FACTA UNIVERSITATIS (ng)
SerR. MaTH. INForM. Vol. 31, No 1 (2016), 33-54

BOUNDING THE CEBYSEV FUNCTIONAL FOR A FUNCTION THAT IS
CONVEX IN ABSOLUTE VALUE AND APPLICATIONS

Silvestru Sever Dragomir

Abstract. Some sharp bounds for the Cebygev functional of a function that is convex in
absolute value and applications for functions of self-adjoint operators in Hilbert spaces
via the spectral representation theorem are given.
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1. Introduction

For two Lebesgue integrable functions f,g : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider
the Cebysev functional defined by

1 b 1 b 1 b '
C(ffg):mfaf(t)g(t)df—m]a‘f(t)df‘m];g(f)df-l

In 1934, G. Grtiss [14] showed that

1
(L.1) C(r.)] < 3 M=-m)(N=-n),
provided m, M, n, N are real numbers with the property that

(1.2) —co<m< f<M<oo, —co<n<g<N<co ae. onlagb].

The constant 1 is best possible in (1.1) in the sense that it cannot be replaced by
a smaller one.

Another lesser known inequality for C (f, g) was derived in 1882 by Cebysev [4]
under the assumption that f’, g’ exist and are continuous on [g, b], and is given by
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34 S.S. Dragomir

where ||f'||oo 1= SUPyefp) |f’ (t)| < oo,
The constant 15 cannot be improved in general in (1.3).

Cebysev’s inequality (1.3) also holds if f,g : [2,b)] — R are assumed to be
absolutely continuous and f’, g’ € L [a, D] .

In 1970, A.M. Ostrowski [18] proved, amongst others, the following result that
is in a sense a combination of the Cebysev and Griiss results:

(14 (.l <5 0-am-m)

oo’/

provided f is Lebesgue integrable on [4, b] and satisfying (1.2) while g : [2,b] — R
is absolutely continuous and ¢’ € L [4,b]. Here the constant § is also sharp.

In 1973, A. Lupas [16] (see also [17, p. 210]) obtained the following result as
well:

(1.5) IC(f.9)| <

provided f, g are absolutely continuous and f’, g’ € L, [a, b].
Here the constant 2 is the best possible as well.

In [2], P. Cerone and S.S. Dragomir proved the following inequalities:

(1.6) lc(f.9)|
inf [lg - ||, % [

7ER

_blTufubf(s)ds'dt,

IA

FO -5 [ fs)ds dt)’_’
wherep >1, 1/p+1/g=1.

infllg -], o= (1

For y = 0, we get from the first inequality in (1.6)

b b
(17) et ol =9l 37— f ‘f(t)—ﬁ f £ (5)ds|dt

for which the constant 1 cannot be replaced by a smaller constant.

If m < g < M for ace. x € [a,b], then ||g — 25| < 1 (M - m) and by the first
inequality in (1.6) we can deduce the following result obtained by Cheng and Sun

[5]
——f £ (6)ds|d

The constant 1 is best in (1.8) as shown by Cerone and Dragomir in [3].
The following result holds [11].

a9 lchal<zM-m f
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Theorem 1.1. Let f : [a,b] — C be of bounded variation on [a,b] and g : [a,b] — Ca
Lebesgue integrable function on [a, b] . Then

dt

b
e R

1\ (I
(1.9) IC(f9)| < zy(f)'b-afu

b
where \/ (f) denotes the total variation of f on the interval [a, b] .

The constant 1 is best possible in (1.9).
We denote the variance of the function f : [a,b] — C by D (f) and defined as

211/2

12 b 2 b
a0 pp=[c(r)]" [b%a [ Iro dt—]ﬁ [ r

where f denotes the complex conjugate function of f.
We have [11]:

Corollary 1.1. If the function f : [a,b] — C is of bounded variation on [a, b], then

b
(1.11) (=3 \ 0

The constant % is best possible in (1.11).

Now we can state the following result when both functions are of bounded
variation [11]:

Corollary 1.2. If f, g : [a,b] — C are of bounded variation on [a, b], then

b b
(112 ceal<g VoV o,

The constant % is best possible in (1.12).

Remark 1.1. We can consider the following quantity associated with a complex valued

function f : [a,b] = C,
—1 bztdt——l b t)dt
b—ﬂlf() b_alf()

211/2
12

E(f)=|C(f.h]" =
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Utilising the above results we can state that

ufabf(s)ds‘dt

b
(1.13) E(f) <} \/ =T

b b 2
S%\/(f)D(f)S%[V(f)} .
If we consider

an=lc(el)”

1 1 L
=‘mfaf(t)|f(t)|dt-mfaf<t)dt~mfa If )]t

then we also have

1/2

’

b
G (f) < %\/ bl f |f(s)|ds
(1.14) b .
1 1
5\/(f)D (1) sz |f| <—[V(f)}
and
b
G (f) s%\/ (A 7 f ff(s)ds
(1.15) !

%\/ 17 D(f)<—\/(f)\/ (If) < [Vm} .

For recent related results see [1] and [9]-[13].

Motivated by the results presented above, we establish in this paper some new
bounds for the magnitude of C(f, g) in the case when one of the complex valued
function, say f, is convex in absolute value while the other is Lebesgue integrable
on [a,b]. Applications for functions of self-adjoint operators in Hilbert spaces via
the spectral representation theorem are also given.

2. New Results for Cebysev Functional

Recall that a function g : [a, b] = R is convex (strictly convex) on the interval [a, b], if

g(@-tHx+ty) < (<A -1)g () +1tg(y)
forany x,y € [a,b] (x # y) and t € [0,1]((0,1)).
We observe that the constant function k (t) = k, t € [a, b] and the identity function

e(t) = t,t € [a,b] can then be interpreted as convex functions. However, they are
not strictly convex functions on [a, b] .

We have the following result:
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Theorem 2.1. Let f : [a,b] — C be a measurable function such that ) f ) is convex on [a, b]
and g : [a,b] — C is a Lebesque integrable function on [a, b] . Then

” (t)——fg(s )ds|d

2.1) |C(f, 9)| < max{[f

The inequality (2.1) is sharp.

Proof. We use Sonin’s identity

22) C(f,g):b%afab(fu)—A)[g(t)—lfTafg(s)ds]dt
for A = 0 to get
2.3) C(f,9)= 5 f bf(t)[g(t)— . f bg(s)ds]dt.
Taking the modulus and utilizing the convexity of |f| on [a, b] we have
2.4) ctol < [IFollgw - [ g6 s

< o )| ]

b
X 'g(t) - blTu fa g(s)ds|dt
If we denote the right side of (2.4) by I, then we have

[(b—t))f(a)|+(t—a )|f @) )]
te[ab]

I < sup

1 b
mea |g(t)—mfa g(s)ds|dt
1 (7 1 ("
:max”f(a) , ) mf |g(t)—m‘f g(S)dS dt
and by (2.4) we get (2.1).

Assume that the inequality (2.1) holds with a constant K > 0, namely

b
o - if 9(s) ds|

Consider the functions f, g : [a,b] — R defined by

@5 lctalskmax{f@l ol ;= |

-1, te [a, a+h

f@):=
1, te (‘”b b]
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and g:[a,b] > R, g(H) =t - L.
We have ) f ) = 1, which satisfy the convexity condition with equality and

1 b a+b —-a
C(f,_l])—mfu t— 'dt— ,
max{|f(a), }:
and
1 ([ 1 (" 1 (| a+b b—a
and by (2.5) we have
b—a b-a
4 =K 4 7

which shows that K > 1. O
With the notations from the introduction we have:

Corollary 2.1. Let f : [a,b] — C be a measurable function such that ) f | is convex on
[a,b]. Then

(2.6) D> (f), B (f)
ok [ f 0= 55 [ Fo)as]a,

< max{

and

2.7) G*(f) < max |

|)f< )——f [ 9] s| e

We recall the p-logarithmic mean defined by

mp+1 np+1
L -
(m,n):= PO M=) m#n

where p # —1,0 and m, n > 0.
The case of p-norm of the deviation

' afabf(s)ds

is as follows:
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Theorem 2.2. Let f : [a,b] — C be a measurable function such that ) f ) is convex on [a, b]
and, forp > 1, g : [a,b] — Cis in the Lebesgue space Ly [a, b] . Then
1/p
4 ,

ﬂ fga———fg@ﬁ

28) [C(f 9| <Ly(

where q > 1and%+% =1
The inequality (2.8) is sharp.

Proof. Making use of Holder’s inequality, we have

2.9) b-a) :Lb[W] 'g(t)—%fbg(s)ds|dt

1/17
b-D|f@)|+(t-a)| o) |7
S (fa [ b—a

X@W@—ﬁﬁmw$ﬁw

Observe that, by changing the variable u = {2 we have

b-D|f@|+(t-a)| o) |7
Jz; b—a

=<b—@£[uV@ﬂ+u—quwﬂﬂm
Changing the variable again
o=ulf®)]+1-w)lf @)
we have for | f (a)| # |f (b)|

(b—af[ If )]+ @ - w)|f @] du = Wf
=@ -a)Li(|f @),

).

For |f (a)) = )f (b) ) we also have

(b—af[ f ®)+ 1 -w|f @] du=-a)|f @
=@ -a)Li(|f @),

).
|dt) ’

L g(s)ds| dt) v

Therefore

b-a)1 <(0-aLi(|f@||f (b)|))w( :

([

=(b-a)""Ly(
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which implies

p AP
1<Ly(|f @], dt] .

[ f |g() y(s)ds

Making use of (2.9) we get the desired result (2.8).
Assume that

(2.10) Ic(f,9)| <KL, (|f @),

1
XI:bT

holds with a constant K > 0 for any p > 1 and f, g as above.

)

b p Up
90 -5 [o@as at|

Consider the functions f, g : [a,b] — R defined by

-1, te [a ‘”b]
ft):=
1,te (‘”b b]
andg:[a,b] >R, g() =t - %L

We have ) f ) = 1, which satisfies the convexity condition with equality and

’ b b
Cho=3 f R e
We also have L, ()f(a) , (b)))= 1 and
(% —ﬁfubg(s)ds'pdt)l/p

(i L) = (2 L (- )

If we replace these values in (2.10) we get

b—a - K(b-a)

@.11) T S 2pe)

forany p > 1.

Now, if we let p — 1+ in (2.11) we get K > 1, which proves the desired
sharpness. [

The case p = g = 2 is of interest.
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Corollary 2.2. Let f : [a,b] — C be a measurable function such that ) f | is convex on
[a,b] and g : [a,b] — C is in the Lebesgue space L, [a, b] . Then

F @ +|f @ F @) + |f<b))2]”2 o).

(2.12) C(f9)| < [ 3

The following particular cases are of interest as well:

Corollary 2.3. Let f : [a,b] — C be a measurable function such that ) f | is convex on
[a,b]. Then

D?(f), E*(f) < Ly (|f (@)

(2.13) .
% [b -a fa

and

£)))

7

p ql/p
dt] ,

b
F0- 5 [ re

G (f) < Ly([f @] |f ®)])

(2.14) 1 Lt
X[mfa )f(t)|—mfa |f ()| ds

1,1
wherep,q>land , + - = 1.

In particular, we have

p ql/p
dt] ,

) 2\1/2
015 DB ['f W sb@relf ol gy,
and
) 2\1/2
a a)f b
(2.16) Gz(f)s{)f( [ +Ir¢ )3f( )|+ ) ] D(|f])-

The first inequality in (2.15) is equivalent to

f @[ +|f @ f®)]+]f (b))z]m

(2.17) D(f) < [ 5

The following result also holds:
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Theorem 2.3. Let f : [a,b] — C be a measurable function such that ) f ) is convex on [a, b]
and g : [a,b] — C is essentially bounded on [a, b]. Then

b
A G

e o)< 5 llr@l+ ol s

The inequality (2.18) is sharp.

Proof. We have

1‘fﬁw—ﬂvww+a—mvwﬂ
B b-a

b
901- 5= [ g

< t——
esstsel[lllrg g(t) fg(s

1 w—onﬂ+a—an)
.y I,

_f@|+]r o)
N Sunell

ess sup

1
(t) - ———j‘<@%
te[a,b] 7 b—aJ, 7

and by (2.4) and (2.19) we get the desired result (2.18).
Assume that the inequality (2.18) holds with a constant D > 0

wo———xfg@>

Consider the functions f, g : [2,b] — R defined by

(2.19) IC(f,9)| <D[|f @]+ f@ﬂsw>

-1, te[a ”+b]
fH=9@):=
1, te(%b,b].

We have | f | = 1, which satisfies the convexity condition with equality and

1 b
C(f,g) = mf dt=1,

b
mn——Llfg@>

From (2.19) we have 1 < 2D, i.e. D > % |

f@|=|fo|=1

while

sup
tela,b]
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Corollary 2.4. Let f : [a,b] — C be a measurable function such that ) f | is convex on

[a,b]. Then
(2.20) D*(f), E*(f) <1[)f(a)| +|f )] sup |f ) - L f bf(s)ds
' ’ T2 te[u,IZ] b-aJ,

and

b
o= 5= [ Irole.

e Gpgllr@l+lrof s

3. Application for Riemann-Stieltjes Integral

The following representation is of interest in itself. The result was firstly obtained
in [6] (see also [7]). For the sake a completeness we give here a short proof as well.

Lemma3.1. Ifv : [a,b] — C is continuous (of bounded variation) on [a,b] and h :
[a,b] — C is of bounded variation (continuous) on [a, b], then we have the identity

o(b) [ (t-a)dh())+o(a) [ (b-Hdh(t)

3.1) A AsON ~ [To®an)
= ["h (O do ) - 02D (") 1) ar.

Proof. Integrating by parts in the Riemann-Stieltjes integral we have

b b
52 o) [ (t_g)dh(z;+z(a) [ (b—tydn(t) _ fbv () dh ()

f [vw)(t Dro@®=h) _ 7 (4 ]dh(f)
[(t av(b)+(b oW _ 5 (#) h(t)'u

_fa h (t) d [(t—u)v(bl)J:(lb—t)v(a) - (t)]
=[v®) —v®)]h®) —[v(@) -v@)]h(a)
~ [0 [2929 gt — v (1))
= [ () do(t) - 02D ("1 ) g

and the identity is proven. O
We can provide now the following application for Riemann-Stieltjes integral:

Proposition 3.1. Ifv : [ — C is differentiable on the interior of the interval I denoted [
and [a,b] C I, [v'| is convex on [a, b] and h : [a, b] — C is integrable on [a, b], then we have
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the inequalities

o(b) [ (t=a)dh(ey o) [ G-ndht)

(3.3) s [ o®dn (t)‘

max {lo’ @), 1o @ [ [0 - 5% [ h(s)ds|at,

1/
6= L (o @l G| [ ro - o [ s ar]

whereq>1and%+%:1,

IA

L(b—a) [0’ @] + 1 (O)]] Supyeyy 'h O -5 [h) ds' :
Proof. From (3.1) we have

o) [*(t—a)dh(t)+oa) [ O-Ddh(®) b
(3.4) L — L - [[o®dn ()

= [(h®o Bt -0 Thydt = (b-a)C @, h).

Since [’ is convex on [a, b], then by applying Theorem 2.1-Theorem 2.3 for f = v’
and g = h we deduce the desired result (3.3). O

Remark 3.1. Ifp = g =2, then by (3.3) we get

o) [ (t-a)dn(®)+0(a) [ (b-bdh(e)

(3.5) e [Toydn (t)‘

<(b-a)

12
( " @2+ @2’ O]+ ) )
3

12
x[b%afab‘h(t)—ﬁfabh(s)dsrdt] )

provided that |v'| is convex on [a, b] and / : [a, b] — C is integrable on [a, b] .

4. Applications for Self-adjoint Operators

We denote by 8 (H) the Banach algebra of all bounded linear operators on a complex
Hilbert space (H;(:,-)). Let A € B(H) be self-adjoint and let ¢, be defined for all
A € R as follows

1, for —c0o<s <A,
Pa(s) =
0, for A < s < +oo.

Then for every A € R the operator

(4.1) E}\ =P (A)



Bounding the Cebyéev Functional 45

is a projection which reduces A.

The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded self-adjoint operators in
Hilbert spaces, see for instance [15, p. 256]:

Theorem 4.1. Spectral Representation Theorem Let A be a bonded self-adjoint op-
erator on the Hilbert space H and let m = min {/\ )A € Sp (A)} =: minSp (A) and

M = max {A |/\ € Sp (A) } =: max Sp (A) . Then there exists a family of projections {Ex} \er,
called the spectral family of A, with the following properties

a) Ex<EyforA <A
b) E,n0=0Epm= Iand Ejrio = E,\fOT’ all A € R;

c) We have the representation

M
4.2) A= f AdE,.

m-0

More generally, for every continuous complex-valued function ¢ defined on R and for
every € > 0 there exists a 0 > 0 such that

k=1

n
(43) ll(P (A) - Z Y (AI,() [E/\k - E/\k—l]
whenever
A<m=M<.<A1<A, =M,
(4.4) A —Apeq < 5f07’ 1<k<n,
A€ A, Al for 1 <k<n

this means that

M
(4.5) (p(A):f @ (A)dE,,

m—0

where the integral is of Riemann-Stieltjes type.

Corollary 4.1. With the assumptions of Theorem 4.1 for A, E; and ¢ we have the repre-
sentations

M
(4.6) (p(A)x=f O(p(/\) dE,x forallx € H
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and

M
4.7) (pA)x,y) = f—o @ (A)d(Ex,y) forall x,y € H.

In particular,

M
(4.8) (p(A)x,x) = f @ (A)d(Eax,x) forall x € H.
-0

Moreover, we have the equality

M
(4.9) o )| = f O)<p W[ dIEsxIP forall x € H.

The next result shows that it is legitimate to talk about “the” spectral family
of the bounded self-adjoint operator A since it is uniquely determined by the
requirements a), b) and c) in Theorem 4.1, see for instance [15, p. 258]:

Theorem 4.2. Let A be a bonded self-adjoint operator on the Hilbert space H and let
m = min Sp (A) and M = max Sp (A) . If {Fa}\er is a family of projections satisfying the
requirements a), b) and c) in Theorem 4.1, then F) = E, for all A € R where E, is defined
by (4.1).

By the above two theorems, the spectral family {E;} g uniquely determines
and in turn is uniquely determined by the bounded self-adjoint operator A.

We can state now the following generalized trapezoid inequality for functions
of self-adjoint operators:

Theorem 4.3. Let A be a bonded self-adjoint operator on the Hilbert space H and let
m = min {A |/\ € Sp (A)} =: min Sp (A) and M = max {/\ )/\ € Sp (A)} =: maxSp (A).
Consider also the spectral family {E;}cr of A.

If f - I — C is differentiable on the interior of the interval I, denoted [ and [m,M] c I,
is convex on [m, M], then we have the inequalities

fl
(4.10) | <[f(m)(MlH—A>+f<M>(A—mlH>] X, y> —(f(A)x, y>|

M-m
< [lr o] + | ol 1 = m)

t M
X SUP e My [ﬁ \/ ((E(»xf y)) + Mo \/ ((E(»xf y))l
t

m—0

1
Sf[

1
SE[

£ (m)| +

£ o] =m) \/ ((Eox, )
£/ (m)| +

£ || = m) 1l [y
forany x,y € H.
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Proof. Let x,y € H and consider h : R — C, h(t) := (Ewx, y). If we use the third
inequality in (3.3) for the interval [m — ¢, M] with small ¢ > 0, we have

(411) ‘f(M) fxé(t—m+e)d<E,x,y>+f(m—s) f:i(M—t)d(E,x,y)

M—-m+e

- [ Fd By
< LIf @] +|f (m - )| (M= m +e)

M
X Supte[m—s,M] '<Ef'x’ y> - M—111+e J;;q—g <E5x’ y> dS| .

Taking the limit over ¢ — 0+ and using the Spectral representation theorem, we
have

(4.12) (| A DA ] ) — (£ (A) x, )|
<3 [IF o] +|f @] v = m)

M
XSUP,ctan [(Er 1) = s [ (B, ) |

forany x,y € H.

It is well known that if p : [a,b] — C is a bounded function, v : [4,b] — C is of

bounded variation and the Riemann-Stieltjes integral fu ’ p (t) dov (t) exists, then the
following inequality holds

b b
(4.13) | f pdo )| < sup |\ @,
a tela, a

b
where \/ (v) denotes the total variation of v on [a, b] .

a

Now, a simple integration by parts in the Riemann-Stieltjes integral reveals the
following equality of interest

(4.14) (Ex,y) — ﬁ fnfo (Esx, y)yds
= 7 Unﬁ—o (s —m)d(Esx,y) + ftM (s —M)d(Esx,y>]

that holds for any ¢ € [m, M] and for any x, y € H.

Since the function v (s) := (Esx, y) is of bounded variation on [m, M] for any
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X,y € H, then on applying the inequality (4.13), we get
M
(4.15) '(Etx y) - = fm o (EsX, v) ds'
t
S;—m[fmo m)d(Exy)| |f (s—M)d(Exy)”

t M
< i \/ ((Eox, v)) + 2L \/ ((Eox. v))
t

M
< max(fz, 220\ / ((Eox, y)
m—0
M M
= [% + |t - = ] \/ ((E«)x, J/))
m—0

that holds for any ¢ € [m, M] and for any x, y € H.

This implies that
(4.16) SUP e 0] |(Etx, v) - fnfo (Esx, y) ds|
t M
<o 75/ (s ) 5 <<E<.>x, )
m—0 t
M
< SUPje,m [ ' ]\/ (E«)x/ y) <E< %, J/>
m—0 m—0

for any x,y € H.
The proof of the inequality

M

\/ (B, v)) < il

m—0

for any x, y € H, can be found in [13, p. 9]. O
We also have:

Theorem 4.4. Let A be a bonded self-adjoint operator on the Hilbert space H and let
m = min{A|A € Sp(A)} =: min Sp(A) and M = max {1 |1 € Sp(A)} =: maxSp (A).
Consider also the spectral family {E;},cr of A.

If f : T — C is differentiable on I, [m, M]
have the inequalities

(4.17) (| A DA ) — ( (A) x, )|
< max{ ! ))} fmAfO |(Etx, Yy — i fnfo (Esx, i) ds' dt

b= m) |l ||y

< %max{ ¢
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forany x,y € H.

Proof. Let x,y € H and consider h : R — C, h(t) := (E;x, y). If we use the first
inequality in (3.3) for the interval [m — ¢, M] with small ¢ > 0, we have

(4.18) ‘f(M)fm = mﬂ)d(Etx]\?:{f: &) [ (M-bd(E;x,y)
M
- [ f0d(Ex )
Srnax{ ' —€)|}(M—m+e)

X fmAi (Ex,y) — 7= fm]\i (Esx, y)ds|dt.

Taking the limit over ¢ — 0+ and using the Spectral representation theorem, we
have

(4.19) |<[f<m)<M1H—A)+f<M (A- m1H)] X, y>_ (FA)x, y>|

m O|<Efx y> M m J,‘ﬂ O<E X, y)ds'dt

Smax{ ¢

for any x,y € H.
By the Schwarz inequality in H we have that

(4.20) fnjﬁo '(Etx, y) — ﬁ j}‘ﬁo (Esx, y> ds' it
M <[Etx - = fmAfO Esxds] ,y>' dt

m—0

<ol e = st [ Eot]

for any x,y € H.

On utilizing the Cauchy-Buniakovski-Schwarz integral inequality we may state
that

(4.21) B |[Eex = 5 i B

S(M—m)l/z( HEx—m o

E xdsH dt)l/2

forany x € H.

Observe that the following equalities of interest hold and they can be easily
proved by direct calculations

(4.22) i [ B = s 2 B

M
= i [P dt—”M_m fm_OEsxds”
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and
(4.23) i [ NEIPde || [, xds”

_ 1
= Yiom fm O<Etx M merrlll OEsxds Eix — —x>dt

forany x € H.
By (4.21), (4.22) and (4.23) we get

(4.24) m HEtx ME xds” dt

Mm

12
< (M -m)"? (fm o <Etx 7= OEsxds Eux — —x> dt)

forany x € H.
On making use of the Schwarz inequality in H we also have

M -M
(4.25) I <Etx — i |, Esxds, Ex — %x>dt
-M 1 M 1
< J,;q_o HE,}X = Mo Jm—0 ESXdSH ”Etx — EX” dt
-M -M
= L1kl [ [Eex = s o o] at,

where we used the fact that E; are projectors, and in this case we have

2

1
Eix — —x

1 1
_ 2 22 = 2R
S| = IEP = (B, x) + 7 IlP = 5 Il

for any t € [m, M] for any x € H.
From (4.24) and (4.25) we get

(4.26) HEtx M p xds” dt

M m Jm-0
21 1 =
SM-m)"" (5 ||x||fm_0 HEtx Sy fm—o Esxdstt ,

which is clearly equivalent with the following inequality of interest in itself

M 1 M
(4.27) f Eix — ——— f Esxds
m—0 M- m—0

forany x € H.
From (4.20) we then get

1 fM
M-m m—0

foranyx,ye H. O

it < %uxn(M— )

1
dt < = Il |y

1 M
(Ewx,y) — - fm—O (Esx, y)ds
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Finally, we also have:

Theorem 4.5. Let A be a bonded self-adjoint operator on the Hilbert space H and let

m = min {A|/\ € Sp (A)} =: min Sp (A) and M = max {/\ )/\ € Sp (A)} =: maxSp (A).

Consider also the spectral family {E;}er of A.
If f : I — C is differentiable on I, [m, M]

have the inequalities

(4.28) | <[f<n1)<M1H—A)+f<M><A—m1H)] X, y> —(fA)x, y>|

M-m

. (If’(M>|2+If’(M;f’(m>|+If’<m>|2 )“ S M)

1/2
X(Ml_ . O|(Etx Y) = i mfm o (Esx, y)ds| dt)

1/2
(|f o +|f (M)f (m)|+]f [’ ) (M = m)||x]] HVH

N|—=

forany x,y € H.
Proof. Utilising the inequality (3.5) we can prove in a similar manner as above the
first inequality in (4.28).

By the Schwarz inequality in H we have that

M M 2
(4.29) W o '(Etx, V) = 55 o (Esx, ) ds' dt
2

= Ml—m j,;q]\fo <[Etx_ ﬁj}jﬁ Esxds]/y>

< Hsz Mlm m— 0||Etx M i Jm— OE XdS” dt

dt

for any x,y € H.
As in the proof of Theorem 4.4 we also have

(4.30)

”Etx - Esxds” dt

mmO

Esxds” dt < 1P

Mm mO

1
< 3l 5t [ [ - 5

By (4.29) and (4.30) we then get

L
L

mmO

M 2
(Esx, y)ds

m—0

1
< —
dt_4

4 !

namely

>——f (Ecx, yyds
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for any x,y € H.
This proves the last part of (4.28). O

Example 4.1. a) Let A be a bonded self-adjoint operator on the Hilbert space H and let
m = min{)\ |/\ € Sp(A)} = minSp(A) > 0 and M = max{)\ |/\ € Sp(A)} =: maxSp(A).
Consider also the spectral family {E;} \cg of A. Then by Theorem 4.3-4.5 we have for f (t) = t*,
p > 2 that

@31 ([, y) — A, )|

<ip (mf”l + M'H) (M —m)

X SUPyep ) [ﬁ \/ (Eo0x ) + iiom \/ (Epx, y))}

m=0

M
< Lp(m + M) (M= m) \/ ((Eox, v))

m=0

< 1p (=t + M) (M = m) x|y

7

M-m

< pMr! fm[\fo |<EtX, v) - fm[\fo (Esx, y) ds‘ dt
< LpMr=t (M = m) |l |ly|

(4.32) K[ m!’(MlH—A)JrMI’(A—mlH)] x, y> —(Arx, y>|

and
4.33) K[W] x,y) - (A, y>|
— - _1)\1/2
<p (MZ(V 1)+(Mn?1))p T2l 1)) (M _ m)

0 \1/2
X(ﬁ fm[\fo‘(Etx,y)— ﬁfxo (Esx,y)ds| dt)

(MZ(yf'l)+(Mm)p—l+m2(p7]) )1/
3

2
= (M = m) Il ||y]]

for any x,y € H.

b) With the assumptions of a) and if m > 0, then by Theorem 4.3-4.5 we have for f () = Int,
that

(4.34) ([ A | 3 y) — (in A, )
< e (M — m)

t M
X SUP; My [ﬁ \/ ((Epx, v)) + 1\1%:,51 \/ (Eox, y))}
m—0 t

M
< 2 (M —m) \/ ((Eoyx, y)) < 224 (M = m) Il ||y

m—0

7
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(4.35) ‘ [lnm(MlH—A)HnM(A—mlH)]xl y> —(InAx, y>}

M-m

< LY KE ) - s [ (B s e
< 5l ||y v = m)

and

(4.36) |<[]nm(MlH—A)-HnM(A—mlH)] " y> —(InAx, y>'

M-m

M2amMam? 1/2
< (M) (M - m)

5 \1/2
X(ﬁ fm[\fo‘(Etx,y)— ﬁfxo (Esx,y)ds| dt)

o (M) (v ]

< 2mM

forany x,y € H.
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