FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 37, No 3 (2022), 643-649

https://doi.org/10.22190/FUMI211031045P

Original Scientific Paper

ON BOUNDEDNESS WITH SPEED λ IN ULTRAMETRIC FIELDS

Natarajan Narayanasubramanian Pinnangudi

 ${\it Old~No.~2/3,~New~No.~3/3}$ Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract. In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed λ or λ -boundedness. We then obtain a characterization of the matrix class (m^{λ}, m^{μ}) , where m^{λ} denotes the set of all λ -bounded sequences in K. We conclude the paper with a remark about the matrix class (c^{λ}, m^{μ}) , where c^{λ} denotes the set of all λ -convergent sequences in K.

Key words: Ultrametic (or non-archimedean) field, boundedness with speed λ (or λ -boundedness), λ -bounded by the matrix A or A^{λ} -bounded, matrix class (m^{λ}, m^{μ}) , matrix class (c^{λ}, m^{μ}) .

1. Introduction and Preliminaries

Throughout this paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Sequences, infinite series and infinite matrices have entries in K. In this paper, we suppose that indices and summation indices run from 0 to ∞ unless otherwise stated. For a given sequence $x = \{x_k\}$ in K, an infinite matrix $A = (a_{nk}), a_{nk} \in K, n, k = 0, 1, 2, \ldots$, we define

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, n = 0, 1, 2, \dots,$$

Received October 31, 2021, accepted: May 06, 2022

Communicated by Dijana Mosić

Corresponding Author: Natarajan Narayanasubramanian Pinnangudi, Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India | E-mail: pinnangudinatarajan@gmail.com

 $2010\ Mathematics\ Subject\ Classification.\ 40\text{C}05,\ 40\text{D}05,\ 40\text{H}05,\ 46\text{S}10.$

 $\ \textcircled{\tiny{0}}$ 2022 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

where it is assumed that the series on the right converge. $A(x) = \{(Ax)_n\}$ is called the A-transform of the sequence $x = \{x_k\}$.

If X, Y are sequence spaces, we write

$$A = (a_{nk}) \in (X, Y),$$

if $\{(Ax)_n\} \in Y$, whenever $x = \{x_k\} \in X$. In the sequel, m, c respectively denote the ultrametric Banach spaces of bounded and convergent sequences.

The following results are well-known.

Theorem 1.1. $A = (a_{nk}) \in (m, m)$ if and only if

$$(1.1) \sup_{n,k} |a_{nk}| < \infty.$$

Theorem 1.2. [5] $A = (a_{nk}) \in (m, c)$ if and only if

(1.2)
$$\lim_{k \to \infty} a_{nk} = 0, n = 0, 1, 2, \dots;$$

and

(1.3)
$$\lim_{n \to \infty} \sup_{k \ge 0} |a_{n+1,k} - a_{nk}| = 0.$$

2. Boundedness with speed λ (or λ -boundedness), λ -boundedness by the matrix A (or A^{λ} -boundedness), characterization of the matrix class (m^{λ}, m^{μ})

Definition 2.1. Let $\lambda = {\lambda_n}$ be a sequence in K such that

$$0 < |\lambda_n| \nearrow \infty, n \to \infty.$$

A sequence $x = \{x_k\}$ is said to be bounded with speed λ or λ -bounded if $x = \{x_k\} \in c$ with $\lim_{k \to \infty} x_k = s$ and $\{\lambda_n(x_n - s)\}$ is bounded.

Let m^{λ} denote the set of all λ -bounded sequences in K. Note that $m^{\lambda} \subset c$.

Definition 2.2. A sequence $x = \{x_k\}$ in K is said to be λ -bounded by the matrix A or A^{λ} -bounded if

$$A(x) = \{(Ax)_n\} \in m^{\lambda}.$$

The set of all A^{λ} -bounded sequences is denoted by m_A^{λ} . Here again, we note that

$$m_A^{\lambda} \subset c_A$$
,

where c_A denotes the convergence field of A.

In the sequel, for each $k = 0, 1, 2, \ldots$, let

$$e_k = \{0, 0, \dots, 0, 1, 0, \dots\},\$$

1 occurring in the kth place and 0 elsewhere, i.e., $e_k = \{e_k^j\}_{j=0}^{\infty}$, where

$$e_k^j = \begin{cases} 1, & \text{if } j = k; \\ 0, & \text{if } j \neq k; \end{cases}$$

and

$$e = \{1, 1, 1, \dots\}.$$

Let $\mu = {\mu_n}$ be a sequence in K such that

$$0 < |\mu_n| \nearrow \infty, n \to \infty.$$

We now have the following characterization of the matrix class (m^{λ}, m^{μ}) .

Theorem 2.1. Let $A = (a_{nk})$ be an infinite matrix. Then $A \in (m^{\lambda}, m^{\mu})$ if and only if

(2.1)
$$\lim_{n \to \infty} a_{nk} = a_k, k = 0, 1, 2, \dots;$$

$$(2.2) A(e) \in m^{\mu};$$

(2.3)
$$\lim_{k \to \infty} \frac{a_{nk}}{\lambda_k} = 0, n = 0, 1, 2, \dots;$$

(2.4)
$$\lim_{n \to \infty} \left(\sup_{k \ge 0} \left| \frac{a_{n+1,k} - a_{nk}}{\lambda_k} \right| \right) = 0;$$

and

(2.5)
$$\sup_{n,k} \left| \frac{\mu_n(a_{nk} - a_k)}{\lambda_k} \right| < \infty.$$

Proof. Necessity. Let $A=(a_{nk})\in (m^{\lambda},m^{\mu})$. Note that for $k=0,1,2,\ldots,e_k\in m^{\lambda}$ and so $A(e_k)\in m^{\mu}$. Thus $A(e_k)\in c$. Consequently,

$$\lim_{n\to\infty} a_{nk} = a_k, \ k = 0, 1, 2, \dots, \text{ i.e., (2.1) holds.}$$

We again note that $e \in m^{\lambda}$ and so

$$A(e) \in m^{\mu}$$
, i.e., (2.2) holds.

Let, now, $x = \{x_k\} \in m^{\lambda}$. Hence $x = \{x_k\} \in c$. Let $\lim_{k \to \infty} x_k = s$. Let

$$\beta_k = \lambda_k(x_k - s), k = 0, 1, 2, \dots$$

Then $\{\beta_k\} \in m$. Now,

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k$$

$$= \sum_{k=0}^{\infty} a_{nk} \left(\frac{\beta_k}{\lambda_k} + s \right)$$

$$= \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} \beta_k + s \sum_{k=0}^{\infty} a_{nk}.$$

$$(2.6)$$

In view of (2.2),

$$\left\{\sum_{k=0}^{\infty} a_{nk}\right\}_{n=0}^{\infty} \in m^{\mu}$$

and so

$$\left\{\sum_{k=0}^{\infty} a_{nk}\right\}_{n=0}^{\infty} \in c.$$

Thus

(2.7)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} = a \text{ (say)}.$$

Since $\{(Ax)_n\} \in c$ and $\{\beta_k\} \in m$, using (2.6) and (2.7), it follows that the infinite matrix

$$\left(\frac{a_{nk}}{\lambda_k}\right) \in (m,c).$$

Consequently, (2.3) and (2.4) hold, using Theorem 1.2. By hypothesis, $\{(Ax)_n\} \in m^{\mu}$ and so $\{(Ax)_n\} \in c$. Let $\lim_{n \to \infty} (Ax)_n = y$. Now,

$$y = \lim_{n \to \infty} (Ax)_n$$

$$= \lim_{n \to \infty} \left(\sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} \beta_k + s \sum_{k=0}^{\infty} a_{nk} \right)$$

$$= \sum_{k=0}^{\infty} \frac{a_k}{\lambda_k} \beta_k + sa, \text{ using (2.4) and (2.7)}.$$

In view of (2.6) and (2.8), we have,

$$(Ax)_n - y = \sum_{k=0}^{\infty} \frac{a_{nk} - a_k}{\lambda_k} \beta_k + s \left(\sum_{k=0}^{\infty} a_{nk} - a \right).$$

Hence

$$\mu_n[(Ax)_n - y] = \sum_{k=0}^{\infty} \frac{\mu_n(a_{nk} - a_k)}{\lambda_k} \beta_k$$

$$+s\mu_n \left(\sum_{k=0}^{\infty} a_{nk} - a\right).$$
(2.9)

Since $\{(Ax)_n\}$, $A(e) \in m^{\mu}$,

$$\{\mu_n[(Ax)_n - y]\}, \left\{\mu_n\left(\sum_{k=0}^{\infty} a_{nk} - a\right)\right\} \in m.$$

Already $\{\beta_k\} \in m$. Thus, the infinite matrix

$$\left(\frac{\mu_n(a_{nk} - a_k)}{\lambda_k}\right) \in (m, m).$$

Using Theorem 1.1,

$$\sup_{n,k} \left| \frac{\mu_n(a_{nk} - a_k)}{\lambda_k} \right| < \infty, \ i.e., (2.5) \text{ holds.}$$

Sufficiency. Let (2.1) - (2.5) hold. Then, using (2.2), (2.7) holds. Let $x = \{x_k\} \in m^{\lambda}$, $\lim_{k \to \infty} x_k = s$, $\beta_k = \lambda_k(x_k - s)$. Then $\{\beta_k\} \in m$. Using (2.3) and (2.4), the infinite matrix

$$\left(\frac{a_{nk}}{\lambda_k}\right) \in (m,c).$$

Using (2.6) and (2.7), it now follows that $\{(Ax)_n\} \in c$. Let

$$\lim_{n \to \infty} (Ax)_n = y.$$

So (2.8) and (2.9) hold.

In view of (2.5), the infinite matrix

$$\left(\frac{\mu_n(a_{nk}-a_k)}{\lambda_k}\right) \in (m,m).$$

Since $\{\beta_k\} \in m$,

$$\left\{\sum_{k=0}^{\infty} \frac{\mu_n(a_{nk} - a_k)}{\lambda_k} \beta_k\right\}_{n=0}^{\infty} \in m.$$

Using (2.2),

$$\left\{\mu_n\left(\sum_{k=0}^{\infty}a_{nk}-a\right)\right\}_{n=0}^{\infty}\in m.$$

In view of (2.9),

$$\left\{\mu_n[(Ax)_n - y]\right\}_{n=0}^{\infty} \in m.$$

Consequently,

$$\{(Ax)_n\} \in m^{\mu}.$$

This completes the proof of the theorem. \Box

Definition 2.3. We say that an infinite matrix $A = (a_{nk})$ preserves λ -boundedness if $A \in (m^{\lambda}, m^{\lambda})$.

Definition 2.4. An infinite matrix $A = (a_{nk})$ is said to be regular if $A \in (c, c)$ and $\lim_{n \to \infty} (Ax)_n = \lim_{k \to \infty} x_k, \ x = \{x_k\} \in c.$

The following result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let $A = (a_{nk})$ be a regular matrix. Then A preserves λ -boundedness if and only if

(2.10)
$$\sup_{n,k} \left| \frac{\lambda_n a_{nk}}{\lambda_k} \right| < \infty.$$

Definition 2.5. [8] A sequence $\{x_k\}$ in $K = Q_p$, the *p*-adic field for a prime *p*, is said to be *Y*-summable to ℓ if

$$\frac{x_n + x_{n-1}}{2} \to \ell, n \to \infty.$$

Note that the Y-method is defined by the infinite matrix $A = (a_{nk})$, where,

$$a_{nk} = \begin{cases} \frac{1}{2}, & \text{if } k = n - 1, n; \\ = 0, & \text{otherwise.} \end{cases}$$

It is easy to check that the Y-method is regular. In addition, using (2.10), we can easily check that the Y-method preserves λ -boundedness if and only if

$$\left\{\frac{\lambda_n}{\lambda_{n-1}}\right\} \in m.$$

For instance, choose $\lambda_n = \frac{1}{p^n}$, n = 0, 1, 2, ... in Q_p . Then

$$0<|\lambda_n|_p=\frac{1}{|p|_n^n}\nearrow\infty, n\to\infty,$$

where $|\cdot|_p$ is the *p*-adic valuation. Now,

$$\left| \frac{\lambda_n}{\lambda_{n-1}} \right|_p = \left| \frac{1/p^n}{1/p^{n-1}} \right|_p = \frac{1}{|p|_p}, n = 0, 1, 2, \dots,$$

so that

$$\left\{\frac{\lambda_n}{\lambda_{n-1}}\right\} \in m.$$

Consequently, the Y-method preserves λ -boundedness for the above choice of $\lambda = \{\lambda_n\}$.

For the sake of completeness, we recall the following definition from [7]. Let, as usual, $\lambda = \{\lambda_n\}$ be a sequence in K such that

$$0 < |\lambda_n| \nearrow \infty, n \to \infty.$$

Definition 2.6. A sequence $\{x_n\}$ in K is said to be convergent with speed λ or λ -convergent if $\{x_n\} \in c$ with $\lim_{n \to \infty} x_n = s$ and

$$\lim_{n\to\infty} \lambda_n(x_n-s) \text{ exists.}$$

Let c^{λ} denote the set of all λ -convergent sequences in K. By definition,

$$c^{\lambda} \subset m^{\lambda} \subset c$$
.

We now have the following result, the proof of which is very similar to the proof of Theorem 2.1.

Theorem 2.3. $A = a_{nk} \in (c^{\lambda}, m^{\mu})$ if and only if $A \in (m^{\lambda}, m^{\mu})$. In other words, $A \in (c^{\lambda}, m^{\mu})$ if and only if (2.1) - (2.5) are satisfied.

REFERENCES

- 1. Ants Aasma, Hemen Dutta and P. N. Natarajan: An Introductory Course in Summability Theory. Wiley, 2017.
- G. Kangro: On the summability factors of the Bohr-Hardy type for a given speed I. Eesti NSV Tead. Akad. Toimetised Füüs. - Mat. 18(2) (1969), 137–146.
- 3. G. Kangro: On the summability factors of the Bohr-Hardy type for a given speed II. Eesti NSV Tead. Akad. Toimetised Füüs. Mat. 18(4) (1969), 387–395.
- 4. G. Kangro: Summability factors for the series λ -bounded by the methods of Riesz and Cesàro. Tartu Riikl. Ül. Toimetised. **277** (1971), 136–154.
- P. N. Natarajan: The Steinhaus theorem for Toeplitz matrices in non-archimedean fields. Comment. Math. Prace Mat. 20 (1978), 417–422.
- P. N. Natarajan: An Introduction to Ultrametric Summability Theory. Springer, 2014.
- 7. P. N. NATARAJAN: On covergence and summability with speed in ultrametric fields (Communicated for publication).
- 8. V. K. Srinivasan: On certain summation processes in the p-adic field. Indag. Math. 27 (1965), 319–325.