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Abstract. In this paper, we study approximate identity properties, some propositions
from Baker, Dales and Lau in general cases and we establish some relationships between
the topological centers of module actions and factorization properties with some results
in group algebras.
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1. Introduction

In this article, our primary objective is to explore the application of Banach algebras
to module actions. We aim to generalize recent discussions on Banach algebras
to present new insights into group algebras. To achieve this, we build upon the
existing work of Baker, Dales, and Lau [3] and extend their results to modular
operations. We also demonstrate how these extensions can be applied to address
various problems in special group algebras. By considering these extensions, we
gain a broader perspective on the problems encountered in Banach algebras. This
expanded view encompasses a more comprehensive range of spaces. Furthermore,
we proceed to expand the scope of Banach algebra problems to include matrices.
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We investigate the Arens multiplication and utilize the topological center argument
within these spaces. Below we give some basic definitions that we will use in this
article.

Let X,Y and Z be normed spaces and let m : X×Y → Z be a bounded bilinear
mapping. Arens in [1] offers two natural extensions m∗∗∗ and mt∗∗∗t of m from
X∗∗ × Y ∗∗ into Z∗∗ that he called m is Arens regular whenever m∗∗∗ = mt∗∗∗t,
for more information see [8, 11, 14]. Let A be a Banach algebra, regarding A as
a Banach A-bimodule, the operation π : A × A −→ A extends to π∗∗∗ and πt∗∗∗t

defined on A∗∗ × A∗∗. These extensions are known, respectively, as the first (left)
and the second (right) Arens products, and with each of them, the second dual space
A∗∗ becomes a Banach algebra. The regularity of a normed algebra A is defined to
be the regularity of its algebra multiplication when considered as a bilinear mapping.
The first (left) and second (right) Arens products of a′′, b′′ ∈ A∗∗ will be simply
indicated by a′′b′′ and a′′ob′′, respectively. Let B be a Banach A-bimodule. Then B
is called factors on the left (right) with respect to A, if B = BA (B = AB). Thus
B factors on both sides, if B = BA = AB. Let B be a Banach A-bimodule, and let

πℓ : A×B −→ B and πr : B ×A −→ B,

be the right and left module actions of A on B. By the above notation, the transpose
of πr is denoted by πt

r : A×B → B. Then

π∗
ℓ : B∗ × A −→ B∗ and πt∗t

r : A×B∗ −→ B∗.

Thus B∗ is a left Banach A-module and a right Banach A-module with respect
to the module actions πt∗t

r and π∗
ℓ , respectively. The second dual B∗∗ is a Banach

A∗∗-bimodule with the following module actions

π∗∗∗
ℓ : A∗∗ ×B∗∗ −→ B∗∗ and π∗∗∗

r : B∗∗ ×A∗∗ −→ B∗∗,

where A∗∗ is considered as a Banach algebra with respect to the first Arens product.
Similarly, B∗∗ is a Banach A∗∗-bimodule with the module actions

πt∗∗∗t
ℓ : A∗∗ ×B∗∗ −→ B∗∗ and πt∗∗∗t

r : B∗∗ ×A∗∗ −→ B∗∗,

where A∗∗ is considered as a Banach algebra with respect to the second Arens
product. Let B be a left Banach A-module and e left unit element of A. Then e
is left unit (resp. weakly left unit) for B, if πℓ(e, b) = b (resp. ⟨b′, πℓ(e, b)⟩ = ⟨b′, b⟩
for all b′ ∈ B∗) where b ∈ B. The definition of right unit (resp. weakly right
unit) is similar. A Banach A-bimodule B is called unital if B has the same left
and right unit. In this way, B is called a unitary Banach A-bimodule. Suppose
that A is a Banach algebra and B is a Banach A-bimodule. Since B∗∗ is a Banach
A∗∗-bimodule, where A∗∗ is equipped with the first Arens product, we define the
topological center of the right module action of A∗∗ on B∗∗ as follows:

Zℓ
A∗∗(B∗∗) = Z(πr) = {b′′ ∈ B∗∗ : the map a′′ → π∗∗∗

r (b′′, a′′) : A∗∗ → B∗∗

is weak∗-weak∗ continuous}.



On the Module Homomorphism and Factorization Properties of Module Actions 609

In this way, we write Zℓ
B∗∗(A∗∗) = Z(πℓ), Z

r
A∗∗(B∗∗) = Z(πt

ℓ) and Zr
B∗∗(A∗∗) =

Z(πt
r), where πℓ : A × B → B and πr : B × A → B are the left and right

module actions of A on B, for more information related to the Arens regularity
of module actions on Banach algebras, see [8, 11]. If we set B = A, we write
Zℓ
A∗∗(A∗∗) = Z1(A

∗∗) = Zℓ
1(A

∗∗) and Zr
A∗∗(A∗∗) = Z2(A

∗∗) = Zr
2(A

∗∗), for more
information see [12].

2. Main Results

Baker, Lau and Pym in [3] proved that for a Banach algebra A with bounded right
approximate identity, (A∗A)⊥ is an ideal of right annihilators in A∗∗ and

A∗∗ ∼= (A∗A)⊕ (A∗A)⊥.

In the following, for a Banach A-bimodule B, we study this problem in a general
situation, that is, we show that

B∗∗ = (B∗A)∗ ⊕ (B∗A)⊥.

Theorem 2.1. [3] Let B be a Banach A-bimodule and A has a BRAI. Then the
following assertions hold:

i) (B∗A)⊥ = {b′′ ∈ B∗∗ : π∗∗∗
ℓ (a′′, b′′) = 0 for all a′′ ∈ A∗∗}.

ii) (B∗A)∗ is a bounded linear isomorphism with HomA(B
∗, A∗).

Proof. i) Let b′′ ∈ (B∗A)⊥. Then for all b′ ∈ B∗ and a ∈ A, we have

⟨π∗∗
ℓ (b′′, b′), a⟩ = ⟨b′′, π∗

ℓ (b
′, a)⟩ = 0,

it follows that for all a′′ ∈ A∗∗,

⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = ⟨a′′, π∗∗

ℓ (b′′, b′)⟩ = 0.

Conversely, let b′′ ∈ B∗∗ with π∗∗∗
ℓ (a′′, b′′) = 0, for all a′′ ∈ A∗∗. Then for all

a ∈ A and b′ ∈ B∗, we have

⟨b′′, π∗
ℓ (b

′, a)⟩ = ⟨π∗∗
ℓ (b′′, b′), a⟩ = ⟨a, π∗∗

ℓ (b′′, b′)⟩ = ⟨π∗∗∗
ℓ (a, b′′), b′⟩ = 0,

which implies that b′′ ∈ (B∗A)⊥.

ii) Suppose that b′′ ∈ B∗∗. We define Tb′′ ∈ HomA(B
∗, A∗), that is, Tb′′b

′ =
π∗∗
ℓ (b′′, b′). Then Λ : b′′ → Tb′′ is a linear continuous map fromB∗∗ into HomA(B

∗, A∗)
such that

kerΛ = {b′′ ∈ B∗∗ : π∗∗
ℓ (b′′, b′) = 0 for all b′ ∈ B∗}.
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Consequently, b′′ ∈ kerΛ if and only if

⟨b′′, π∗
ℓ (b

′, a)⟩ = ⟨π∗∗
ℓ (b′′, b′), a⟩ = 0,

for all b′ ∈ B∗ and a ∈ A. It follows that b′′ ∈ (B∗A)⊥. Since (B∗A)∗ ∼= B∗∗

(B∗A)⊥
,

the continuous linear mapping Λ from (B∗A)∗ into HomA(B
∗, A∗) is injective.

Conversely, suppose that T ∈ HomA(B
∗, A∗) and e′′ ∈ A∗∗ is a right identity

for A∗∗. We define b′′T ∈ B∗∗ such that, for all b′, we have ⟨b′′T , b′⟩ = ⟨e′′, T b′⟩.
It is clear that the linear mapping T → b′′T is continuous. For all a ∈ A, we have

⟨π∗∗
ℓ (b′′T , b

′), a⟩ = ⟨b′′T , π∗
ℓ (b

′, a)⟩ = ⟨e′′, Tπ∗
ℓ (b

′, a)⟩
= ⟨e′′, (Tb′)a⟩ = ⟨ae′′, T b′⟩
= ⟨Tb′, a⟩.

Consequently, π∗∗
ℓ (b′′T , b

′) = Tb′. It follows that the linear mapping T → b′′T →
Tb′′T

is the identity map and consequently the isomorphism between HomA(B
∗, A∗)

and (B∗A)∗ is established.

Corollary 2.1. Let B be a Banach A-bimodule and let e′′ be a right identity of
A∗∗. Then e′′B∗∗ ∼= (B∗A)∗ and (B∗A)⊥ = {b′′ − e′′b′′ : b′′ ∈ B∗∗}. Thus
B∗∗ = (B∗A)∗ ⊕ (B∗A)⊥.

Example 2.1. 1. Let G be a locally compact group. Let 1 ≤ p < ∞ and 1
p
+ 1

q
= 1.

Then by Theorem 2.1, we conclude that

(Lp(G) ∗ C0(G))⊥ = {b ∈ Lq(G) : a′′b = 0 for every a′′ ∈ L∞(G)},

and
(Lp(G) ∗ C0(G))∗ ∼= HomC0(G)(L

p(G), L∞(G)).

2. Let G be a locally compact group. The group algebra L1(G) is a two sided ideal
in M(G). By Theorem 3.2 of [5], L1(G)∗∗ = L1(G) ⊕ C0(G)⊥. On the other hand,
M(G) is a unital Banach algebra and M(G)∗∗ has a right identity [6, Proposition
2.9.16 (ii)] respect to the first Arens product. Then by Theorem 2.1 and Corollary
2.1, we have

L1(G)∗∗ = (L∞(G)M(G))∗ ⊕ (L∞(G)M(G))⊥

∼= HomM(G)(L
∞(G),M(G)∗)⊕ (L∞(G)M(G))⊥.

3. The existence of a unique right identity implies the existence of identity for the
second dual of a Banach algebra [3, Theorem 1.6] and by this fact for discrete
commutative semigroup S, the existence of an identity for ℓ1(S)∗∗ guarantees the
existence of an identity for ℓ1(S) [3, Theorem 4.1]. But, there are many semigroup
algebras that the second dual of them have more than (or equal) one right identity.
For example, suppose that S is an inverse semigroup such that ℓ1(S) has a bounded
right approximate identity but has not right identity. Then ℓ1(S)∗∗ has at least one
right identity [3, Corollary 4.14]. Then similar to the previous example, we have

ℓ1(S)∗∗ = (ℓ∞(S)ℓ1(S))∗ ⊕ (ℓ∞(S)ℓ1(S))⊥.
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4. Put A = C0(G) and set B = L1(G) being acted on by the pointwise multiplication
of C0(G). Then it is relatively easy to compute

L∞(G)C0(G) = span{1K : K is Borel and realtively compact}.

Hence we have that (L∞(G)C0(G))∗ ∼= HomC0(G)(L
∞(G),M(G)).

Theorem 2.2. Assume that B is a left Banach A-module and A has a BAI. If B∗

factors on the left, then (B∗)
⊥
= 0.

Proof. Let a ∈ A, b′ ∈ B∗ and b′′ ∈ (B∗)
⊥
. Then

⟨π∗∗
ℓ (b′′, b′), a⟩ = ⟨b′′, π∗

ℓ (b
′, a)⟩ = 0.

Thus, for all b′′ ∈ A∗∗, we have

⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = ⟨a′′, π∗∗

ℓ (b′′, b′)⟩ = 0.

It follows that π∗∗∗
ℓ (a′′, b′′) = 0. Now, let e′′ ∈ A∗∗ be as a left unit for B∗∗ [11,

Theorem 3.6], then
b′′ = π∗∗∗

ℓ (e′′, b′′) = 0.

Corollary 2.2. For a left Banach A-module B, if B∗A = B∗ and B∗∗ has a left
unit, then (B∗)⊥ = 0.

Example 2.2. Let G be a locally compact group. By [12], L1(G)∗ factors on the left if
and only if factors on the right if and only if G is a discrete group. Theorem 2.2 yields
that ℓ∞(G)⊥ = 0.

Lemma 2.1. [8, Theorem 4.5] Let B be a Banach A-bimodule. Suppose that A
has a BAI, (eα)α ⊆ A. Then

1. B factors on the left if and only if πr(b, eα)
w−→ b, for every b ∈ B.

2. B factors on the right if and only if πℓ(eα, b)
w−→ b, for every b ∈ B.

3. If B∗ factors on the right, then πr(b, eα)
w−→ b, for every b ∈ B.

Proof. 1. Suppose that B factors on the left. Then for every b ∈ B, there are
y ∈ B and a ∈ A such that b = ya. Thus for every b′ ∈ B∗, we have

⟨b′, πr(b, eα)⟩ = ⟨b′, πr(ya, eα)⟩ = ⟨b′, πr(y, aeα)⟩ = ⟨π∗
r (b

′, y), aeα⟩
−→ ⟨π∗

r (b
′, y), a⟩ = ⟨b′, ya⟩

= ⟨b′, b⟩.

It follows that πr(b, eα)
w−→ b.

Conversely, by the Cohen’s Factorization Theorem, since BA is a closed sub-
space of B, the proof holds.
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2. Proof similar to (1).

3. Assume that B∗ factors on the right with respect to A. Then for every b′ ∈ B∗,
there are y′ ∈ B and a ∈ A such that b′ = ay′. Consequently, for every b ∈ B

⟨b′, πr(b, eα)⟩ = ⟨ay′, πr(b, eα)⟩ = ⟨y′, πr(b, eα)a⟩
= ⟨y′, πr(b, eαa)⟩ = ⟨π∗

r (y
′, b), eαa⟩

−→ ⟨π∗
r (y

′, b), a⟩ = ⟨y′, πr(b, a)⟩ = ⟨ay′, b⟩
= ⟨b′, b⟩.

It follows that πr(b, eα)
w−→ b.

In the proceeding Theorem, if we take B = A, then [12, Lemma 2.1] holds.
Suppose that A is a Banach algebra and B is a Banach A-bimodule. According
to [19], B∗∗ is a Banach A∗∗-bimodule, where A∗∗ is equipped with the first Arens
product. We define B∗B as a subspace of A∗, that is, for all b′ ∈ B∗ and b ∈ B, we
define ⟨b′b, a⟩ = ⟨b′, ba⟩. Similarly, we define B∗∗∗B∗∗ as a subspace of A∗∗∗ and we
take A(0) = A and B(0) = B.

In the following, the notation WSC is used for weakly sequentially complete
Banach space A, that is, A is said to be weakly sequentially complete (WSC), if
every weakly Cauchy sequence in A has a weak limit in A.

Theorem 2.3. Let B be a Banach A-bimodule and A has a sequential WBAI.
Then we have the following assertions:

(i) Let B∗ be a WSC and A∗ factors on the left. Then

1. if B factors on the right, it follows that B∗ factors on the left.

2. if B∗ factors on the right, it follows that B factors on the left.

(ii) Let B∗∗B∗ = A∗∗A∗. Then A∗ factors on the left if and only if B∗ factors on
the left.

(iii) Suppose that A is WSC and B factors on the left (resp. right). If B∗B = A∗,
then we have the following assertions:

1. A is unital and B has a right (resp. left) unit as Banach A-module.

2. A∗ factors on the both side and B∗ factors on the right (resp. left).

3. B∗∗ ∼= (AB∗)∗ (resp. B∗∗ ∼= (B∗A)∗).

Proof. (i) (1) Assume that b′′ ∈ B∗∗ and b′ ∈ B∗. Since A∗ factors on the left, there
are a′ ∈ A∗ and a ∈ A such that b′′b′ = a′a. Suppose that (en)n ⊆ A is a sequential
WBAI for A. Then we have

⟨b′′, b′en⟩ = ⟨b′′b′, en⟩ = ⟨a′a, en⟩ = ⟨a′, aen⟩ → ⟨a′, a⟩.
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It follows that the sequence (b′en)n is weakly Cauchy sequence in B∗. Since B∗

is WSC, there exists x′ ∈ B∗ such that b′en
w−→ x′. On the other hand, since B

factors on the right, by Lemma 2.1, for each b ∈ B, we have enb
w−→ b. Hence, we

have
⟨x′, b⟩ = lim

n
⟨b′en, b⟩ = lim

n
⟨b′, enb⟩ = ⟨b′, b⟩.

It follows that x′ = b′, and so by Lemma 2.8, B∗ factors on the left.

(2) Proof is similar to part (1).

(ii) Let a′′ ∈ A∗∗ and a′ ∈ A∗. Then there are b′′ ∈ B∗∗ and b′ ∈ B∗ such that
b′′b′ = a′′a′. Hence,

⟨a′′, a′en⟩ = ⟨a′′a′, en⟩ = ⟨b′′b′, en⟩ = ⟨b′′, b′en⟩.

Thus, by Cohen’s factorization Theorem proof holds.

(iii) (1) Suppose that (ek)k ⊆ A is a sequential WBAI for A. Let a′ ∈ A∗.
B∗B = A∗ implies that there are b′ ∈ B∗ and b ∈ B such that b′b = a′. Since B
factors on the left, there are y ∈ B and a ∈ A such that b = ya. Then

⟨a′, ek⟩ = ⟨b′b, ek⟩ = ⟨b′, bek⟩ = ⟨b′, yaek⟩ = ⟨b′y, aek⟩
−→ ⟨b′y, a⟩ = ⟨b′, ya⟩
= ⟨b′, b⟩.

This shows that the sequence (ek)k ⊆ A is a weekly Cauchy sequence in A. Since
A is WSC, it converges weakly to some element e of A. Then, for each x ∈ A

xe = x(w− lim
k

ek) = w− lim
k

xek = x.

It is similar to see that ex = x, and so A is unital. Now, let b ∈ B, then

⟨b′, be⟩ = ⟨b′b, e⟩ = lim
k
⟨b′b, ek⟩

= lim
k
⟨b′, yaek⟩ = lim

k
⟨b′y, aek⟩

−→ ⟨b′y, a⟩ = ⟨b′, b⟩.

Thus be = b, for all b ∈ B.

(iii) (2) By using part (1) and [12, Theorem 2.6], it is clear that A∗ factors on
the both sides. Now let b′ ∈ B∗ and b ∈ B. By part (1), set e ∈ A as a left unit
element of B. Then

⟨eb′, b⟩ = ⟨b′, be⟩ = ⟨b′, b⟩.

It follows that eb′ = b′. Thus B∗ factors on the right.

(iii) (3) Now let b′′ ∈ (AB∗)⊥. By using part (2), since B∗ factors on the right,
for every b′ ∈ B∗, there are x′ ∈ B∗ and a ∈ A such that b′ = ax′. Then

⟨b′′, b′⟩ = ⟨b′′, ax′⟩ = 0.

It follows that b′′ = 0. This means that (AB∗)⊥ = {0}. Therefore, by Corollary
2.1, we are done.
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Weakly sequentially complete Banach algebra with a BAI investigated by Ülger
[18], where he proved that for any weakly sequentially complete Banach algebra
with a BAI, Arens regularity implies that the Banach algebra must be unital. Miao
[13] proved that for a non-unital Banach algebra A with BAI, there is a non-unital
subalgebra of A with a sequential bounded approximate identity. This shows that
Ülger [18] obtained result is a consequence of Miao [13]. By Theorem 2.3 (iii), we
give another version of [13, Corollary 2.3] as follows:

Corollary 2.3. Let A be a weakly sequentially complete Banach algebra with a
BAI and I be a closed two sided ideal. If I∗I = A∗, then A is unital and I∗ factors
on the left.

Let G be a σ-compact amenable group that is not compact. The Fourier-
Stieltjets algebra B(G) of G is a commutative unital Banach algebra under the
pointwise and the Fourier algebra A(G) is a closed ideal of B(G). The dual of A(G)
is the group von Neumann V N(G) algebra and it does not factor on the left. Thus,
according to the above Corollary, A(G)∗A(G) ̸= B(G)∗, and equality holds when
G is compact.

Let A be a Banach algebra and B be a left Banach A-module such that B∗

factors on the left. Thus, for every x′ ∈ X∗, there are a ∈ A and y′ ∈ X∗ such that
x′ = y′a. Pick a′′ ∈ A∗∗ and x′′ ∈ X∗∗. Suppose that (x′′

α)α convergens to x′′ in
σ(X∗∗, X∗). If A∗∗A ⊆ Z1(πℓ), then

lim
α
⟨π∗∗∗

ℓ (a′′, x′′
α), x

′⟩ = lim
α
⟨π∗∗∗

ℓ (a′′, x′′
α), y

′a⟩

= lim
α
⟨π∗∗∗

ℓ (aa′′, x′′
α), y

′⟩

= ⟨π∗∗∗
ℓ (aa′′, x′′), y′⟩ = ⟨π∗∗∗

ℓ (a′′, x′′), x′⟩.

It follows that π∗∗∗
ℓ (a′′, x′′

α) → π∗∗∗
ℓ (a′′, x′′) in σ(X∗∗, X∗), and so a′′ ∈ Z1(πℓ).

Thus Z1(πℓ) = A∗∗. Therefore, one can write [2, Proposition 2.1] as follows:

Proposition 2.1. Let A be a Banach algebra, B a left Banach A-module and let
B∗ factors on the left. If A∗∗A ⊆ Z1(πℓ), then Z1(πℓ) = A∗∗.

Theorem 2.4. Suppose that B is a left Banach A-module and has a WLBAI
(eα)α ⊆ A. Then we have the following assertions:

1. B factors on the left.

2. If A∗ factors on the left, then B∗ factors on the left. Moreover,

(i) if A∗∗A ⊆ Z1(πℓ), then Z1(πℓ) = A∗∗.

(ii) if B is a Banach A-bimodule and AB∗∗ ⊆ Z1(πr), then Zℓ
A∗∗(B∗∗) =

B∗∗.
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Proof. (1) By Lemma 2.1, proof holds.

(2) Let b′′ ∈ B∗∗ and b′ ∈ B∗. Since π∗∗
ℓ (b′′, b′) ∈ A∗ and A∗ factors on the left,

there are a′ ∈ A∗ and a ∈ A such that π∗∗
ℓ (b′′, b′) = a′a. Without loss of generality,

we let eα
w∗

−→ e′′, where e′′ is left unit for A∗∗. Then for every b ∈ B, we have

⟨π∗∗∗∗
ℓ (b′, e′′), b⟩ = ⟨b′, π∗∗∗

ℓ (e′′, b)⟩ = lim
α
⟨b′, πℓ(eαb)⟩ = ⟨b′, b⟩.

It follows that π∗∗∗∗
ℓ (b′, e′′) = b′. Then

⟨b′′, π∗
ℓ (b

′, eα)− b′⟩ = ⟨b′′, π∗∗∗∗
ℓ (b′, (eα − e′′))⟩

= ⟨π∗∗∗∗∗
ℓ (b′′, b′), (eα − e′′)⟩ = ⟨π∗∗

ℓ (b′′, b′), (eα − e′′)⟩
= ⟨a′a, (eα − e′′)⟩ = ⟨a′, aeα − ae′′⟩
= ⟨a′, aeα − a⟩
−→ 0.

It follows that π∗
ℓ (b

′, eα)
w−→ b′, and so by the Cohen’s Factorization Theorem,

we are done.

The cases (i) and (ii) are the immediate results of [2, Proposition 2.1, Proposition
2.2].

Example 2.3. Let G be a locally compact group and S1(G) be a Segal algebra with
respect to L1(G). If G is a discrete group, then Theorem 2.4 implies that S1(G)∗ is factors
on the left. Also, by Theorem 2.2, we have (S1(G)∗)⊥ = 0.

Theorem 2.5. Suppose that B is a right Banach A-module and has a RBAI
(eα)α ⊆ A. Then we have the following assertions:

1. B factors on the right.

2. If A∗ factors on the right and Zℓ
A∗∗(B∗∗) = B∗∗, then B∗ factors on the right.

Proof. (1) By Lemma 2.1, proof holds.

(2) Let b′′ ∈ B∗∗ and b′ ∈ B∗. First, we show that π∗∗∗∗
r (b′, b′′) ∈ A∗. Suppose

that (a′′α)α ⊆ A∗∗ such that a′′α
w∗

−→ a′′. Since Zℓ
A∗∗(B∗∗) = B∗∗, for each b′′ ∈ B∗∗,

we have π∗∗∗
r (b′′, a′′α)

w∗

−→ π∗∗∗
r (b′′, a′′). Then

⟨π∗∗∗∗
r (b′, b′′), a′′α⟩ = ⟨π∗∗∗

r (b′′, a′′α), b
′⟩ → ⟨π∗∗∗

r (b′′, a′′), b′⟩
= ⟨π∗∗∗∗

r (b′, b′′), a′′⟩.

Consequently, π∗∗∗∗
r (b′, b′′) ∈ (A∗∗,weak∗)∗ = A∗. Since A∗ factors on the right,

there are a′ ∈ A∗ and a ∈ A such that π∗∗∗∗
r (b′, b′′) = a′a. Without loss of generality,

we let eα
w∗

−→ e′′, where e′′ right unit for A∗∗. Then for each b ∈ B, we have

⟨π∗∗
r (e′′, b′), b⟩ = ⟨b′, π∗∗∗

r (b, e′′)⟩ = lim
α
⟨b′, πr(b, eα)⟩ = ⟨b′, b⟩.
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It follows that π∗∗
r (e′′, b′) = b′. Hence,

⟨b′′, π∗∗
r (eα, b

′)− b′⟩ = ⟨b′′, π∗∗
r (eα, b

′)− π∗∗
r (e′′, b′)⟩

= ⟨π∗∗∗∗
r (b′, b′′), eα − e′′⟩ = ⟨a′a, eα − e′′⟩

= ⟨a′, aeα − ae′′⟩ = ⟨a′, aeα − a⟩
−→ 0.

Thus, π∗∗
r (eα, b

′)
w−→ b′. Consequently, by Cohen’s factorization, we are done.

By Theorems 2.4 and 2.5, we have the following result:

Corollary 2.4. Suppose that B is a Banach A-bimodule and has a BAI (eα)α ⊆ A.
Then we have the following assertions:

1. B factors.

2. If A∗ factors on the both sides and AB∗∗ ⊆ Z1(πr), then B∗ factors on the
both sides.

Example 2.4. Assume that G is a locally compact group. We know that L1(G) is a
M(G)-bimodule. Since M(G)L1(G) ̸= M(G) and L1(G)M(G) ̸= M(G), by Theorems 2.4
and 2.5, we conclude that every LBAI or RBAI for L1(G) is not LBAI or RBAI for M(G),
respectively.

By the following Example, we show that the converse of the case (2) of Corollary
2.4 true even the condition AB∗∗ ⊆ Z1(πr) does not hold.

Example 2.5. Assume that G is an infinite discrete group. Then ℓ1(G)∗ factors on the
both sides and ℓ1(G)ℓ1(G)∗∗ * Z1(ℓ

1(G)∗∗). If ℓ1(G)ℓ1(G)∗∗ ⊆ Z1(ℓ
1(G)∗∗), then G is

finite [2, Corollary 2.4], a contradiction.

Let A and B be Banach algebras. Suppose that M is a left Banach A-module
and right Banach B-module. The triangular Banach algebra is

T =

[
A M

B

]
,

with the sum and product being given by the usual 2 × 2 matrix operations and
internal module actions. The norm on T is

∥
[

a m
b

]
∥ = ∥a∥A + ∥m∥M + ∥b∥B .

The Banach algebra T as a Banach space is isomorphic to the ℓ1-direct sum of
A,B and M. Forrest and Marcoux have studied the Arens regularity of triangular
Banach algebras in [9] and some results regarding the module Arens regularity are
given in [4]. Moreover, the topological center of these algebras is characterized by
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Eshaghi Gordji and Filali in [8]. We extend the actions of A on M and of B on M
to actions of A∗∗ and B∗∗ on M∗∗ via

Γ2Π = w∗ − lim
i

lim
k

ai · xk, and Π2Ψ = w∗ − lim
k

lim
j

xk · bj ,

where Γ = w∗ − limi ai, Ψ = w∗ − limj bj , and Π = w∗ − limk xk. Let T1 =[
Γ1 Π1

Ψ1

]
, T2 =

[
Γ2 Π2

Ψ2

]
∈ T ∗∗. The first and second Arens products on

T ∗∗ are defined as follows

(2.1) T12T2 =

[
Γ12Γ2 Γ12Π2 +Π12Ψ2

Ψ12Ψ2

]
,

and

(2.2) T1 ⋄ T2 =

[
Γ1 ⋄ Γ2 Γ1 ⋄Π2 +Π1 ⋄Ψ2

Ψ1 ⋄Ψ2

]
.

The Banach algebras A and B act on M regularly if Γ2Π = Γ ⋄Π and Π2Ψ =
Π⋄Ψ, for all Γ ∈ A∗∗, Ψ ∈ B∗∗ and Π ∈ M∗∗. Triangular Banach algebras are good
tools for giving counter-examples for some concepts related to Banach algebras, for
example, for the Arens regularity, see [8].

Corollary 2.5. Let A and B have LBAI and RBAI, respectively, and M be as
the above. Then

1. M factors on the left and the right respect to A and B, respectively.

2. if A∗ factors on the left, B∗ factors on the right and BM∗∗ ⊆ Z1(πr), then
T ∗ factors on the left respect to A and factors on the right respect to B.

3. if A∗ and B∗ both factor on the both sides and BM∗∗ ⊆ Z1(πr), then T ∗

factors on the both sides.

The converse of the case (3) of the above Theorem may be not true. For example,
similar to Example 2.5, if G is an infinite discrete group and

T =

[
ℓ1(G) ℓ1(G)

ℓ1(G)

]
.

Then T ∗ factors on the both sides and ℓ1(G)ℓ1(G)∗∗ * Z1(πr). Another example
of this argument is an infinite dimensional unital C∗-algebra. Let A be an infinite
dimensional unital C∗-algebra. Let

T =

[
A A∗

A

]
.

Then T ∗ factors on the both sides and AA∗∗∗ * Z1(πr), because, AA∗∗∗ ⊆
Z1(πr) implies that Z1(πr) = A∗∗∗ [2, Proposition 2.2]. This is equivalent to that
A is of finite dimension [8, Corollary 2.3], a contradiction.
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