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FUNCTIONS
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Abstract. In this paper, we first establish that an identity involving generalized frac-
tional integrals for twice differentiable functions. By using this equality, we obtain some
trapezoid type inequalities for the functions whose second derivatives in absolute value
are convex.
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1. Introduction

In the literature, the theory of inequalities has an important place in mathemat-
ics. There are many studies on the well-known Hermite-Hadamard inequality. Many
researchers have studied the Hermite-Hadamard inequality and related inequalities
such as trapezoid, midpoint, Simpson’s inequality, and Bullen’s inequality and have
contributed to science.

Over the years, numerous articles have focused on obtaining trapezoid and mid-
point type inequalities that give bounds for the right-hand side and left-hand side of
the Hermite-Hadamard inequality, respectively. For example, Dragomir and Agar-
wal first established trapezoid inequalities for convex functions in [9], whereas Kir-
mac first, obtained midpoint inequalities for convex functions in [13]. Moreover
in [17], Qaisar and Hussain presented several generalized midpoint type inequali-
ties. Sarikaya et al. and Igbal et al. proved some fractional trapezoid and midpoint
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type inequalities for convex functions in [20] and [11], respectively. In [6] and [7],
researchers established some generalized midpoint type inequalities for Riemann-
Liouville fractional integrals.

Researches on the differentiable functions of these inequalities also have an im-
portant place in the literature. Many researchers have focused on twice differentiable
functions to obtain many important inequalities. For example, Barani et al. estab-
lished inequalities for twice differentiable convex mappings which are connected with
Hadamard’s inequality in [3, 4]. In [14], some new generalized fractional integral
inequalities of midpoint and trapezoid type for twice differentiable convex functions
are obtained. In [18], authors obtained some new inequalities of the Simpson and
the Hermite-Hadamard type for functions whose absolute values of derivatives are
convex. In [5] and [10], several fractional Simpson’s inequality for twice differen-
tiable functions were obtained. In [8], some generalizations of integral inequalities of
Bullen-type for twice differentiable functions involving Riemann-Liouville fractional
integrals were obtained. Fore more results please refer to [2, 15, 16].

Here, we give some definitions and notations which are used frequently in main
section.

The well-known gamma and beta functions are defined as follows: For 0 < x,y <
o0,

(1.1) I (z):= /tf—le—tdt
0

and

1
Blayy) : = [ -t ar
/

I'(z)I (y)
I(z+y)

The generalized fractional integrals were introduced by Sarikaya and Ertugral
as follows:

Definition 1.1. [19] Let us note that a function ¢ : [0,00) — [0, 00) satisfy the
following condition:
1
t

(1.2) / L( )dt < 0.

0 t
We consider the following left-sided and right-sided generalized fractional integral
operators

(1.3) ol f(@) = /wa(t)dt, z>a

r—t

b
(1.4) b_@,f(x):/ =) g, @ <o,

t—=x
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respectively.

The most significant feature of generalized fractional integrals is that they gen-
eralize some important types of fractional integrals such as Riemann-Liouville frac-
tional integral, k-Riemann-Liouville fractional integral, Hadamard fractional inte-
grals, Katugampola fractional integrals, conformable fractional integral, etc. These
important special cases of the integral operators (1.3) and (1.4) are mentioned as
follows:

1. Let us consider ¢ (t) = t. Then, the operators (1.3) and (1.4) reduce to the
Riemann integral.

2. If we choose ¢ (t) = % and a > 0, then the operators (1.3) and (1.4)

reduce to the Riemann-Liouville fractional integrals J? f(z) and Ji* f(z),
respectively. Here, I' is Gamma function.

3. For ¢ (t) = ﬁ(a)t% and a, k > 0, the operators (1.3) and (1.4) reduce to the

k-Riemann-Liouville fractional integrals J&, | f(x) and Ji* , f(x), respectively.
Here, 'y, is k-Gamma function defined by

(1.5) Ty () :/ el dt, R(a)>0
0

and

(1.6) Tk (a) = kF7I0 (%) , R() > 0;k > 0.

2. A new identity for twice differentiable functions

In this section we prove an equality for twice differentiable functions by view of
generalized fractional integrals.

Lemma 2.1. Let f : [a,b] = R be an absolutely continuous mapping (a,b) such
that f" € Ly ([a,b]). Then, the following equality holds:

[(x —a)(Ai(1) = Bi(1))  (b—x)(Ax(1) —Bz(l))} (@)
24:(1) 24,(1)
f(a)+f(b) 1 mf-[gpf(a) T Lpf(b)
AT —2{ Ay §A2<1)}

_ (w2 f B o
T 24,(1) /O(tAl(l) By(t)f" (tz + (1= t)a)dt
+(2b,4_2(x1)) /O (tA2(1) — Ba(t)) f" (tx + (1 — t)b)dt.
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Here,

A(s) = /0 plz—aw)

u

Ag(s) = /OS Mdu’
Bl(t) = A Al(S)dS,
By(t) = /Ot As(s)ds.

Proof. By using integration by parts, we obtain

(2.1) J = /0(tAl(l)—Bl(t))f”(tx+(1—t)a)dt

f(tw+ (1= t)a)|'

r—a

= (tAs(t) — Bi(1))

0

1

r—a

/mmn—mﬁnﬂm+u—w@ﬁ
0
)

Tr—a

= (Ai(1) = B1(1))

1

= [ - )
P [ gl
(A1(1) — By(1)) %

s L [

_ A =Bi()f(z)  AM)fla) 1 .
B r—a + (z —a)? (r — a)? [Z*I@f( )]

Similar way, we get

(22) Jo = /1(tA2(1)—Bg(t))f"(tx+(1—t)b)dt

_ (B2(1) — Ax(1)) f'(z) | A2(1)f(a) 1
- b—u ooz o eSO

From equations (2.1) and (2.2), we have

(z—a)? (b—x)?

1 24,(1) T4,
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_ [@—a)(A(1) = Bi(1))  (b—x)(A2(1) — Bz(l))} ()
24:(1) 245(1)
f(a) + f(b) 1 mf-[@f(a) T Lﬁf(b)
Ty Ty a4 §A2(1) }

This ends the proof of Lemma 2.1. O

3. Some trapezoid type inequalities for generalized fractional integrals

In this section, by utilizing generalized fractional integrals, we prove some trape-
zoid type inequalities for functions whose various power of absolute value of second
derivatives are convex function.

Theorem 3.1. Let us consider that the assumptions of Lemma 2.1 are valid. Let
us also consider that the mapping | f"| is convex on [a,b]. Then, we get the following
inequality for generalized fractional integrals

(2= a)(A() = Bi1) _ (b= )(Ax(1) = B)] ,
(3.1) H 221(1) n 2;2(1) 2 ]f(:c)
F@ 4 I0) [ Iof() i dol )
T T3l an) ¢ §A2(1) ”
r—a 2 — X 2
< Sra-en1r@+ gl + G 1@+ Q1)

where Ay, Ay, By and By are defined as in Lemma 2.1 and QY , i = 1,2,3,4, are
defined by

Q7 = [tA1(1) — By (t)| tdt
0
1
Q7 = [tAL(1) — By(t)] (1 — t)dt
0
1
Qf = |tAs(1) — By(t)| tdt
0

QF /0 [tAs(1) — By(t)] (1 — t)dt.

Proof. By taking modulus in Lemma 2.1, we have

‘ [(x —a)(Ai1(1) = Bi(1)  (b—2)(Ax(1) — Ba(l))} (@)
24:(1) 245(1)

F@) +FO) 1 [aIofl@) . wrIof(B)
* ‘{ A 2 ”

(3.2)

2 2
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tAL(1) = Bi(0)] [ /" (tx + (1 = t)a)| dt

A>(1)— B " 1-— .
G [ 1A = B 11 4 (1 o)
By using convexity of |f”|, we obtain

‘ {(I —a)(Ai(1) = Bi(1)) (b= )(As(1) — 32(1))]

24, (1) 24,1 7'e)

MO LI0) L [lel @) Lo
! 2[ Aﬂn |
< G [ i - Bl @+ 0 - o @)
Ot [ ) = Bl 1770 + 1= 1) O
(¢~ ay? (- 2)°

= 2Alu)[Qf|f%xN+—Q§|f%aﬂ] T Q515 @)+ QE 170

This finishes the proof of Theorem 3.1. [

Corollary 3.1. If we choose p(t) =t for all t € [a,b] in Theorem 3.1, then we
have the following inequality

atb ., . fla) 1
’m : Mcw+2[x_a/’f ﬁ+——f/ ]
(x—a)? [5lf"(@)|  [f"@]] , b—=2) [51f"(=)] [0
_2[24+8}+2{24+8]'

Corollary 3.2. If we take x = ‘%‘b in Theorem 3.1, then we have the following
trapezoid type inequality for generalized fractional integrals

‘f(a)—Ff(b) _2A1(1) T_[Wf(a)+a;ﬂ,+1¢f(b)}‘

(b* a)2 © " "
sa VI @I 1)

IN

where

(3.3) v — / #A(1) — A(L)|dt
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s b—a
Sl
(3.4) A(s) = / Mdu
0 u
t
(3.5) AW) = / Als).
0

Proof. For x = “T*'b in Theorem 3.1, we have

'f(a) ;f(b) N 2A1(1> [“T“wa (@) Foge, Lo <b)H

(b_a)2 © | g1 a+b @ | gl
< S [l (S50) |+ i@l
S [oe | (450) [+ ws o]
< Srr e+ w1 o)
I U ) "
= L we gl + o)
where
(3.6) \I/“f:/ [tA(1) (t)|tdt
and
(3.7) \pg_/ A1) — A (1— t) dt.

This finishes the proof. [

Remark 3.1. If we choose ¢(t) =t for all ¢ € [a,b] in Corollary 3.2, then we have the
following trapezoid inequality for Riemann integrals

b 2
(35 Tt IO o [ s < C5 0 @)+ 170

2 b—a
which was given by Sarikaya and Aktan in [18].

Corollary 3.3. By choosing p(t) = (a),a > 0 for all t € [a,b] in Corollary 3.2,

then we have the following trapezoid type inequality for Riemann-Liouville fractional
integrals

a *'T(a
o =50 )

(b—a)? (1 1
(2 (a+D(a+2)

) (1F"(@)] + 17" ®)).
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Corollary 3.4. By choosing p(t) = #%(a),a,k > 0,for all t € [a,b] in Corollary
3.2, then we have the following trapezoid type inequality for k-Riemann-Liouville
fractional integrals

‘f(a)Jrf() 2% (jk%m 2 @)+ T8 fO )H

(b_a)Q 1 k? " "
< 850 (5 mrmaaag) (@l 1D

Theorem 3.2. Let us note that the assumptions of Lemma 2.1 hold. If the map-
ping |f"|?, ¢ > 1 is convex on [a,b], then we have the following inequality for
generalized fractional integrals

‘ {(fﬂ —a)(A(1) = Bi(1)) (b= =)(As(1) — Bz(l))}

Gy 24,(1) f)

F@) +F0) 1o Iofl@) o Dpf(B)
* [ L) 2 H

2 2
2A1 (/ b1 )|pdt>l (f”<w>|" : f”(a)l“)é

"o (/ a1 >|"dt)é (f”@:)lq ' |f~<b>|q>;

where Ay, Aa, By and By are defined as in Lemma 2.1.

Proof. By using the Holder inequality in inequality (3.2), we obtain

‘ [(x —a)(Ai(1) - Bi(1))  (b—=)(Ax(1) — 32(1))} ()

24,(1) 24,(1)

fla)+ f(b) 1 |:ac—Lpf(a) n x+1wf(b)H
2 2| A1) 245(1)

2,411 (/ tA: (1 I”dt> (/ |f"(tx + (1 —t)a )|th)1
2A2 (/ [tA2(1 |Pdt> (/ lf"(tz + (1 —t)b )|th)1

With the help of the convexity of |f”|?, we get

‘ [(ﬂc —a) (A1) = Bi(1)) (b= 2)(A2(1) — Bz(l))}

24:(1) 245(1)

f'(x)
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f@ ) 1 [oIofl@) | wrIof(B)
i ‘{ RO H

2 2
2R </ i 'pdt> l </o [t @)+ (=01 @) dt>;
+(§A_2£vl))2 </01 [t42(1) = B2 (t)” dt>; (/01 [ (@) + @ =) £ ()] dt);
- 2A1 1) </ [tA;(1 (t)? dt) (If”(x)qyf”(a)w)é
2A2 (/ [tAy(1 ) dt) (lf”(:c)lq;|f”(b)|q>é.

This completes the proof of Theorem 3.2. [

IA

Corollary 3.5. If we choose p(t) =t for all t € [a,b] in Theorem 3.2, then we
have the following inequality

‘u—“jb)f'(mf(a) e R f(t)dt]
o0\ [ (@ @I

<2I‘(2p+2)> (x_“)( 2 )

oo (L1170 H |

p

dt

Proof. For o(t) = t, we have
2
tlx—a)—(z—a)=

1
Ay Pt =
/|t1 ()P dt /0 4
1 tp
= (x—a)p/ tp<1—> dt
0 2

1

= 2p_1(x—a)p/ tP (1 —t)P dt
0

= 2" Yz —a)’Bp+1,p+1)

(T (p+1))
I'(2p+2)

= 27Yx —a)P
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and similarly

(3.9) /O tA3(1) — By(t)[" dt = 2P~ 1 (b — x)pm-

This completes the proof. [

Corollary 3.6. If we take x = “TH’ in Theorem 3.2, then we have the ollowing
trapezoid type inequality for generalized fractional integrals

‘f(a) - 2A1(1) o Lo f(@) +age, L] (b)H

< ‘o </ AW P‘”>;

< OEALIOT >q+<f”(a)|q+3f,,(b)|q>;]

4

< b‘“ ( / [tA(1) I’)dt);[lf”(a)lﬂLlf”(b)]

where A and A are deﬁned as in Corollary 3.2.

Proof. By choosing z = “—“’ in Theorem 3.2, we get

’f(a) _2” =E 2A1(1) o Tof() 4o, I“’f(b)H

p P
8A (/ A1) |dt>

‘f// a+b{ +|f//() > <|f// |+|f// )é
2

< 81\(1)(/ EA1) <t>|1°dt);

« l<3|f”(a)|q4+ TR0 >|q>é . (|f~(a>|q23|f,,(b)|q)é] |

For the proof of second inequality, let a; = |f” (a)|?, b1 = 3|f" (b)|*, as =
31" (a)]? and by = | f” (b)|?. Using the facts that,

(3.10) Z ar + bi)* <Zak+Zb
k=1

for 0 < s < land 1+ 3% < 4, then the desired result can be obtained straightfor-
wardly. This completes the proof of Theorem 3.6. [

IN
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Remark 3.2. If we choose p(t) =t for all ¢ € [a,b] in Corollary 3.6, then we have the
following trapezoid inequality for Riemann integrals

’f )+ f(b _a/ £t dt‘
)

y {(3|f”(a)|"4+ lf”(b)lq>3 N (\f”(a)|q Z3|f“(b)Q>é]
= (b_ga)Q( ;F((Ziilg ) [ (@)] + [ ®)]] -

Corollary 3.7. By choosing p(t) = %, a >0 for all t € [a,b] in Corollary 3.2,
then we have the following trapezoid type inequality for Riemann-Liouville fractional
integrals

’f(a) +f(b) 297 (a+1)

A0 2O [ p(0)+ 72, 10|

< 2 _80)2 </01 " (1 N atj 11>pdt>; ;
x [<3|f”(a)lq4+ rroryt, (s f,,(bﬂq)q]
< (b_gaf <4/01 tr (1 _ ati 1>pdt>’l” 17" (@) + 1" O]

Corollary 3.8. By choosing ¢(t) = #%(a),a,kz > 0,for all t € [a,b] in Corollary
3.2, then we have the following trapezoid type inequality for k-Riemann-Liouville
fractional integrals

L0210 BMtl) e gy 500

< (b—ga)2 (/Oltp<1_jfk)pdt)p
>< [(3 @ If”(b)q)3 (U s |f,,(b)|q>;]
< (b_ga)2 (4/01 (1 - jik> dt>’1’ 1" (@) + Lf )]
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Theorem 3.3. Let us note that the assumptions of Lemma 2.1 hold. If the map-
ping |f|?, ¢ > 1 is convex on [a,b], then we have the following inequality

‘ [(w —a) (A1) = Bi(1)) (b= 2)(As(1) — 32(1))}

24:(1) 24,(1)

fla)+f(b) 1 [aTpf(a)  atlof(b)
T 3l a4 §A2(1)”

f'(x)

Q=

IN

2 1
@) 7 (QF I ()" + Q% |f"(a)|")

(QbA D@ @1 @I+ a0

where Ay, Ay, By and By are defined as in Lemma 2.1, Q7 , i = 1,2,3,4, are defined
by as in Theorem 3.1 and QF and Qf are defined by
Qf = [y [tA:(1) = Bi(t)] dt
(3.11) .
QF = Jo [tA2(1) = Ba(t)] dt.

Proof. By applying power-mean inequality in (3.2), we obtain

‘ [(a; —a)(A1(1) = B1(1))  (b—z)(Ax(1) — 32(1))} (@)

24:(1) 24,(1)

(o ]
S (/ A1 (1) - Bl<t>|dt)1;
(/ A1 (1) — By ()| |f" (t2 + (1 — t)a )|th>é

1—

2A2 (/ 1t A5(1 dt)

1
< ([ 1easa) = Batol ek -t ar)

Q=

Since |f”’|? is convex, we have

‘ [(ﬂc —a) (A1) = Bi(1)) (b= 2)(A2(1) — Bz(l))}

24:(1) 24,(1)

f'(z)
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fla) + f(b) 1 {szf(a) . x+fgof(b)H

T T2l Aam T za0
< o (/ 4.1 >|df)1é
</ ItA;(1 L [E1 @)+ (=) | £7(a)|"] dt>é

1—1

+(26AQ($1))2 (/01 ItA5(1) — Ba(t) dt) '

1
x (/ £A5(1) — By(d)] [t 1" @) + (1 — 1) |£"(0)] }dt)

1
q

. ((E ) © @ | q @ | gl q %
= A0 Q)" (QF 1£"(@)|" + Q511" (a)]")

(b - 2)?
24,(1)

Q=

(@) (R 1@+ QF 1))

Then, we obtain the desired result of Theorem 3.3. [

Corollary 3.9. If we choose o(t) =t for all t € [a,b] in Theorem 3.3, then we
have the following inequality

‘(x_a;b)f,($)+f(a);f< [

/f dt—l—— bf(t)dt]

IN

(@ —a)? (5" (@)|7+ 3] @)\ 7 (b—2)* (5] @)]7+3]f B\
g (R ) B (R

Corollary 3.10. If we take x = ‘%rb in Theorem 3.3, then we have the ollowing
trapezoid type inequality for generalized fractional integrals

’f(a) - 2A1(1) [ Tol (@) Fgs 1o 0 ‘

(b= oy (L¥F £ 209) 7" (@) + W7 )
< Sy o 2 )

+

(b—a)® 1 (WE I (a)]? + (F +208) | /()" ©
e (v L 2DIPOL
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where A, A and ¥¥ are defined as in Corollary 3.2. Here U and ¥ are given by
as in (3.6) and (3.7), respectively.

Remark 3.3. If we choose ¢(t) =t for all ¢ € [a,b] in Corollary 3.10, then we have the
following trapezoid inequality for Riemann integrals

'f )+ /(b /f dt‘
< (oo {(Hw (a)qlgmf”(b)v)i L (3 (a)q1+611|f”(b)|">3}

Corollary 3.11. By choosing ¢(t) = F(a) a > 0 for all t € [a,b] in Corollary

3.10, then we have the following trapezoid type inequality for Riemann-Liouville
fractional integrals

O 2O [ 0+ 72, 10|

—a)? -1 5 (a . "(a)l? NG i q %
< C=9 e <(19( ) + 205( ))|f2()| +U2(a) |f (b)l>

Pt i (L O+ 0 200 O

8 2
where 1 L
1 1
(3.13) 920) =3~ T D@ T
and 1 1
(3.14) 193(04) = = —

6 (a+1)(a+2)a+3)

Corollary 3.12. By choosing p(t) = kr:(a),oz k > 0,for allt € [a,b] in Corollary

3.10, then we have the following trapezoid type inequality for k-Riemann-Liouville
fractional integrals

@+ f0) 2 Teat k) [,
2 B (b _ a)a "T‘H’_kf( ) a+b+ kf( )j| ‘
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x K(ﬁz(a? k) + 203(a, k) |f’2’ (@)|” +P2(a, k) If”(b)lq> ‘

T <z92<a, B) 11" (@)|" + (9 (0 k) +203(c K)) If”(b)lq> ]

2

- P —

(3.15) k) =5 - (@t k)(at2k)
1 k?

(3.16) Pl k) = 3~ G Ry @ T 3R

and 1 i3

(3.17) Us(a, k) = =

6 (a+k)(a+2k)a+3k)

4. Conclusion

In this study, trapezoid type inequality for twice differentiable functions us-
ing generalized fractional integrals are obtained. Also, we prove that our results
generalize the inequalities obtained in earlier works. Some new inequalities for
k-Riemann-Liouville fractional integrals are obtained by special choices of main
findings. In the future works, authors can try to generalize our results by utilizing
other kinds of convex function classes.
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