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THE EXTENDED SMIRNOV THEOREM FOR PSEUDONEARNESS
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Abstract. Pseudonearness is a common extension of bornology, b-topology, pseudo-
proximity, and classical nearness. Furthermore, generalized contiguity, defined here as
contiguous pseudonearness, can be addressed.
By employing the b-completion of a regulative contiguous pseudonear space, we obtain
its b-compactification. In a special case, this represents the Hausdorff compactification
of the induced Efremovic proximity space.
Keywords: pseudonearness, bornology, b-topology, pseudoproximity.

1. Basic concepts

Definition 1.1. A pseudonearness is defined as a pair (BX , N), where BX is a
non-empty subset of PX, the power set of a set X, and N is an operator from BX

into P (P (PX)) satisfying the following conditions:

(psn1) B1 ⊂ B ∈ BX implies B1 ∈ BX ;

(psn2) x ∈ X implies {x} ∈ BX ;

(psn3) B1, B2 ∈ BX implies B1 ∪B2 ∈ BX ;
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We have pointed out that conditions (psn1)-(psn3) are equivalent to saying that
BX is a bornology on X, in the sense of Hogbe-Nlend [3].

(psn4) B ∈ BX\{Ø} and S ∈ N(B) implies {B}∪S ∈ ∩{N(F ) : F ∈ (S∩BX)∪{B}}
(symmetry);

(psn5) B ∈ BX implies clN (B) ∈ BX , where in general clN (B) := {x ∈ X : {B} ∈
N({x})} (hull-bounded);

(psn6) B ∈ BX and S ∩ BX ∈ N(B), S ⊂ PX implies S ∈ N(B) (b-absorbed);

(psn7) B ∈ BX implies BX /∈ N(B) ̸= Ø (fullness);

(psn8) S ∈ N(Ø) implies S = Ø (zero-set);

(psn9) B ∈ BX and S1 ≪ S ∈ N(B) implies S1 ∈ N(B) (corefinement), where
S1 ≪ S iff ∀ F1 ∈ S1 ∃ F ∈ S such that F1 ⊃ F ;

(psn10) B ∈ BX and S1, S2 /∈ N(B) implies S1 ∨ S2 /∈ N(B) (finiteness), where
S1 ∨ S2 := {F1 ∪ F2 : F1 ∈ S1, F2 ∈ S2};

(psn11) x ∈ X implies {{x}} ∈ N({x}) (single sets);

(psn12) {clN (F ) : F ∈ S} ∈ N(B), B ∈ BX and S ⊂ PX implies S ∈ N(B) (density).

Then we call the triple (X,BX , N), where (BX , N) represents a pseudonearness,
pseudonear space.
As an intrinsic example we consider for a nearness space (X, ξ) the pseudonear space
(X,PX,Nξ), where Nξ : PX −→ P (P (PX)) is defined by setting:

Nξ(Ø) := {Ø} and for B ∈ PX\{Ø};

Nξ(B) := {S ⊂ PX : {B} ∪ S ∈ ξ}.

By PSN we denote the category, whose objects are the pseudonear spaces and
whose morphisms are the bibounded near maps (in short bin-maps), where a map
f : X −→ Y between pseudonear spaces (X,BX , N) and (Y,BY ,M) is called bin-
map, provided it fulfills the following conditions:

(b) B ∈ BX implies f [B] ∈ BY ;

(i) D ∈ BY implies f−1[D] ∈ BX ;

(n) B ∈ BX and S ∈ N(B) implying {f [F ] : F ∈ S} =: fS ∈ M(f [B]).

Remark 1.1. We point it out that conditions (psn1)-(psn3)is equivalent to saying that
BX is a bornology on X, in the sense of Hogbe-Nlend [3].
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Background 1.1. Firstly, already seen in [8] and [9], respectively, sb-topology
forms a generalized symmetric topology, pseudoproximity forms a generalized Lodato
proximity, [10] and lastly, bornology can now be interpreted as special case of
pseudonearness. We now remind the reader of the notion of a topoform pseudon-
earness, [9] as this is closely related to some symmetric b-topology. Symmetric
b-topology is a pair (BX , t), where BX is a bornology and t : BX −→ PX is an
operator satisfying the following conditions:

(bt1) B ∈ BX implies t(B) ∈ BX ;

(bt2) t(Ø) = Ø;

(bt3) x ∈ X implies {x} ∩ t({x}) ̸= Ø;

(bt4) B1 ⊂ B ∈ BX implying t(B1) ⊂ t(B);

(bt5) B1, B2 ∈ BX implying t(B1 ∪B2) ⊂ t(B1) ∪ t(B2);

(bt6) B ∈ BX implies t(t(B)) ⊂ t(B);

(bt7) x, z ∈ X and z ∈ t({x}) implying x ∈ t({z}).

In the case of saturation, meaning that X ∈ BX and thus BX = PX, the symmetric
Kuratowski closure operators, [6] and its corresponding pseudonearness (PX,Nt)
are essentially the same.
Here, Nt : BX −→ P (P (PX)) is defined by setting:

Nt(Ø) := {Ø}, and for B ∈ BX\{Ø}

Nt(B) := {S ⊂ PX : ∩{t(F ) : F ∈ (S ∩ BX) ∪ {B}} ≠ Ø}.

Then we call a pseudonearness (BX , N) and its corresponding space (X,BX , N) a
topoform provided the following condition is satisfied:

(top) B ∈ BX\{Ø} and S ∈ N(B) implying ∩{clN (F ) : F ∈ (S ∩BX)∪{B})} ≠ Ø.

Hence, the topoform pseudonearness and the symmetric b-topology are essentially
the same, up to a bijection.

In what follows, we will focus on generalized nearness and contiguity, [5]. In partic-
ular, pay attention to the EF-proximity (Efremovič proximity), [11] and its corre-
sponding classical counterparts like totally bounded uniformity, regular contiguity
or contigual regular nearness. A natural generalization of those classical concepts
leads to so-called RC-pseudonearness, which is simply induced by some suitable en-
larged strict topological extension. Later we will see that the latter one is b-compact,
and thus it represents the well-known "Smirnov-Theorem" for EF-proximities in the
case of saturation.
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Definition 1.2. For a nearness space (X, ξ), let BX be a bornology. Then BX is
called ξ-closed provided it satisfies the following condition:

(ξ-clo) B ∈ BX implies clξ(B) ∈ BX .

Remark 1.2. For a nearness space X and bornology BX , we define BX
ξ := {D ⊂ X :

∃ B ∈ BX , D ⊂ clξ(B)}.

Proposition 1.1. For a nearness space X, let BX be a bornology. Then, BX
ξ is a

ξ- closed bornology such that BX ⊂ BX
ξ .

Example 1.1. (i) For a nearness space (X, ξ), let PX be denote the power set of X,
and let FX represent the set of all finite subsets of X. Then PX and FX

ξ define
ξ-closed bornologies.

(ii) For a topological space (X, t), denote by CX the set of all relatively compact subsets
of X. Then CX

ξt forms a ξt- closed bornology, where ξt represents the corresponding
topological nearness.

(iii) For a uniform space (X,U), denote by T X the set of all totally bounded subsets of
X. Then T X

ξU forms a ξU -closed bornology, where ξU represents the corresponding
uniform nearness.

(iv) For a bornology BX , let ξb := {S ⊂ PX : ∩{F : F ∈ S ∩ BX} ≠ Ø}. Then ξb is a
nearness such that BX forms a ξb-closed bornology.

The following result provides a way of defining pseudonearness for any nearness ξ
and every ξ-closed bornology on set X:

Proposition 1.2. For a nearness space (X, ξ) let BX be a ξ-closed bornology.
Then the pair (BX , Nξ) forms a pseudonearness, where Nξ : BX −→ P (P (PX)) is
defined by setting:

Nξ(Ø) := {Ø}, and for B ∈ BX\{Ø}

Nξ(B) := {S ⊂ PX : {B} ∪ (S ∩ BX) ∈ ξ}.

Proof. Here, we will only verify that (BX , Nξ) is hull-bounded. Let B ∈ BX\{Ø}
with x ∈ clNξ(B); hence {B} ∈ Nξ({x}), which implies that {{x}, B} ∈ ξ, and
x ∈ clξ(B). Since clξ(B) ∈ BX and clNξ(B) is a subset of clNξ(B), then clNξ(B) ∈
BX .

Now, since separation concepts play an important role in topology, we will give the
following definition:

Definition 1.3. A pseudonearness (BX , N) and its corresponding pseudonearspace
(X,BX , N) are called separated provided that (BX , N) satisfies the following con-
dition:



The Extended Smirnov Theorem for Pseudonearness 359

(sep) x, z ∈ X and {{z}} ∈ N({x}) implying x = z.

Remark 1.3. Note that for a separated pseudonearness (BX , N), the underlying topo-
logical closure space (X, clN ) is a T1-space.

Example 1.2. For an N1-space [2], let BX be a ξ-closed bornology; then (BX , Nξ) is
separated.

Definition 1.4. For a nearness space (X, ξ), let BX be a bornology. Then, ξ is
called BX-sected provided it satisfies the following condition:

(sec) S ⊂ PX and BX ∩ S ∈ ξ implying S ∈ ξ.

Proposition 1.3. For a nearness space (X, ξ), let BX be a bornology. By setting
ξ̂ := {S ⊂ PX : BX ∩ S ∈ ξ}, then ξ̂ defines a BX-sected nearness such that ξ ⊂ ξ̂.

Example 1.3. (i) For a nearness space (X, ξ), ξ is PX-sected;

(ii) For a bornology BX , ξb is BX -sected;

(iii) For a pseudonear space (X,BX ,M), (X, ηM ) is BX -sected nearness space, where
ηM := {A ⊂ PX : A ∈ ∩{M(A) : A ∈ A ∩ BX}}.

In this context, we will only verify the following condition:

S ⊂ PX and {clηM (F ) : F ∈ S} =: M ∈ ηM implying S ∈ ηM .

Now, let F ∈ S ∩ BX ; hence, clηM (F ) ∈ BX follows, since clηM (F ) ⊂ clM (F ) ∈ BX

are valid. Consequently, clηM (F ) ∈ M implies M ∈ M(clηM (F )). By applying
the symmetry and density of (BX ,M) we obtain M ∈ M(clM (F )) = M(F ). But
then {clM (D) : D ∈ S ∩ BX} << M, and S ∩ BX ∈ M(F ) follows, which shows
S ∈ M(F ), because of (BX ,M) is b-absorbed. Lastly, we mention that for every
A ∈ PX, the following equation is: clM (A) = clηM (A).

2. Nearbornologies
By combining the properties of the previously considered pairs, we will now provide
the following definitions:

Definition 2.1. (i) Firstly, for a set X, let us call a pair (ξ,BX) a nearbornology
(on X), provided that (X, ξ) is nearness space, and BX is bornology.

(ii) A nearbornology (ξ,BX) is called perfect if ξ is BX -sected and BX is ξ-closed.

Examples 2.1. (i) For a nearness space (X, ξ), let BX be a bornology; then
the pair (ξ̂,BX

ξ ) is perfect.

(ii) For a bornology BX , the pair (ξb,BX) is perfect;
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(iii) For any pseudonear space (X,BX ,M), the pair (ηM ,BX) is perfect.

Now, in this context we will show that there exists an interesting correspondence
between the class of all perfect nearbornologies on a set X and the class of all
pseudonear structures (pseudonearness) on it which is onto and one-to-one.

Proposition 2.1. For a set X, let (ξ,BX) be a perfect nearbornology. Then the
following equation holds, i.e., ηN

ξ

= ξ.

Proof. For ” ⊂ ”: A /∈ ξ implies A∩BX /∈ ξ hence A∩BX ̸= Ø. So, we can choose
an A ∈ A ∩ BX . But then A /∈ Nξ(A) implies A /∈ ηN

ξ

.
For ” ⊃ ”: If A ∈ ξ, let A ∈ A ∩ BX . Our goal is to show A ∈ Nξ(A), which is
equivalent to {A} ∪ (A∩BX) ∈ ξ. But {A} ∪ (A∩BX) is a subcollection of A, and
thus the claim follows.

Proposition 2.2. For a set X, let (BX ,M) be a pseudonearness, then NηM

= M
holds.

Proof. For ” ≤ ”: Let B ∈ BX\{Ø} and S ∈ NηM

(B), then {B} ∪ (S ∩ BX) ∈
ηM . If supposing S /∈ M(B), hence BX ∩ S /∈ M(B) (b-absorbed), which implies
{B}∪(S∩BX) /∈ M(B). Since {B}∪(S∩BX) ∈ ηM implies {B}∪(S∩BX) ∈ M(B),
S ∩ BX ∈ M(B) results, which contradicts. Thus S ∈ M(B) follows.
For ” ≥ ”: Conversely, let S ∈ M(B). Our goal is S ∈ NηM

(B), which means
{B} ∪ (S ∩ BX) ∈ ηM . So let F ∈ ({B} ∪ (S ∩ BX)) ∩ BX = ({B} ∩ BX) ∪ ((S ∩
BX) ∩ BX) = {B} ∪ (S ∩ BX).
In the first case F = B we obtain {B} ∪ S ∈ M(F ) by the symmetry, and {B} ∪
(S ∩BX) ∈ M(F ) follows. In the second case F ∈ S ∩BX , {B}∪S ∈ M(F ) is valid
by the symmetry, and {B} ∪ (S ∩BX) ∈ M(F ) results, which has to be shown.

Theorem 2.1. There exists a natural correspondence between the class of all per-
fect nearbornologies on a set X and the class of all pseudonear structures on X
which is onto and one-to-one.

Proof. By applying the former assignments.

Definition 2.2. A pseudonearness (BX , N) and its corresponding space (X,BX , N)
are called saturated provided that X ∈ BX is holding, and thus BX = PX. By
SAT-PSN we denote the full subcategory of PSN, whose objects are saturated.

As an corollary we can now state the following theorem:

Theorem 2.2. The category NEAR of nearness spaces and nearness preserving
maps is isomorphic to SAT-PSN.

Proof. Especially, we note that maps between nearness spaces are n-maps, [2] iff
they are bin-maps between the corresponding saturated pseudonear spaces.
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Proposition 2.3. For a contigual nearness space (X, ξ), [2] let BX be a ξ-closed
bornology. Then the pair (BX , Nξ) forms a contiguous pseudonearness, [8].

Remark 2.1. In reminding the property of being contiguous we recall its definition once
more.

Definition 2.3. A pseudonearness (BX , N) and its corresponding space (X,BX , N)
are called contiguous provided they are satisfying the following condition:

(ctg) B ∈ BX\{Ø} and S /∈ N(B) implying the existence of a finite collection
E ⊂ {B} ∪ S with E /∈ N(B).

Remark 2.2. If we denote by C-PSN the full subcategory of PSN, whose objects are
contiguous we similar orientate according to a former definition by SATC-PSN its full
subcategory, whose objects are saturated.

In this context we further note that every finite bornoform pseudonearness, [9] is
contiguous and separated as well.

Proposition 2.4. For a saturated contiguous pseudonear space (X,BX ,M),
(X, ηM ) is contigual nearness space.

Proof. A /∈ ηM implies A /∈ M(F ) for some A ∈ A. By the supposition we can find
a finite collection E ⊂ {A} ∪ A with E /∈ M(A). Consequently, {A} ∪ E /∈ M(A)
follows. By setting E1 := {A} ∪ E we resume that E1 ⊂ A is finite with E1 /∈ ηM

which concludes the proof.

Theorem 2.3. The category CONT of contiguity spaces and related maps is iso-
morphic to SATC-PSN.

Proof. By applying former results.

It is already known that the relation between regular extensions and the induced
nearness structures is sufficiently intimate to provide a powerful tool and a consid-
erable number of useful results, [1] and see also later. But here we will establish
a more general setting in the realm of pseudonearness. At first, let us recall the
definition of a nearness space for being regular, [2].

Definition 2.4. A N1-space (X, ξ) is said to be regular, provided that for every
S ⊂ PX, whenever the collection Sξ := {D ⊂ X : ∃ F ∈ S such that F <ξ D} ∈ ξ
then also S ∈ ξ, where F <ξ D iff {F,X\D} /∈ ξ.

Remark 2.3. As proposed in [1], a topological space is regular in the nearness sense iff
it is regular in the topological sense.

Now, a similar condition for pseudonearness will be given at next.



362 D. Leseberg and Z. Vaziry

Definition 2.5. A separated pseudonearness (BX ,M) and its corresponding space
(X,BX ,M) are said to be regulative provided that the following condition must hold,
i.e.

(reg) S ⊂ PX and S /∈ ηM implying SM := {D ⊂ X : ∃ F ∈ S, {F,X\D} /∈
ηM} /∈ ηM .

Remark 2.4. In this context we call a nearbornology (ξ,BX) perfect regular provided
(ξ,BX) is perfect and ξ is regular. Consequently, for a pseudonear space (X,BX ,M) the
following statements are equivalent:

(i) (BX ,M) is regulative;

(ii) There exists a nearness ξ on X such that (ξ,BX) is perfect regular with M = Nξ.

Thus we conclude, a nearness space (X, ξ) is regular iff (X,PX,Nξ) is regulative iff (ξ, PX)
is perfect regular.
Now, obviously we denote by R-PSN the full subcategory of PSN, whose objects are
regulative and in addition by SATR-PSN the full subcategory of its saturated objects.
At last we should still mention that any pseudonear space (X,BX ,M), whose underling
nearness ηM is Hausdorff compact is already regulative.

Theorem 2.4. The category R-NEAR of regular nearness spaces and n-maps is
isomorphic to SATR-PSN.

Proof. By applying former results.

It is well-known that the category EF-PROX of Efremovič proximity spaces is
isomorphic to tb-UNIF, the category of totally bounded uniform spaces, which is
also isomorphic to C-UNEAR, the category of contigual uniform nearness spaces,
[1].
Moreover, in [1] the authors have shown that the category R-CONT of regular
contiguity spaces is isomorphic to CR-NEAR, the category of contigual regular
nearness spaces. But the latter one is isomorphic to EF-PROX. These interesting
results give us now the motivation for introducing the following definitions and
notations, respectively.

Definition 2.6. A regulative contiguous pseudonear space is said to be an RC-
space in short, and we denote by RC-PSN the corresponding full subcategory of
PSN. Nearby, SATRC-PSN defines its full subcategory of the saturated objects.

Proposition 2.5. For a regular contiguity space (X, γ) let BX be a bornology such
that (ξγ ,BX) is perfect, where ξγ denotes the corresponding nearness of γ. Then
the triple (X,BX , Nξγ ) forms an RC-space.

Proposition 2.6. For a saturated RC-space (X,BX ,M), (X, ηM ) is contigual and
regular nearness space.
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Theorem 2.5. The categories R-CONT and SATRC-PSN are isomorphic.

Proof. By applying latter results.

Remark 2.5. Now we point out that by formerly stated isomorphy of categories, any
EF-proximity space can be considered as an saturated RC-space, and vice versa. Therefore,
ordinary RC-spaces constitute a natural generalization of EF-proximity spaces.

In the following part, we will see that the b-completion of an RC-space is well-
behaved in such a manner that it is especially regulative contiguous and its induced
pseudonear space coincide with the source space, and furthermore that strict btop-
extensions inducing RC-spaces, too, are necessary equiform. In this context b-
compactness comes into play, so that in the special case of saturation Smirnov’s
famous theorem for EF-proximity spaces, [11] possesses a corresponding counterpart
in the theory of pseudonearness.
With respect to extensions of topological spaces, their subspaces are of fundamental
interest. So we will first consider some suitable basics.

Definition 2.7. A pseudonear space (X,BX , N) is called pseudonear subspace, in
short psn-subspace of a pseudonear space (Y,BY ,M), provided X is subset of Y ,
BX is subset of BY and for each S ⊂ PX the following conditions must hold, i.e.

(sub1) B ∈ BX\{Ø} implies S ∈ N(B) iff S ∈ M(B);

(sub2) BY ∩ S ⊂ BX .

Remark 2.6. If (X,BX , N) is psn-subspace of (Y,BY ,M) then (X, ηN ) is nearness sub-
space of (Y, ηM ). Note, for S ⊂ PX and S ∈ ηN we have S ∈ ∩{N(F ) : F ∈ S ∩ BX}.
Thus for F1 ∈ S ∩ BY , F1 ∈ BX is valid by (sub2), and S ∈ N(F1) implies S ∈ M(F1) by
(sub1), hence S ∈ ηM follows. Conversely let S ∈ ηM and F ∈ S ∩ BX . But F ∈ S ∩ BY

implies S ∈ M(F ), and thus S ∈ N(F ) by applying (sub1), which shows the claim. Now,
it is important to note, that in the saturated case with X ∈ BX and Y ∈ BY , (X, ξ)
is nearness subspace of (Y, η) iff (X,BX , Nξ) is psn-subspace of (Y,BY , Nη). In fact, for
S ⊂ PX we have BY ∩ S ⊂ PY ∩ S = S ⊂ PX = BX . All the other conditions are clear.

Proposition 2.7. Any psn-subspace (X,BX , S) of a regulative pseudonear space
(Y,BY ,M) is regulative.

Proof. By using theorem 2.1, remark 2.4 and remark 2.6, respectively.

Proposition 2.8. Any psn-subspace of a contiguous pseudonear space is contigu-
ous.

Proof. Let (X,BX , S) be psn-subspace of the contiguous pseudonear space (Y,BY ,M).
For B ∈ BX\{Ø} let S /∈ S(B), S ⊂ PX, hence S /∈ M(B) implies the existence of a
finite collection E ⊂ {B}∪(S∩BY ) with E /∈ M(B). {B}∪(S∩BY ) ⊂ {B}∪(S∩BX)
by using (sub2). But E /∈ N(B) by (sub1) shows the claim.
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Corollary 2.1. Any psn-subspace of an RC-space is RC-space.

Remark 2.7. Evidently, any psn-subspace of a separated pseudonear space is separated
as well.

Another important separation axiom comes into play whenever one is considering
Hausdorff spaces.

Definition 2.8. We call a separated pseudonearness (BX ,M) and its correspond-
ing space (X,BX ,M) star-separated in short S2-space provided they are satisfying
the following condition:

(S2) For every S ⊂ PX, whenever S, secS ∈ ηM , the collection S(M) := {D ⊂ X :
{D} ∪ S ∈ ηM} ∈ ηM , where secS := {A ⊂ X : ∀ F ∈ S A ∩ F ̸= Ø}.

Proposition 2.9. For an Hausdorff nearness space (X, ξ), [1] and a bornology
BX let (ξ,BX) be perfect. Then the pseudonearness (BX , Nξ) is star-separated.

Proof. (BX , Nξ) is separated, since (X, ξ) is N1-space by the hypothesis. Now, let
for S ⊂ PX, S, secS ∈ ηN

ξ

, hence by proposition 2.1. S, secS ∈ ξ follows and the
collection V := {B ⊂ X : {B}∪S ∈ ξ} is ξ-near, because by the hypothesis (X, ξ) is
Hausdorff nearness space. But then V ∈ ηN

ξ

is valid with S(Nξ) ⊂ V. Consequently
SNξ ∈ ηN

ξ

results, which is proving the claim.

Remark 2.8. In the opposite direction, (X, ηM ) is Hausdorff nearness space, whenever
(X,BX ,M) is saturated S2-space. Thus, a topological space is an Hausdorff space in the
topological sense iff its associated saturated topoform pseudonear space is an S2-space
(Compare with, [9] and background 1.1.).

Proposition 2.10. Any regulative pseudonear space is an S2-space.

Proof. Let for S ⊂ PX S, secS being elements of ηM . To show that S(M) ∈ ηM

it suffices, by using the property regulative, to verify that A := {A ⊂ X : ∃ D ∈
S(M) {D,X\A} /∈ ηM} is an element of ηM . Therefore it is enough to prove
A ∩ BX ∈ ηM . But this follows from the fact that A ∩ BX is subset of secS ∩ BX .
Indeed, for A ∈ A ∩ BX and F ∈ S we have A ∈ BX and {D,X\A} /∈ ηM

for some D ∈ S(M). Hence {D} ∪ S ∈ ηM follows by the definition. If supposing
A∩F = Ø, X\A ⊃ F implying {D,X\A} << {D,F} ⊂ {D}∪S, and consequently
{D,X\A} ∈ ηM results, which contradicts. But then, by taking all into account,
the claim immediately follows.

Proposition 2.11. Any psn-subspace of an S2- space is S2-space.

Proof. Let (X,BX , S) be psn-subspace of the S2-space (Y,BY ,M) and let S, secS ∈
ηS . We must show S(S) := {D ⊂ X : {D} ∪ S ∈ ηS} ∈ ηS .
S, secS ∈ ηM by applying remark 2.6., and S(M) := {A ⊂ Y : {A}∪S ∈ ηM} ∈ ηM

follows by the hypothesis.
Our goal is S(S) ⊂ S(M). D ∈ S(S) implies {D}∪S ∈ ηS , hence {D}∪S ∈ ηM , and
D ∈ S(M) follows. Thus S(S) ∈ ηM implies S(S) ∈ ηS , which has to be shown.
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Next, let us focus our attention to the extension of certain topological structures. An
intrinsic example of that is the Hausdorff-completion of a separated uniform space.
We will consider a similar concept for pseudonearness, where in a special case the
Herrlich-completion of a nearness space as well as the above mentioned Hausdorff-
completion can be recovered. As already known, minimal Cauchy filters, and near
clusters are closely related to each other and both were used for constructing the
prevailing completion. But here we will consider a more general framework for
pseudonearness, which in the saturated case coincide with the classical ones.

3. The b-completion

Definition 3.1. For a pseudonear space (X,BX , N), τ ⊂ PX is called N-tape in
BX provided it satisfies the following conditions:

(tp1) τ ∈ PBX ∩N(B)\{Ø} for some B ∈ BX\{Ø};

(tp2) A ∈ BX and {A} ∪ τ ∈ N(D), D ∈ BX\{Ø} implying A ∈ τ .

Remark 3.1. As already seen in [8], for a nearness space (X, ξ) and a collection C ⊂ PX
the statements of being C is ξ-cluster and C is Nξ-tape in PX are equivalent. Moreover,
for a pseudonear space (X,BX , N) and for each x ∈ X τN

x := {A ∈ BX : {A} ∈ N({x})}
is an N -tape in BX .

Definition 3.2. A pseudonear space (X,BX , N) is called b-complete, provided
(BX , N) satisfies the following condition:

(b-cpl) ∀ τ ⊂ PX N-tape in BX ∃ x ∈ X such that {x} ∈ τ .

Remark 3.2. According to the definition of completeness in a nearness space, [2] we
point out that in the saturated case the terms b-complete and complete coincide. Further,
we note that every non-empty finite pseudonear space is already b-complete. In addition
we infer that a uniform space is complete as uniform space iff its associated saturated
pseudonear space is b-complete [2]. At last, we note that every bornoform pseudonear
space as well as every topoform pseudonear space is b-complete.

Theorem 3.1. Let (X,BX , N) be a pseudonear space. Then we consider the triple
(X∗,BX∗

, N∗), where X∗ := {τ ⊂ PX : τ is N-tape in BX}, BX∗
:= {B∗ ⊂ X∗ :

∃ D ∈ BX ∀ τ ∈ B∗ τ ∈ N(D)}, and N∗ : BX∗ −→ P (P (PX∗)) is defined by
setting N∗(Ø) := {Ø}, and for each B∗ ∈ BX∗\{Ø} we put: N∗(B∗) := {A∗ ⊂
PX∗ : ∃ B ∈ BX\{Ø} {F ∈ BX : ∃ A∗ ∈ (A∗ ∩ BX∗

) ∪ {B∗} F ∈ ∆A∗} ∈ N(B)},
where for A∗ ⊂ X∗∆A∗ := {A ∈ BX : ∀ τ ∈ A∗, A ∈ τ}. Then (X∗,BX∗

, N∗)
is a separated b-complete pseudonear space such that clN∗(j[X]) = X∗, where j :
X −→ X∗ denotes that function which assigns the N-tape τNx to each x ∈ X.
j : (X,BX , N) −→ (X∗,BX∗

, N∗) is bin-map, and for each B ∈ BX\{Ø} and
A ⊂ PX the statements A ∈ N(B) and jA ∈ N∗(j[B]) are equivalent.
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Proof. For the argumentation the reader is referred to [8].

Lemma 3.1. For a pseudonear space (X,BX , N) each successive pair of conditions
are equivalent:

(i) j is injective;

(ii) (X,BX , N) is separated.

(iii) j is surjective;

(iv) (X,BX , N) is b-complete.

Remark 3.3. Now, it is interesting to note that in the case whenever (X,BX , N) is
a saturated pseudonear space, in other words representing a nearness space, the space
(X∗,BX∗

, N∗) is saturated, too. Thus, Herrlich’s completion of a nearness space can be
interpreted as special case. Up to now the spaces in question will be separated or T1-spaces
or N1-spaces respectively with non-empty underlying carrier set. As a consequence we note
that there is no need to distinguish, for any subset A of X, between A and j[A]. Therefore,
(X,BX , N) can be considered as psn-subspace of (X∗,BX∗

, N∗). Indeed, it remains to
verify that for A ⊂ PX, BX∗

∩jA ⊂ BX∗ , where BX∗ := {j[B] : B ∈ BX}. B∗ ∈ BX∗
∩jA

implies B∗ = j[A] for some A ∈ A, and there exists D ∈ BX ∀ τ ∈ B∗, τ ∈ N(D). Our
goal is B∗ ⊂ j[clN (D)]. τ ∈ B∗ implies τ ∈ j[A] for some A ∈ A. Hence τ = j(x) for
some x ∈ A, and j(x) ∈ N(D) follows. By the symmetry {D} ∪ j(x) ∈ N(D) is valid, and
D ∈ j(x), since j(x) is N-tape in BX . Consequently, {D} ∈ N({x}) implies x ∈ clN (D),
and τ = j(x) ∈ j[clN (D)] results, which shows the claim.

Proposition 3.1. For a pseudonear space (X,BX , N) the following statements
are equivalent:

(i) (X,BX , N) is contiguous;

(ii) (X∗,BX∗
, N∗) is contiguous.

Proof. See [8].

Theorem 3.2. The b-completion (X∗,BX∗
,M∗) of a regulative pseudonear space

(X,BX ,M) is regulative.

Proof. First observe, that whenever F,D are subsets of X then {F,X\D} /∈ ηM

implies {clηM∗ (F ), X∗\clηM∗ (D)} /∈ ηM
∗
.

Now let A∗ ⊂ PX∗ such that A∗M∗

:= {D∗ ⊂ X∗ : ∃ A∗ ∈ A∗ {A∗, X\D∗} /∈
ηM

∗} ∈ ηM
∗
.

Our goal is A∗ ∈ ηM
∗
. We put SA∗ := {G ⊂ X : ∃ A∗ ∈ A∗, A∗ ⊂ clηM∗ (G)},

SA∗M∗ := {G ⊂ X : ∃ D∗ ∈ A∗M∗

, D∗ ⊂ clηM∗ (G)} and define A := {A ⊂ X :

∃ G ∈ SA∗{G,X\A} /∈ ηM}. Thus SA∗M∗ ∈ ηM by the definition, and A ∈ ηM ,
since by the above observation A ⊂ SA∗M∗ is valid. By the regulativity, SA∗ ∈ ηM

follows, and so A∗ ∈ ηM
∗

results, which shows the claim.
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Corollary 3.1. The b-completion of an RC-space is an RC-space.

Proof. According to proposition 2.8., proposition 3.1. and theorem 3.2., respec-
tively.

Theorem 3.3. The b-completion of an S2-space (X,BX ,M) is an S2-space.

Proof. Let A∗, secA∗ ∈ ηM
∗
. Our goal is A∗(M∗)

:= {D∗ ⊂ X∗ : {D∗} ∪ A∗ ∈
ηM

∗} ∈ ηM
∗
. By the hypothesis A := {A ⊂ X : ∃ A∗ ∈ A∗ such that A∗ ⊂

clηM∗ (j[A])} ∈ ηM , and for S := {F ⊂ X : ∃A∗ ∈ A∗ such that A∗∩clηM∗ (j[X\F ]} =

Ø}, secS ∈ ηM follows. Obviously S ⊂ A implies secA ∈ ηM . Since (X,BX ,M)
is S2-space the collection D := {D ⊂ X : {D} ∪ A ∈ ηM} is ηM -near. Now, it is
sufficient to show that H := {H ⊂ X : ∃ D∗ ∈ A∗(M∗)

, D∗ ⊂ clηM∗ (j[H])} ∈ ηM .
But this follows immediately from H ⊂ D.

Now, we will turn out focus on the compactness of spaces. At first, for a pseudon-
earness, we introduce the fundamental property of being b-hullsected.

Definition 3.3. We call a pseudonearness (BX , N) and its corresponding space
(X,BX , N) b-hullsected provided they are satisfying the following condition:

(bhsc) ∀ S ∈ PBX with ∩{clN (F ) : F ∈ S} = Ø ∃ S◦ ⊂ S finite such that ∩{clN (A) :
A ∈ S◦} = Ø.

Remark 3.4. Evidently, every finite pseudonear space is b-hullsected.

Proposition 3.2. For a topoform pseudonear space (X,BX , N) the following state-
ments are equivalent:

(i) (BX , N) is b-hullsected;

(ii) (BX , N) is contiguous.

Proof. See [8].

By transforming this result to nearness spaces we can now infer that for a topological
nearness space the properties of being contigual and compact are essentially the
same.

Motivated by the obtained result, we are giving the following intrinsic definition:

Definition 3.4. We call a pseudonearness (BX , N) and the corresponding space
(X,BX , N) b-compact provided (BX , N) is topoform and b-hullsected.

Remark 3.5. According to remark 3.4. we note that any finite topoform pseudonear
space is b-compact. Furthermore, a nearness space (X, ξ) is compact iff the pseudonear
space (X,PX,Nξ) is b-compact.
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In this context another property comes into play.

Definition 3.5. We call a pseudonearness (BX , N) and the corresponding space
(X,BX , N) precede provided it satisfies the following condition:

(pc) B ∈ BX\{Ø} and S ∈ N(B) with S ∩ BX ̸= Ø implying the existence of an
N-tape τ in BX such that S ∩ BX ⊂ τ .

Remark 3.6. Here we point out that, in the case of saturation, precede pseudonear
spaces and concrete nearness spaces are essentially the same.

Example 3.1. Every contiguous pseudonear space is precede.

Proof. See in particular [9].

Lemma 3.2. For a precede pseudonear space (X,BX ,M) its b-completion
(X∗,BX∗

,M∗) is topoform.

Proof. For B∗ ∈ BX∗\{Ø} let A∗ ∈ M∗(B∗). Hence, there exists B ∈ BX\{Ø} such
that V := {F ∈ BX : F ∈ ∆A∗ for some A∗ ∈ (A∗ ∩BX∗

)∪{B∗}} ∈ M(B). By the
symmetry, {B}∪V ∈ M(B) implies ({B}∪V)∩BX ̸= Ø. Hence, by the hypothesis,
we can find an N-tape τ in BX with ({B} ∪ V) ∩ BX ⊂ τ . Since ∆B∗ ∪ τ ⊂ τ and
∆A∗ ∪ τ ⊂ τ for A∗ ∈ A∗ ∩ BX∗

are valid, we obtain the desired result.

Definition 3.6. (i) A pseudonear space (Y,BY ,M) is called b-compactification
of a pseudonear space (X,BX , N), provided that (Y,BY ,M) is b-compact and
(X,BX , N) is pseudonear subspace of (Y,BY ,M) with clM (X) = Y .
(ii) A b-compactification (Y,BY ,M) of a pseudonear space (X,BX , N) is called
strict, provided ∀ D ⊂ Y,D = clM (D) and ∀ y /∈ D,∃ F ∈ BX such that y /∈ clM (F )
and D ⊂ clM (F ).
(iii) For a pseudonear space (X,BX , N), C ⊂ PX is called an unit(in (BX , N)),
provided C satisfies the following conditions:

(ut1) C ∈ PBX ∩N(B) for some B ∈ BX\{Ø};

(ut2) B ∈ C;

(ut3) B1 ⊃ D ∈ C, B1 ∈ BX implies B1 ∈ C;

(ut4) B1, B2 /∈ C, B1, B2 ∈ BX implying B1 ∪B2 /∈ C;

(ut5) clN (D) ∈ C, D ∈ BX implies D ∈ C.

Remark 3.7. First, we note that every N-tape in BX forms an unit in (BX , N). And
for a nearness ξ, the following statements are equivalent:

(i) C ⊂ PX is a ξ-bunch;

(ii) C ⊂ PX is an unit in (PX,Nξ).
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Theorem 3.4. Every contiguous pseudonear space has a strict b-compactification.

Proof. Let (X,BX ,M) be a contiguous pseudonear space. Then, by example 3.1., it
is precede. Thus, the b-completion (X∗,BX∗

,M∗) is topoform by applying lemma
3.2. Furthermore, it is contiguous by using proposition 3.1. But then, the b-
completion is b-compact according to proposition 3.2. with (X,BX ,M) being a
pseudonear subspace of (X∗,BX∗

,M∗). Note that there is no need to distinguish,
for a subset A ⊂ X, between A and j[A]. It remains to prove that (X∗,BX∗

,M∗)
is strict. Now, consider A∗ ⊂ X∗ being closed with τ /∈ A∗. Then τ /∈ clM∗(A∗)
implies {A∗} /∈ M∗({τ}). On the other hand, τ ∈ PBX ∩ M(B) for some B ∈
BX\{Ø} implies V := {A ∈ BX : ∃ D∗ ∈ (A∗ ∩ BX∗

) ∪ {{τ}}, A ∈ ∆A∗} /∈ M(B),
hence ∆A∗ ∪ τ ⊈ τ . Otherwise, since V ⊂ ∆A∗ ∪ τ is valid, we get a contradiction.
Consequently, we can find F ∈ ∆A∗ ∪ τ with F /∈ τ , hence F ∈ ∆A∗ follows. Our
goal is to verify

(1) τ /∈ clM∗(j[F ]) and

(2) A∗ ⊂ clM∗(j[F ]).

For (1): If τ ∈ clM∗(j[F ]), then {j[F ]} ∈ M∗({τ}) implies the existence of D ∈
BX\{Ø} such that m := {M ∈ BX : ∃ D∗ ∈ {j[F ]} ∪ {{τ}},M ∈ ∆D∗} ∈ M(D).
Hence ∆j[F ] ∪ τ ⊂ m follows because A ∈ ∆j[F ] ∪ τ implies A ∈ ∆j[F ] or A ∈
τ = ∆{τ}. In both cases A ∈ m results, thus ∆j[F ] ∪ τ ∈ M(D) is valid. But
F ∈ ∆j[F ] ∪ τ implies {F} ∪ τ ∈ M(D) and F ∈ τ results, since τ satisfies (tp2).
But this contradicts.
For (2): For D ∈ A∗ we have F ∈ D, hence ∆j[F ] ⊂ D. Note that A ∈ ∆j[F ]
implies F ⊂ clM (A), and clM (A) ∈ D implies A ∈ D. Observe that D is an unit in
(BX ,M) according to remark 3.7. Thus, D ∈ clM∗(j[F ]).

Corollary 3.2. Any RC-space has a strict b-compactification which in addition is
regulative.

Proof. By applying Corollary 3.1. and Theorem 3.4., respectively.

Remark 3.8. In the case of saturation the above considered b-compactification repre-
sents the Hausdorff compactification of its corresponding EF-proximity space.

By this famous theorem of Smirnov, [11], every Hausdorff compactification can be
recovered from its induced EF-proximity relation. Hence, with any EF-proximity
relation one can associate, via the corresponding Hausdorff compactification, a reg-
ular contiguity space which constitutes a saturated RC-space in our sense up to
isomorphism. In this context we also note that for a saturated b-compact pseudon-
ear space the properties of being regulative and being an S2-space are equivalent
by applying remark 2.8. Moreover, we can state that the above mentioned strict
construct is the representative of a certain equivalence class of extensions. But in
the following section this will be more precisely explained .
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In relation to the above, we should mention that S. Leader in 1967, [7] has in-
troduced the concept of local proximity spaces. He defines a local proximity space
by using proximity and boundedness as primitive terms. It turns out that EF-
proximity relations are the special case for which all subsets are bounded. In this
context, a locally compact Hausdorff space Y can be reconstructed from a dense
subspace X if one is knowing not only which pairs of sets are close but also which
subsets are bounded, that is, having compact closures in Y . Then a local compacti-
fication can be constructed for a local proximity space X generalizing the Smirnov
compactification for EF-proximity spaces.

4. Strict bornotopological extensions
Closely related to the canonical construction which embeds each pseudonear space
into a b-complete pseudonear space, we introduce the notion of a so-called bornotopo-
logical extension. It turns out that this concept is convenient for studying strict
topological extensions. A main result is that we obtain a natural correspondence be-
tween equivalence classes of strict bornotopological extensions and precede pseudon-
ear spaces which is onto and one- to-one. In the case of saturated contiguous
pseudonear spaces, we recover a classical result obtained by Ivanova and Ivanov,
[5] in the past.

Definition 4.1. A bornotopological extension (in short btop-extension) consists of
a triple (e,BX , Y ), where X := (X, tX), Y := (Y, tY ) are topological spaces (given
by closure operators tX and tY respectively), BX is bornology such that B ∈ BX

implies tX(B) ∈ BX and e : X −→ Y is an injective map satisfying the following
conditions:

(btx1) B ∈ BX implies tX(B) = e−1[tY (e[B]), where e−1 denoted the inverse image
under e;

(btx2) tY (e[X]) = Y , which means the image of X under e is dense in Y .

Remark 4.1. Note, that if BX is saturated, the above description and that of a topo-
logical extension in the usual sense coincide, [1].

Lemma 4.1. For a bornotopological extension (e,BX , Y ), (BX , Ne) is separated
pseudonearness, where Ne(Ø) := {Ø} and Ne(B) := {S ⊂ PX : ∩{tY (e(F ])), F ∈
(S ∩ BX) ∪ {B} ≠ Ø} if B ∈ BX\{Ø}, such that the triple (X,BX , Ne) defines a
separated pseudonear space with clNe

(B) = tX(B) ∀ B ∈ BX .

Definition 4.2. (i) btop-extensions (e,BX , Y ), (e′,BX , Y ′) are called isovalent
provided that there exists a bijective map h : Y −→ Y ′ with h ◦ e = e′ such that
∀ D ∈ BX ∀ y ∈ Y, y ∈ tY (e[D]) iff h(y) ∈ tY ′(e′[D]);
(ii) equiform, provided that Ne = Ne′ is holding;
(iii) (e,BX , Y ) is called strict, provided ∀ D ⊂ Y , D = tY (D), ∀ y /∈ D ∃ F ∈ BX

such that y /∈ tY (e[F ]) and D ⊂ tY (e[F ]), (compare with definition 3.6.(ii)).



The Extended Smirnov Theorem for Pseudonearness 371

(iv) For a pseudonear space (X,BX ,M) we say that the pseudonearness (BX ,M) is
induced by a btop-extension, provided that there exists a btop-extension (e,BX , Y )
such that M = Ne. In that case we also cited that (e,BX , Y ) is inducing (BX ,M).

Remark 4.2. Here, we note that if BX is saturated, strict topological extensions and
strict btop-extensions are essentially the same. Furthermore, we note that any separated
topoform pseudonearness (BX ,M) is induced by (idX ,BX , X) with idX : X −→ X denot-
ing the identity and X := (X, clM ). Additionally, for a separated topoform pseudonearness
(BX ,M) we conclude that the btop-extensions (idX ,BX , X) and (j,BX , X∗) are isovalent
by applying remark 3.2. and lemma 3.1., respectively. And finally, we infer that isovalent
btop-extensions are equiform. In fact, let (e,BX , Y ), (e′,BX , Y ′) being isovalent btop-
extensions. We denote by h : Y −→ Y ′ the existing bijective map with its corresponding
property.
For B ∈ BX\{Ø}, let S ∈ Ne(B) then by the definition of Ne, ∩{tY (e[F ])|F ∈ (S ∩BX)∪
{B}} ≠ Ø. Choose y ∈ Y such that for A ∈ (S ∩ BX) ∪ {B}, y ∈ tY (e[A]). Hence,
h(y) ∈ tY ′(e′[A]) follows by applying the hypothesis. Consequently, S ∈ Ne′(B) results
immediately. Conversely, we use the inverse function of h.

Lemma 4.2. Let (X,BX ,M) be a pseudonearness space induced by a strict btop-
extension. Then, (X,BX ,M) is precede (compare with Definition 3.5.)

Proof. See [8].

Proposition 4.1. For a pseudonear space (X,BX ,M), let us denote by
(X∗,BX∗

,M∗) its corresponding b-completion. Then, for every τ ∈ X∗ and D ∈ BX

the following statements are equivalent:

(i) τ ∈ clM∗(j[D]);

(ii) D ∈ τ .

Proof. See [8].

Lemma 4.3. For a pseudonear space (X,BX ,M) let its b-completion (X∗,BX∗
,M∗)

be topoform. Then, (j,BX , X∗) =: E is a strict btop-extension such that (X,BX ,M)
is induced by E.

Proof. Here, E consists of X := (X, clM ), X∗ := (X∗, clM∗) and j : X −→ X∗ as
the canonical embedding. For the strictness condition see proof of the theorem 3.4.
Evidently, E satisfies the conditions (btx1) and (btx2) in definition 4.1. Thus, we
have to verify that M equals Nj (see lemma 4.1.).
For ”M ≤ Nj”: For B ∈ BX\{Ø} let S ∈ M(B), hence by theorem 3.1. jS ∈
M∗(j[B]). By the hypothesis we can find τ ∈ clM∗(j[B]), τ ∈ ∩clM∗(A) : A ∈
jS ∩BX∗}. Now, let F ∈ S ∩BX , then j[F ] ∈ jS ∩BX∗

follows, and τ ∈ clM∗(j[F ])
results. On the other hand, τ ∈ clM∗(j[B]) closes this part of the proof.
For ”Nj ≤ M”: Conversely, let S ∈ Nj(B), hence we can find τ ∈ clM∗(j[B])
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with τ ∈ ∩{clM∗(j[F ]) : F ∈ S ∩ BX}. By applying proposition 4.1., B ∈ τ and
τ ∈ N(D) are valid for some D ∈ BX\{Ø}. By the symmetry, {D} ∪ τ ∈ M(B)
implies τ ∈ M(B). But F ∈ S ∩ BX implies τ ∈ clM∗(j[F ]) and, by proposition
4.1., F ∈ τ results, showing that S ∩BX ∈ M(B) is valid. Consequently, S ∈ M(B)
since (BX ,M) is b-absorbed.

Theorem 4.1. For any pseudonear space (X,BX ,M) the following conditions are
equivalent:

(i) (BX ,M) is a pseudonearness induced by a strict btop-extension;

(ii) The b-completion (X∗,BX∗
,M∗) of (X,BX ,M) is topoform;

(iii) (X,BX ,M) is a precede pseudonear space.

Proof. By applying the previous results in corollary 3.1., lemma 4.2. and lemma
4.3., respectively.

Corollary 4.1. If (BX ,M) is the pseudonearness induced by a strict btop-extension
(e,BX , Y ), then (e,BX , Y ) and (j,BX , X∗) are equiform.

Proof. By the hypothesis, we get Ne = M = Nj .

Proposition 4.2. Let strict btop-extensions (e,BX , Y ), (e′,BX , Y ′) be equiform
such that BX is saturated. Then, (e,BX , Y ), (e′,BX , Y ′) are isovalent.

Proof. By the hypothesis, Ne = Ne′ . Hence Ne = Nj with (j,BX , X∗), where
(X∗,BX∗

, X∗) denotes the b-completion of (X,BX , Ne). We define a map h : Y −→
X∗ by setting for each y ∈ Y , h(y) := τy := {D ∈ BX : y ∈ tY (e[D])}. τy is an
Ne-tape in BX since τ ∈ PX ∩ Ne(X)\{Ø} is valid and {y} ∈ τy by applying
strictness.
Further note that BX is saturated. Now, let {A}∪τy ∈ Ne(B) for some B ∈ BX\{Ø}
and A ∈ BX . Then {A, {y}}∪τy ∈ Ne(B) holds, and by applying the symmetry, we
get {B} ∪ ({A, {y}} ∪ τy) ∈ Ne({y}). Hence, {A} ∈ Ne({y}) implies y ∈ tY (e[A]),
and thus A ∈ τy. Moreover, h is bijective and satisfies the condition in definition
4.2.(i). Thus, h : Y −→ X∗ is a homeomorphism and Y h̃X∗ results. Analogously,
we obtain Y ′h̃X∗. Hence, Y h̃Y ′ is valid, and the claim follows.

Corollary 4.2. For strict btop-extensions (e,BX , Y ), (e′,BX , Y ′) such that BX is
saturated, the following statements are equivalent:

(i) There exists a homeomorphism h : Y −→ Y ′ with h ◦ e = e′;

(ii) (e,BX , Y ), (e′,BX , Y ′) are equiform.
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Remark 4.3. By applying theorem 3.4. and corollary 4.1., respectively, we can now
state that every separated contiguous pseudonear space has a strict b-compactification.
Vice versa, each strict btop-extension inducing such a kind of space implies that this
one and that of its strict b-compactification are equiform. That immediately implies a
natural correspondence between the class of all separated contiguous pseudonear spaces
and the class of equivalence classes of equiform strict btop-extensions inducing such a
kind of spaces which is onto and one-to-one. Here, we point out that, in the saturated
case, a corresponding result has already been published by Bentley and Herrlich, [1]. But
according to theorem 3.4., our result also represents a generalization of a corresponding
Theorem for contiguity spaces and bicompact extensions in [5]. In addition take into
account that, in this case, a strict b-compactification consists of a strict btop-extension
(e,BX , Y ) such that Y is a compact topological space, see also remark 4.2.

Remark 4.4. By applying corollary 3.2., and corollary 4.1., respectively, we can now
state that every RC-space has a strict b-compactification. Vice versa, each strict btop-
extension inducing such a kind of space implies that this one and that of its strict b-
compactification are equiform. This immediately implies a natural correspondence between
the class of all RC-spaces and the class of equivalence classes of equiform strict btop-
extensions inducing such a kind of spaces which is onto and one-to-one. Thus our result
also represents a generalization of the famous Theorem of Smirnov, compared to remark
3.8. With respect to a comparative Theorem presented by Lodato, [10] the reader is
referred to [9].

REFE RENCES

1. H. L. Bentley, H. Herrlich: Extensions of topological spaces. Topol. Proc. Mem-
phis State Univ. Conf. 1975(1976), 129-184.

2. H. Herrlich: A concept of nearness. Gen. Topol. Appl. 4(1974), 191-212.
3. H. Hogbe-Nlend: Bornologies and Functional Analysis. North- Holland, Amsterdam

(1977).
4. M. Hušek: Categorical connections between generalized proximity spaces and com-

pactifications. Contr. Extension Theory, Symp. Berlin 1967(1969), 127-132.
5. V. M. Ivanova, A. A. Ivanov: Contiguity spaces and bicompact extensions. Dokl.

Akad. Nauk SSSR 127(1959), 20-22.
6. C. Kuratowski: Sur l’ opération á de l’ analysis situs. Fund. Math. 3(1922), 182-199.
7. S. Leader: Local proximity spaces. Math. Annalen 169(1967), 275-281.
8. D. Leseberg and Z. Vaziry: Bounded Topology. LAP Acad. Pub. (2019).
9. D. Leseberg and Z. Vaziry: On bornological induced pseudonearness. Math. Appl.

9(2020), 95-121.
10. M. W. Lodato: On topological induced generalized proximity relations II. Pacific

journal of Math Vol. 17, No. 1(1966), 131-135.
11. Y. M. Smirnov: On completeness of proximity spaces. Dokl. Acad. Nauk. SSSR

88(1953), 761-764.




