
to triple sequences. In addition, Esi and Subramanian [5] obtained a new type of
convergence by combining the statistical convergence with this convergence.

In this study, we first explored the degree of rough convergence of the sequence
consisting of the product of a sequence of sets and a sequence of real numbers (see
Proposition 3.1). We analyzed this roughness degree by giving illustrative examples.
Then we proved that the rough Hausdorff convergence is preserved under some
operators such as addition, union, Cartesian product and convex hull.

2. Preliminaries

Throughout this paper, let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces. Let P (X)
and K(X) be all nonempty subsets and nonempty compact subsets of X, respec-
tively.

The product space X × Y is a normed space with the norm

∥x∥X×Y = max {∥x1∥X , ∥y1∥Y } where x = (x1, y1).

Let A ⊂ X. For x ∈ X, the distance from x to the set A is defined by

dX(x,A) = inf
a∈A

∥x− a∥X .

Let A × B ⊂ X × Y. For (x, y) ∈ X × Y , the distance from (x, y) to the set
A×B is defined by

dX×Y ((x, y), A×B) = inf
a∈A
b∈B

max {∥x− a∥X , ∥y − b∥Y } = max {dX(x,A), dY (y,B)} .

The set A is said to be bounded if diam(A) < ∞, where diameter diam(A) of a
nonempty set A in a normed space (X, ∥·∥X) is defined by

diam(A) = sup
a1,a2∈A

∥a1 − a2∥X .

The convex hull of a set A denoted by convA. We know that the convex hull of
a set A is the smallest convex set which includes A.
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Let (xn) be a sequence in the normed linear space X, and r be a nonnegative
real number. Then the sequence (xn) is said to be rough convergent to x with the

roughness degree r, denoted by xn
r−→ x, if for each ε > 0 there exists an n0 (ε) ∈ N

such that ∥xn − x∥X < r + ε for each n ≥ n0 [10].

Throughout this paper, we assume that An ⊂ X for each n ∈ N. The sequence
(An) of sets is said to be r−Hausdorff convergent (or rough Hausdorff convergent
with the roughness degree r) to the set A if for every ε > 0 there exists an n0 (ε) ∈ N
such that

H(An, A) = max {h(An, A), h(A,An)} < r + ε for all n ≥ n0,

where h(An, A) = sup
a∈An

dX(a,A) and h(A,An) = sup
a∈A

dX(a,An). In this case, we

write An
r−H−→ A [9].

An alternative definition of the rough Hausdorff convergence can be given by
the following:

An
r−H−→ A ⇐⇒ for every ε > 0 there exists an n0 (ε) ∈ N such that

H(An, A) = sup
x∈X

|d(x,An)− d(x,A)| < r + ε for all n ≥ n0.

The following proposition plays a big role in the proofs of Propositions 3.2 and
3.5.

Proposition 2.1. ([4]) If A,A1, B,B1 ∈ K(Rn), then

1. (i) H(tA, tB) = tH(A,B) for each t ≥ 0,

2. (ii) H(A+B,A1 +B1) ≤ H(A,A1) +H(B,B1),

3. (iii) H(convA, convB) ≤ H(A,B).

3. Main Results

Let us begin our new results with the following proposition to answer the ques-
tion of whether roughness degree of a sequence consisting of the product of a se-
quence of sets and a sequence of real numbers can be rough Hausdorff convergent.

Proposition 3.1. Let A,An ∈ K(X) for each n ∈ N. Suppose that the sequence
(An) satisfies the conditions:

(i) There exists an n1 ∈ N and an M > 0 such that supv∈An
∥v∥X < M for each

n ≥ n1.

(ii) An
r1−H−→ A. If αn

r2−→ α for the sequence αn of real numbers and α ∈ R, then
we have αnAn

(|α|r1+r2M)−H−→ αA.
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Proof. Let ε > 0. Since αn
r2−→ α, there exists an n2(ε) ∈ N such that

|αn − α| < r2 +
ε

2M

for each n ≥ n2. In addition, since An
r1−H−→ A, there exists an n3(ε) ∈ N such that

h(A,An) < r1 +
ε

2 |α|

and

h(An, A) < r1 +
ε

2 |α|

for each n ≥ n3. Define n0(ε) = max {n1, n2(ε), n3 (ε)}. Then we get

h(αA,αnAn) ≤ |α|h(A,An) + |α− αn| sup
v∈An

∥v∥X

< |α|
(
r1 +

ε

2 |α|

)
+

(
r2 +

ε

2M

)
M = |α| r1 +Mr2 + ε

and

h(αnAn, αA) ≤ |αn − α| sup
v∈An

∥v∥X + |α|h(An, A)

<
(
r2 +

ε

2M

)
M + |α|

(
r1 +

ε

2 |α|

)
= r2M + |α| r1 + ε

for each n ≥ n0. Consequently we have

H(αnAn, αA) = max{h(αnAn, αA), h(αA,αnAn)}
= max{r2M + |α| r1 + ε, |α| r1 +Mr2 + ε} = |α| r1 + r2M + ε.

for each n ≥ n0. Hence we write αnAn
(|α|r1+r2M)−H−→ αA, which completes the

proof.

Now let’s give an illustrative example that includes different cases of the rough-
ness degree |α| r1 + r2M in the Proposition 3.1.

Example 3.1. Define the sequences

An =

[
−1 +

1

n
,
1

2

]
and αn = 21/n − 1

2
.

Case 1: Let r1 = 2, r2 = 1
4
, A =

[
−1, 5

2

]
and α = 3

4
. Then we write

An
r1−H−→

[
−1,

5

2

]
and αn

r2−→ 3

4
.
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Take M = 1 and n1 = 1. Hence we have

sup
v∈An

∥v∥X < 1 for each n ≥ n1,

αnAn =

(
21/n − 1

2

)[
−1 +

1

n
,
1

2

]
,

αA =

[
−3

4
,
15

8

]
.

Since

(3.1) r = |α| r1 + r2M =
7

4
,

we have αnAn
r−H−→ αA. On the other hand, we observe αnAn

r−H−→ αA for
r = max

{∣∣− 3
4
+ 1

2

∣∣ , ∣∣ 15
8
− 1

4

∣∣} = 13
8
. Here we note that r > r.

Case 2: Let n1 = 1, r1 = 2, r2 = 1
4
, A =

[
−3, 1

2

]
and α = 3

4
. Then we write

An
r1−H−→

[
−3,

1

2

]
and αn

r2−→ 3

4
.

Hence we get

αA =

[
−9

4
,
3

8

]
.

By (3.1), we write αnAn
r−H−→ αA. In this case, since r = max

{∣∣− 9
4
+ 1

2

∣∣ , ∣∣ 3
8
− 1

4

∣∣} = 7
4
,

we have r = r.

It is clear from the Case 2 that the roughness degree |α| r1 + r2M cannot be
decreased. In other words, although the roughness degree r in Case 1 is thought to
be unnecessarily high, Case 2 says that it is not.

Remark 3.1. If we do not neglect a finite number of terms while taking supremum in
the Proposition 3.1 (i), then Proposition 3.1 also holds. But in this case, the roughness
degree is unnecessarily high as it can be seen following example.

Define

An =

[
−1− 100

n
,
1

2

]
and αn = 21/n − 1

2
.

Case 1: Let r1 = 2, r2 = 1
4 , A =

[
−1, 5

2

]
and α = 3

4 . Then we write

An
r1−H−→

[
−1,

5

2

]
and αn

r2−→ 3

4
.

If we take M = 101 and n1 = 1 then

sup
v∈An

∥v∥X < 101, for each n ≥ n1

αnAn =

(
21/n − 1

2

)[
−1− 100

n
,
1

2

]
αA =

[
−3

4
,
15

8

]
.
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Since

r = |α| r1 + r2M =
107

4
,

we write αnAn
r−H−→ αA. However, this number r is unnecessarily high to make the

sequence rough Hausdorff convergent.
Case 2: If we take n1 = 100 then

sup
v∈An

∥v∥X ≤ 2, for M = 2 and for each n ≥ 100.

Since
r′ = |α| r1 + r2M = 2

we write αnAn
r′−H−→ αA.

If the sequence (αn) of real numbers is ordinary convergent, that is r2 = 0, in
the Proposition 3.1, then we have following corollary.

Corollary 3.1. If An
r−H−→ A and αn → α then we have αnAn

|α|r−H−→ αA.

Remark 3.2. We observe in Proposition 3.1 that the distance between the sequence
(An) and the origin affects the roughness degree of the sequence (αnAn) . But this distance
doesn’t affect the roughness degree in the Corollary 3.1.

Following proposition shows that the sum of rough Hausdorff convergent se-
quences is also rough Hausdorff convergent.

Proposition 3.2. Let A,An, B,Bn ∈ K(X). If An
r−H−→ A and Bn

r−H−→ B, then

An +Bn
2r−H−→ A+B.

Proof. Assume that An
r−H−→ A and Bn

r−H−→ B. Let ε > 0. Then there exist
n1 (ε) , n2 (ε) ∈ N such that by Proposition 2.1 (ii), we have

H(An +Bn, A+B) ≤ H(An, A) +H(Bn, B)

≤ r + ε/2 + r + ε/r = 2r + ε

for each n ≥ max {n1 (ε) , n2 (ε)} . Hence proof is completed.

We note that there exist sequences (An) and (Bn) such that An
r−H−→ A, Bn

r−H−→
B and An + Bn

r−H↛ A+ B as can be seen following example. In other words, the
roughness degree 2r cannot be decreased in the Proposition 3.2.

Example 3.2. Define

An =

[
2, 5− 1

n

]
⊂ R and Bn =

{
3 +

1

n

}
⊂ R.
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Then we have
An

r−H−→ A = [2, 7] and Bn
r−H−→ B = {5}

for r = 2. On the other hand, we calculate An + Bn =
[
5 + 1

n
, 8
]
and A + B = [7, 12].

Since ∣∣∣∣d(15,

[
5 +

1

n
, 8

])
− d(15, [7, 12])

∣∣∣∣ = 4

for x = 15, we get

H(An +Bn, A+B) = sup
x∈R

|d(x,An +Bn)− d(x,A+B)| ≮ 2 + ε, (where 0 < ε < 2).

Consequently, An +Bn
r−H↛ A+B for r = 2. In addition, we observe that An +Bn

2r−H−→
A+B for r = 2.

Proposition 3.3. Let (An) , (Bn) ⊂ P (X). If An
r−H−→ A and Bn

r−H−→ B, then

An ∪Bn
r−H−→ A ∪B.

Proof. It is clear that

(3.2) h(An ∪Bn, A ∪B) = sup
x∈An∪Bn

dX(x,A ∪B)

= max

{
sup
x∈An

dX(x,A ∪B), sup
x∈Bn

dX(x,A ∪B)

}
≤ max

{
sup
x∈An

dX(x,A), sup
x∈Bn

dX(x,B)

}
= max {h(An, A), h(Bn, B)}

and

(3.3) h(A ∪B,An ∪Bn) ≤ max {h(A,An), h(B,Bn)}

for each n ∈ N. Let ε > 0. Since An
r−H−→ A and Bn

r−H−→ B, there exist
n1 (ε) , n2 (ε) ∈ N such that

(3.4) h(An, A) < r + ε and h(A,An) < r + ε for each n ≥ n1

and

(3.5) h(Bn, B) < r + ε and h(B,Bn) < r + ε for each n ≥ n2

Define n0 (ε) = max {n1, n2}. By (3.2)-(3.5), we get

h(An ∪Bn, A ∪B) ≤ max {h(An, A), h(Bn, B)} < r + ε

and
h(A ∪B,An ∪Bn) ≤ max {h(A,An), h(B,Bn)} < r + ε

for each n ≥ n0. Therefore we have

H(An ∪Bn, A ∪B) = max{h(An ∪Bn, A ∪B), h(A ∪B,An ∪Bn)} < r + ε

for each n ≥ n0. Consequently we write An ∪Bn
r−H−→ A ∪B.
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Proposition 3.4. Let A,An ⊂ X and B,Bn ⊂ Y for each n ∈ N. If An
r−H−→ A

and Bn
r−H−→ B then

An ×Bn
r−H−→ A×B.

Proof. It is clear that

(3.6) h(An ×Bn, A×B) = sup
(an,bn)∈An×Bn

dX×Y ((an, bn), A×B)

= max

{
sup

an∈An

dX(an, A), sup
bn∈Bn

dY (bn, B)

}
= max {h(An, A), h(Bn, B)}

and

(3.7) h(A×B,An ×Bn) = max {h(A,An), h(B,Bn)}

for each n ∈ N. Let ε > 0. Since the sequences (An) and (Bn) are r−Hausdorff
convergent to the sets A and B, respectively, there exist n1 (ε) , n2 (ε) ∈ N such
that we have

(3.8) h(An, A) < r + ε and h(A,An) < r + ε for each n ≥ n1

and

(3.9) h(Bn, B) < r + ε and h(B,Bn) < r + ε for each n ≥ n2.

Define n0 (ε) = max {n1, n2}. By the facts (3.6)-(3.9), we have

h(An ×Bn, A×B) = max {h(An, A), h(Bn, B)} < r + ε

and

h(A×B,An ×Bn) = max {h(A,An), h(B,Bn)} < r + ε

for each n ≥ n0. Hence we get

H(An ×Bn, A×B) = max{h(An ×Bn, A×B), h(A×B,An ×Bn)} < r + ε

for each n ≥ n0, which proves that An ×Bn
r−H−→ A×B.

Now, let’s put an end to our work by giving the following proposition, which
states that the sequences consisting of convex hulls of a rough Hausdorff convergent
sequence is also rough Hausdorff convergent.

Proposition 3.5. Let A,An ∈ K(X). If An
r−H−→ A then convAn

r−H−→ convA.

Proof is obvious from Proposition 2.1 (iii).
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