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Abstract. In this paper, we study the existence, uniqueness and other properties of
solutions of differential equation of fractional order involving the Caputo fractional
derivative. The tool employed in the analysis is based on application of S− iteration
method. The study of qualitative properties in general required differential and integral
inequalities, and here S−iteration method itself has equally important contribution to
study various properties such as dependence on initial data, closeness of solutions and
dependence on parameters and functions involved therein. Finally, we present an ex-
ample in support of all proved results.
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1. Introduction

We consider the following differential equation of fractional order involving the
Caputo fractional derivative of the type:(

Dα
∗a
)
y(t) = F

(
t, y(t), y(a), y(b)

)
,(1.1)
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for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

y(j)(a) = cj , j = 0, 1, 2, · · · , n− 1,(1.2)

where F : I×X×X×X → X is continuous function and cj (j = 0, 1, 2, . . . , n−1)
are given elements in X.

Several researchers have introduced many iteration methods for certain classes of
operators in the sense of their convergence, equivalence of convergence and rate of
convergence etc. (see [1, 3, 4, 5, 6, 8, 9, 18, 19, 20, 21, 22, 23, 24, 31, 32]). The
most of iterations devoted for both analytical and numerical approaches. The S−
iteration method, due to simplicity and fastness, has attracted the attention and
hence, it is used in this paper.

The problems of existence, uniqueness and other properties of solutions of special
forms of IVP (1.1)-(1.2) and its variants have been studied by several researchers
under variety of hypotheses by using different techniques, [2, 7, 10, 11, 12, 13, 14,
15, 16, 26, 27, 29, 30] and some of references cited therein. In recently, S. Soltuz
and T. Grosan [33] have studied the special version of equation (1.1) for different
qualitative properties of solutions. Authors are motivated by the work of D. R.
Sahu [31] and influenced by [5, 33].

The main objective of this paper is to use normal S−iteration method to establish
the existence and uniqueness of solution of the initial value problem (1.1)-(1.2) and
other qualitative properties of solutions.

2. Preliminaries

Before proceeding to the statement of our main results, we shall setforth some
preliminaries and hypotheses that will be used in our subsequent discussion.

Let X be a Banach space with norm ‖ · ‖ and I = [a, b] denotes an interval of the
real line R. We define B = Cr(I,X) (where r = n for α ∈ N and r = n − 1 for
α /∈ N.) as a Banach space of all r times continuously differentiable functions from
I into X, endowed with the norm

‖y‖B = sup{‖y(t)‖ : y ∈ B}, t ∈ I.

Definition 2.1. [28] The Riemann-Liouville fractional integral (left-sided) of a
function h ∈ C1[a, b] of order α ∈ R+ = (0,∞) is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s) ds,

where Γ is the Euler gamma function.
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Definition 2.2. [28] Let n− 1 < α 6 n, n ∈ N. Then the expression

Dα
ah(t) =

dn

dtn
[
In−αa h(t)

]
, t ∈ [a, b]

is called the (left-sided) Riemann-Liouville derivative of h of order α whenever the
expression on the right-hand side is defined.

Definition 2.3. [25] Let h ∈ Cn[a, b] and n − 1 < α 6 n, n ∈ N. Then the
expression (

Dα
∗a
)
h(t) = In−αa h(n)(t), t ∈ [a, b]

is called the (left-sided) Caputo derivative of h of order α.

Lemma 2.1. [17] If the function f = (f1, · · · , fn) ∈ C1[a, b], then the initial value
problems(

Dαi
∗a
)
y(t) = fi(t, y1, · · · , yn), y

(k)
i (0) = cik, i = 1, 2, · · · , n, k = 1, 2, · · · ,mi

where mi < αi 6 mi + 1 as equivalent to Volterra integral equations:

yi(t) =

mi∑
k=0

cik
tk

k!
+ Iαia fi(t, y1, · · · , yn), 1 6 i 6 n.

As a consequence of the above Lemma, it is easy to observe that if y ∈ B and
F ∈ C1[a, b], then y(t) satisfies the following integral equation which is equivalent
to (1.1)-(1.2) is

y(t) =

n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b)

)
ds.(2.1)

We need the following pair of known results:

Theorem 2.1. (([31], p.194)) Let C be a nonempty closed convex subset of a
Banach space X and T : C → C a contraction operator with contractivity factor
m ∈ [0, 1) and fixed point x∗. Let αk and βk be two real sequences in [0, 1] such
that α 6 αk 6 1 and β 6 βk < 1 for all k ∈ N and for some α, β > 0. For given
u1 = v1 = w1 ∈ C, define sequences uk, vk and wk in C as follows:

S-iteration process:

{
uk+1 = (1− αk)Tuk + αkTyk,
yk = (1− βk)uk + βkTuk, k ∈ N.

Picard iteration: vk+1 = Tvk, k ∈ N.
Mann iteration process: wk+1 = (1− βk)wk + βkTwk, k ∈ N.
Then we have the following:

(a) ‖uk+1 − x∗‖ 6 mk
[
1− (1−m)αβ

]k
‖u1 − x∗‖, for all k ∈ N.
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(b) ‖vk+1 − x∗‖ 6 mk‖v1 − x∗‖, for all k ∈ N.

(c) ‖wk+1 − x∗‖ 6
[
1− (1−m)β

]k
‖w1 − x∗‖, for all k ∈ N.

Moreover, the S-iteration process is faster than the Picard and Mann iteration pro-
cesses.

Definition 2.4. ([31], p.193) In particular, for αk = 1, k ∈ N ∪ {0} in the S-
iteration process, then it reduces to as follows: u0 ∈ C,

uk+1 = Tyk,
yk = (1− ξk)uk + ξkTuk, k ∈ N ∪ {0}.

(2.2)

This is called normal S−iteration method.

Note: For our convenience, we replaced βk in the S-iteration process by ξk.

Lemma 2.2. (([33], p.4)) Let {βk}∞k=0 be a nonnegative sequence for which one
assumes there exists k0 ∈ N, such that for all k > k0 one has satisfied the inequality

βk+1 6 (1− µk)βk + µkγk,(2.3)

where µk ∈ (0, 1), for all k ∈ N∪{0},
∞∑
k=0

µk =∞ and γk > 0, ∀k ∈ N∪{0}. Then

the following inequality holds

0 6 lim sup
k→∞

βk 6 lim sup
k→∞

γk.(2.4)

3. Existence and Uniqueness of Solutions via S−iteration

Now, we are able to state and prove the following main theorem which deals with
the existence of solutions of the equations (1.1)-(1.2).

Theorem 3.1. Assume that there exists a function p ∈ C(I,R+) and constants
λ, β, γ > 0 such that for t ∈ I,

‖F
(
t, u1, u2, u3

)
−F

(
t, v1, v2, v3

)
‖

6 p(t)
[
λ‖u1 − v1‖+ β‖u2 − v2‖+ γ‖u3 − v3‖

]
.(3.1)

If Θ = Ia
αp(t)

(
λ+ β + γ

)
< 1 (t ∈ I), then the iterative sequence {yk}∞k=0 gener-

ated by normal S− iteration method (2.2) with the real control sequence {ξk}∞k=0 in
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[0, 1] satisfying

∞∑
k=0

ξk =∞, converges to a unique point y ∈ B, which is the required

solution of the equations (1.1)-(1.2) with the following estimate:

‖yk+1 − y‖B 6
Θk+1

e

(
1−Θ

)∑k
i=0 ξi

‖y0 − y‖B .(3.2)

Proof. Let y(t) ∈ B and define the operator

(Ty)(t) =

n−1∑
j=0

cj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b)

)
ds, t ∈ I.(3.3)

Let {yk}∞k=0 be iterative sequence generated by normal S−iteration method (2.2)
for the operator given in (3.3) with the real control sequence {ξk}∞k=0 in [0, 1].
We will show that yk → y as k →∞. From (2.2), (3.3) and assumption, we obtain

‖yk+1(t)− y(t)‖
= ‖(Tzk)(t)− (Ty)(t)‖

= ‖
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b)

)
ds

−
n−1∑
j=0

cj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b)

)
ds‖

6
1

Γ(α)

∫ t

a

(t− s)α−1‖F
(
s, zk(s), zk(a), zk(b)

)
−F

(
s, y(s), y(a), y(b)

)
‖ds

6
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− y(s)‖+ β‖zk(a)− y(a)‖+ γ‖zk(b)− y(b)‖

]
ds.(3.4)

Now, we estimate

‖zk(t)− y(t)‖ =
[
(1− ξk)‖yk(t)− y(t)‖+ ξk‖(Tyk)(t)− (Ty)(t)‖

]
6 (1− ξk)‖yk(t)− y(t)‖+ ξk

1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖yk(s)− y(s)‖+ β‖yk(a)− y(a)‖+ γ‖yk(b)− y(b)‖

]
ds.(3.5)

Now, by taking supremum in the inequalities (3.4) and (3.5), we obtain

‖yk+1 − y‖B 6
1

Γ(α)

∫ t

a

(t− s)α−1p(s)
(
λ+ β + γ

)
‖zk − y‖Bds
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6 Ia
αp(t)

(
λ+ β + γ

)
‖zk − y‖B

= Θ‖zk − y‖B(3.6)

and

‖zk − y‖B 6
[
1− ξk

(
1− Iaαp(t)

(
λ+ β + γ

))]
‖yk − y‖B

=
[
1− ξk

(
1−Θ

)]
‖yk − y‖B ,(3.7)

respectively.
Therefore, using (3.7) in (3.6), we have

‖yk+1 − y‖B 6 Θ
[
1− ξk

(
1−Θ

)]
‖yk − y‖B .(3.8)

Thus, by induction, we get

‖yk+1 − y‖B 6 Θk+1
k∏
j=0

[
1− ξk

(
1−Θ

)]
‖y0 − y‖B .(3.9)

Since ξk ∈ [0, 1] for all k ∈ N ∪ {0}, the definition of Θ and ξk 6 1 yields,

⇒ ξkΘ < ξk

⇒ ξk

(
1−Θ

)
< 1, ∀ k ∈ N ∪ {0}.(3.10)

From the classical analysis, we know that

1− x 6 e−x = 1− x+
x2

2!
− x3

3!
+ · · · , x ∈ [0, 1].

Hence by utilizing this fact with (3.10) in (3.9), we obtain

‖yk+1 − y‖B 6 Θk+1e−
(

1−Θ
)∑k

j=0 ξj‖y0 − y‖B

=
Θk+1

e

(
1−Θ

)∑k
i=0 ξi

‖y0 − y‖B .(3.11)

Thus, we have proved (3.2). Since

∞∑
k=0

ξk =∞,

e−
(

1−Θ
)∑k

j=0 ξj → 0 as k →∞.(3.12)

Hence using this, the inequality (3.11) implies lim
k→∞

‖yk+1 − y‖B = 0 and therefore,

we get yk → y as k →∞.

Remark: It is an interesting to note that the inequality (3.11) gives the bounds
in terms of known functions, which majorizes the iterations for solutions of the
equations (1.1)-(1.2) for t ∈ I.
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4. Continuous dependence via S−iteration

In this section, we shall deal with continuous dependence of solution of the problem
(1.1) on the initial data, functions involved therein and also on parameters.

4.1. Dependence on initial data

Suppose y(t) and y(t) are solutions of (1.1) with initial data

y(j)(a) = cj , j = 0, 1, 2, · · · , n− 1,(4.1)

and

y(j)(a) = dj , j = 0, 1, 2, · · · , n− 1,(4.2)

respectively, where cj , dj are elements of the space X.

Then looking at the steps as in the proof of Theorem 3.1, we define the operator
for the equations (1.1)- (4.2)

(Ty)(t) =

n−1∑
j=0

dj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b)

)
ds, t ∈ I.(4.3)

We shall deal with the continuous dependence of solutions of equation (1.1) on
initial data.

Theorem 4.1. Suppose the function F in equation (1.1) satisfies the condition
(3.1). Consider the sequences {yk}∞k=0 and {yk}∞k=0 generated normal S− iterative
method associated with operators T in (3.3) and T in (4.3), respectively with the
real sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 6 ξk for all k ∈ N∪ {0}. If the sequence
{yk}∞k=0 converges to y, then we have

‖y − y‖B 6
3M(

1−Θ
) ,(4.4)

where

M =

n−1∑
j=0

‖cj − dj‖
j!

(b− a)j .

Proof. Suppose the sequences {yk}∞k=0 and {yk}∞k=0 generated normal S− iterative
method associated with operators T in (3.3) and T in (4.3), respectively with the
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real control sequence {ξk}∞k=0 in [0, 1] satisfying 1
2 6 ξk for all k ∈ N ∪ {0}. From

iteration (2.2) and equations (3.3); (4.3) and assumptions, we obtain

‖yk+1(t)− yk+1(t)‖
= ‖(Tzk)(t)− (Tzk)(t)‖

= ‖
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b)

)
ds

−
n−1∑
j=0

dj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b)

)
ds‖

6
n−1∑
j=0

‖cj − dj‖
j!

(b− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1‖F
(
s, zk(s), zk(a), zk(b)

)
−F

(
s, zk(s), zk(a), zk(b)

)
‖ds

6M +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds.(4.5)

Recalling the equations (3.6) and (3.7), the above inequality becomes

‖yk+1 − yk+1‖B 6 M + Θ‖zk − zk‖B ,(4.6)

and similarly, it is seen that

‖zk − zk‖B 6 ξkM +
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B .(4.7)

Therefore, using (4.7) in (4.6) and using hypothesis Θ < 1, and 1
2 6 ξk for all

k ∈ N ∪ {0}, the resulting inequality becomes

‖yk+1 − yk+1‖B 6 M + ‖zk − zk‖B

6 M + ξkM +
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B

6 2ξkM + ξkM +
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B

6
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B + ξk

(
1−Θ

) 3M(
1−Θ

) .(4.8)

We denote

βk = ‖yk − yk‖B > 0,

µk = ξk

(
1−Θ

)
∈ (0, 1),

γk =
3M(

1−Θ
) > 0.
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The assumption 1
2 6 ξk for all k ∈ N ∪ {0} implies

∞∑
k=0

ξk =∞. Now, it can be

easily seen that (4.8) satisfies all the conditions of Lemma 2.2 and hence we have

0 6 lim sup
k→∞

βk 6 lim sup
k→∞

γk

⇒ 0 6 lim sup
k→∞

‖yk − yk‖B 6 lim sup
k→∞

3M(
1−Θ

)
⇒ 0 6 lim sup

k→∞
‖yk − yk‖B 6

3M(
1−Θ

) .(4.9)

Using the assumptions lim
k→∞

yk = y, lim
k→∞

yk = y, we get from (4.9) that

‖y − y‖B 6
3M(

1−Θ
) ,(4.10)

which shows that the dependency of solutions of IVPs (1.1)-(1.2) and (1.1)-(4.2) on
given initial data.

4.2. Closeness of solution via S−iteration

Consider the problem (1.1)-(1.2) and the corresponding problem(
Dα
∗a
)
y(t) = F

(
t, y(t), y(a), y(b)

)
,(4.11)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

y(j)(a) = dj , j = 0, 1, 2, · · · , n− 1,(4.12)

where F is defined as F and dj (j = 0, 1, 2, . . . , n− 1) are given elements in X.

Then looking at the steps as in the proof of Theorem 3.1, we define the operator
for the equation (4.11)- (4.12)

(Ty)(t) =

n−1∑
j=0

dj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b)

)
ds, t ∈ I.(4.13)

The next theorem deals with the closeness of solutions of the problems (1.1)-(1.2)
and (4.11)-(4.12).
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Theorem 4.2. Consider the sequences {yk}∞k=0 and {yk}∞k=0 generated normal S−
iterative method associated with operators T in (3.3) and T in (4.13), respectively
with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 6 ξk for all k ∈ N∪{0}. Assume
that

(i) all conditions of Theorem 3.1 hold, and y(t) and y(t) are solutions of (1.1)-
(1.2) and (4.11)-(4.12) respectively.

(ii) there exists non negative constant ε such that

‖F
(
t, u1, u2, u3

)
−F

(
t, u1, u2, u3

)
‖ 6 ε, ∀ t ∈ I.(4.14)

If the sequence {yk}∞k=0 converges to y, then we have

‖y − y‖B 6
3
[
M + ε(b−a)α

Γ(α+1)

]
(

1−Θ
) .(4.15)

Proof. Suppose the sequences {yk}∞k=0 and {yk}∞k=0 generated normal S− iterative
method associated with operators T in (3.3) and T in (4.13), respectively with the
real control sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 6 ξk for all k ∈ N ∪ {0}. From
iteration (2.2) and equations (3.3); (4.13) and hypotheses, we obtain

‖yk+1(t)− yk+1(t)‖
= ‖(Tzk)(t)− (Tzk)(t)‖

= ‖
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b)

)
ds

−
n−1∑
j=0

dj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b)

)
ds‖

6
n−1∑
j=0

‖cj − dj‖
j!

(b− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1‖

×F
(
s, zk(s), zk(a), zk(b)

)
−F

(
s, zk(s), zk(a), zk(b)

)
‖ds

6M +
1

Γ(α)

∫ t

a

(t− s)α−1

×‖F
(
s, zk(s), zk(a), zk(b)

)
−F

(
s, zk(s), zk(a), zk(b)

)
‖ds

+
1

Γ(α)

∫ t

a

(t− s)α−1

×‖F
(
s, zk(s), zk(a), zk(b)

)
−F

(
s, zk(s), zk(a), zk(b)

)
‖ds



Existence and Uniqueness of Solution of Fractional Equation via S-Iteration 11

6M +
1

Γ(α)

∫ t

a

(t− s)α−1εds+
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds

6M +
ε(t− a)α

Γ(α+ 1)
+

1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds

6M +
ε(b− a)α

Γ(α+ 1)
+

1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds.(4.16)

Recalling the derivations obtained in equations (3.6) and (3.7), the above inequality
becomes

‖yk+1 − yk+1‖B 6 M +
ε(b− a)α

Γ(α+ 1)
+ Θ‖zk − zk‖B ,(4.17)

and similarly, it is seen that

‖zk − zk‖B 6 ξk

[
M +

ε(b− a)α

Γ(α+ 1)

]
+
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B .(4.18)

Therefore, using (4.18) in (4.17) and using hypothesis Θ < 1, and 1
2 6 ξk for all

k ∈ N ∪ {0}, the resulting inequality becomes

‖yk+1 − yk+1‖B

6
[
M +

ε(b− a)α

Γ(α+ 1)

]
+ ‖zk − zk‖B

6
[
M +

ε(b− a)α

Γ(α+ 1)

]
+ ξk

[
M +

ε(b− a)α

Γ(α+ 1)

]
+
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B

6 2ξk

[
M +

ε(b− a)α

Γ(α+ 1)

]
+ ξk

[
M +

ε(b− a)α

Γ(α+ 1)

]
+
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B

6
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B + ξk

(
1−Θ

)3
[
M + ε(b−a)α

Γ(α+1)

]
(

1−Θ
) .(4.19)

We denote

βk = ‖yk − yk‖B > 0,

µk = ξk

(
1−Θ

)
∈ (0, 1),

γk =
3
[
M + ε(b−a)α

Γ(α+1)

]
(

1−Θ
) > 0.
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The assumption 1
2 6 ξk for all k ∈ N ∪ {0} implies

∞∑
k=0

ξk =∞. Now, it can be

easily seen that (4.19) satisfies all the conditions of Lemma 2.2 and hence we have

0 6 lim sup
k→∞

βk 6 lim sup
k→∞

γk

⇒ 0 6 lim sup
k→∞

‖yk − yk‖B 6 lim sup
k→∞

3
[
M + ε(b−a)α

Γ(α+1)

]
(

1−Θ
)

⇒ 0 6 lim sup
k→∞

‖yk − yk‖B 6
3
[
M + ε(b−a)α

Γ(α+1)

]
(

1−Θ
) .(4.20)

Using the assumptions lim
k→∞

yk = y, lim
k→∞

yk = y, we get from (4.20) that

‖y − y‖B 6
3
[
M + ε(b−a)α

Γ(α+1)

]
(

1−Θ
) ,(4.21)

which shows that the dependency of solutions of IVP (1.1)-(1.2) on the function
involved on the right hand side of the given equation.

Remark: The inequality (4.21) relates the solutions of the problems (1.1)-(1.2)
and (4.11)-(4.12) in the sense that, if F and F are close as ε→ 0, then not only the
solutions of the problems (1.1)-(1.2) and (4.11)-(4.12) are close to each other (i.e.
‖y−y‖B → 0), but also depends continuously on the functions involved therein and
initial data.

4.3. Dependence on Parameters

We next consider the following problems(
Dα
∗a
)
y(t) = F

(
t, y(t), y(a), y(b), µ1

)
,(4.22)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

y(j)(a) = cj , j = 0, 1, 2, · · · , n− 1,(4.23)

and (
Dα
∗a
)
y(t) = F

(
t, y(t), y(a), y(b), µ2

)
,(4.24)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

y(j)(a) = dj , j = 0, 1, 2, · · · , n− 1,(4.25)
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where F : I × X × X × X × R → X is continuous function, cj , dj (j =
0, 1, 2, . . . , n− 1) are given elements in X and constants µ1, µ2 are real parameters.

Let y(t), y(t) ∈ B and following steps from the proof of Theorem 3.1, define the
operators for the equations (4.22) and (4.24), respectively

(Ty)(t) =

n−1∑
j=0

cj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b), µ1

)
ds, t ∈ I.(4.26)

and

(Ty)(t) =

n−1∑
j=0

dj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, y(s), y(a), y(b), µ2

)
ds, t ∈ I.(4.27)

The following theorem proves the continuous dependency of solutions on parame-
ters.

Theorem 4.3. Consider the sequences {yk}∞k=0 and {yk}∞k=0 generated normal S−
iterative method associated with operators T in (4.26) and T in (4.27), respectively
with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 6 ξk for all k ∈ N∪{0}. Assume
that

(i) y(t) and y(t) are solutions of (4.22)-(4.23) and (4.24)-(4.25) respectively.

(ii) there exists constants λ, β, γ > 0 such that the function F satisfy the condi-
tions:

‖F
(
t, u1, u2, u3, µ1

)
−F

(
t, v1, v2, v3, µ1

)
‖

6 p(t)
[
λ‖u1 − v1‖+ β‖u2 − v2‖+ γ‖u3 − v3‖

]
.

and

‖F
(
t, u1, u2, u3, µ1

)
−F

(
t, u1, u2, u3, µ2

)
‖ 6 r(t)

∣∣∣µ1 − µ2

∣∣∣,
where p, r ∈ C(I,R+).

If the sequence {yk}∞k=0 converges to y, then we have

‖y − y‖B 6
3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
) ,(4.28)

where Θ = Ia
αp(t)

(
λ+ β + γ

)
< 1 (t ∈ I).
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Proof. Suppose the sequences {yk}∞k=0 and {yk}∞k=0 generated normal S− iterative
method associated with operators T in (4.26) and T in (4.27), respectively with the
real control sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 6 ξk for all k ∈ N ∪ {0}. From
iteration (2.2) and equations (4.26); (4.27) and hypotheses, we obtain

‖yk+1(t)− yk+1(t)‖
= ‖(Tzk)(t)− (Tzk)(t)‖

= ‖
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b), µ1

)
ds

−
n−1∑
j=0

dj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, zk(s), zk(a), zk(b), µ2

)
ds‖

6
n−1∑
j=0

‖cj − dj‖
j!

(b− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1

×‖F
(
s, zk(s), zk(a), zk(b), µ1

)
−F

(
s, zk(s), zk(a), zk(b), µ2

)
‖ds

6M +
1

Γ(α)

∫ t

a

(t− s)α−1

×‖F
(
s, zk(s), zk(a), zk(b), µ1

)
−F

(
s, zk(s), zk(a), zk(b), µ1

)
‖ds

+
1

Γ(α)

∫ t

a

(t− s)α−1

×‖F
(
s, zk(s), zk(a), zk(b), µ1

)
−F

(
s, zk(s), zk(a), zk(b), µ2

)
‖ds

6M +
1

Γ(α)

∫ t

a

(t− s)α−1r(s)|µ1 − µ2|ds+
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds

6M + |µ1 − µ2|Iaαr(t) +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds

6M + |µ1 − µ2|Iaαr(t) +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ‖zk(s)− zk(s)‖+ β‖zk(a)− zk(a)‖+ γ‖zk(b)− zk(b)‖

]
ds.(4.29)

Recalling the derivations obtained in equations (3.6) and (3.7), the above inequality
becomes

‖yk+1 − yk+1‖B 6 M + |µ1 − µ2|Iaαr(t) + Θ‖zk − zk‖B ,(4.30)
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and similarly, it is seen that

‖zk − zk‖B 6 ξk

[
M + |µ1 − µ2|Iaαr(t)

]
+
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B .(4.31)

Therefore, using (4.31) in (4.30) and using hypothesis Θ < 1, and 1
2 6 ξk for all

k ∈ N ∪ {0}, the resulting inequality becomes

‖yk+1 − yk+1‖B

6
[
M + |µ1 − µ2|Iaαr(t)

]
+ ‖zk − zk‖B

6
[
M + |µ1 − µ2|Iaαr(t)

]
+ ξk

[
M + |µ1 − µ2|Iaαr(t)

]
+
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B

6 2ξk

[
M + |µ1 − µ2|Iaαr(t)

]
+ ξk

[
M + |µ1 − µ2|Iaαr(t)

]
+
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B

6
[
1− ξk

(
1−Θ

)]
‖yk − yk‖B + ξk

(
1−Θ

)3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
) .(4.32)

We denote

βk = ‖yk − yk‖B > 0,

µk = ξk

(
1−Θ

)
∈ (0, 1),

γk =
3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
) > 0.

The assumption 1
2 6 ξk for all k ∈ N ∪ {0} implies

∞∑
k=0

ξk =∞. Now, it can be

easily seen that (4.32) satisfies all the conditions of Lemma 2.2 and hence we have

0 6 lim sup
k→∞

βk 6 lim sup
k→∞

γk

⇒ 0 6 lim sup
k→∞

‖yk − yk‖B 6 lim sup
k→∞

3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
)

⇒ 0 6 lim sup
k→∞

‖yk − yk‖B 6
3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
) .(4.33)
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Using the assumptions lim
k→∞

yk = y, lim
k→∞

yk = y, we get from (4.33) that

‖y − y‖B 6
3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
) ,(4.34)

which shows the dependence of solutions of the problem (1.1)-(1.2) on parameters
µ1 and µ2.

Remark: The result deals with the property of a solution called “dependence of
solutions on parameters”. Here the parameters are scalars and also note that the
initial conditions do not involve parameters. The dependence on parameters are an
important aspect in various physical problems.

5. Example

We consider the following problem:

(
Dα
∗
)
y(t) =

3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3

]
,(5.1)

for t ∈ [0, 1], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

y(j)(0) = cj , j = 0, 1, 2, · · · , n− 1,(5.2)

Comparing this equation with the equation (1.1), we get F ∈ C(I × R3,R), with

F(t, y(t), y(0), y(1)) =
3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3

]
.

Now, we have∣∣∣F(t, y(t), y(0), y(1))−F(t, y(t), y(0), y(1))
∣∣∣

6
∣∣∣3t

5

∣∣∣[∣∣∣ t− sin(y(t))

2
− t− sin(y(t))

2

∣∣∣+
∣∣∣y(0) + y(1)

3
− y(0) + y(1)

3

∣∣∣]
6

3t

5

[1

2

∣∣∣ sin(y(t))− sin(y(t))
∣∣∣+

1

3

∣∣∣y(0)− y(0)
∣∣∣+

1

3

∣∣∣y(1)− y(1)
∣∣∣].(5.3)

Taking sup norm, we obtain

|F(t, y(t), y(0), y(1))−F(t, y(t), y(0), y(1))| 6
3t

5

(1

2
+

1

3
+

1

3

)
|y − y|,(5.4)

where p(t) =
3t

5
, λ =

1

2
, β =

1

3
, γ =

1

3
and hence the condition (3.1) holds.



Existence and Uniqueness of Solution of Fractional Equation via S-Iteration 17

5.1. Existence and Uniqueness

Therefore, we the estimate

Θ = Ia
αp(t)

(
λ+ β + γ

)
= Ia

α 3t

5

(1

2
+

1

3
+

1

3

)
=

3

5

(1

2
+

1

3
+

1

3

)
(Ia

α)(t)

=
7

10
(Ia

α)(t)

=
7

10

tα+1

Γ(α+ 2)

6
7

10Γ(α+ 2)
, (t 6 1).(5.5)

Therefore, the condition Θ < 1 is satisfied only if
7

10Γ(α+ 2)
< 1.

We define the operator T : B → B by

(Ty)(t) =

n−1∑
j=0

cj
j!
tj

+
1

Γ(α)

∫ t

0

(t− s)α−1 3s

5

[s− sin(y(s))

2
+
y(0) + y(1)

3

]
ds, t ∈ I.(5.6)

Since all conditions of Theorem 3.1 are satisfied and so by its conclusion, the se-
quence {yk} associated with the normal S−iterative method (2.2) for the operator
T in (5.6) converges to a unique solution y ∈ B.

5.2. Error Estimate

Further, we also have for any y0 ∈ B

‖yk+1 − y‖B 6
Θk+1

e

(
1−Θ

)∑k
i=0 ξi

‖y0 − y‖B

6

[
7

10Γ(α+2)

]k+1

e

[
1− 7

10Γ(α+2)

]∑k
i=0 ξi

‖y0 − y‖

6

(
7

10Γ(α+2)

)k+1

e

(
1− 7

10Γ(α+2)

)∑k
i=0

1
1+i

‖y0 − y‖,(5.7)
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where we have chosen ξi = 1
1+i ∈ [0, 1]. The estimate obtained in (5.7) is called a

bound for the error (due to truncation of computation at the k−th iteration).

5.3. Continuous dependence

One can check easily the continuous dependence of solutions of equations (1.1) on
initial data. Indeed, we have

‖y − y‖B 6
3M(

1−Θ
)

6
3
∑n−1
j=0

‖cj−dj‖
j! (b− a)j(

1−Θ
)

6
3
∑n−1
j=0

‖cj−dj‖
j!(

1− 7
10Γ(α+2)

) .(5.8)

5.4. Closeness of Solutions

Next, we consider the perturbed equation:

cDαy(t) =
3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3
− t+

1

7

]
,(5.9)

for t ∈ [0, 1], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

y(j)(0) = dj , j = 0, 1, 2, · · · , n− 1,(5.10)

Similarly, comparing it with the equation (4.11), we have

F(t, y(t), y(0), y(1)) =
3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3
− t+

1

7

]
.

One can easily define the mapping T : B → B by

(Ty)(t) =

n−1∑
j=0

dj
j!
tj

+
1

Γ(α)

∫ t

0

(t− s)α−1 3s

5

[s− sin(y(s))

2
+
y(0) + y(1)

3
− s+

1

7

]
ds,(5.11)

for t ∈ I. In perturbed equation, all conditions of Theorem 3.1 are also satisfied
and so by its conclusion, the sequence {yk} associated with the normal S−iterative
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method (2.2) for the operator T in (5.11) converges to a unique solution y ∈ B.
Now, we have the following estimate:

|F(t, y(t), y(0), y(1))−F(t, y(t), y(0), y(1))|

= |3t
5

[ t− sin(y(t)))

2
+
y(0) + y(1)

3

]
−3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3
− t+

1

7

]
|

= |3t
5
||t− 1

7
|

6 |t|+ 1

7

6 1 +
1

7
(t 6 1)

=
8

7
= ε.(5.12)

Consider the sequences {yk}∞k=0 with yk → y as k → ∞ and {yk}∞k=0 with yk → y
as k → ∞ generated normal S− iterative method associated with operators T in
(5.6) and T in (5.11), respectively with the real sequence {ξk}∞k=0 in [0, 1] satisfying
1
2 6 ξk for all k ∈ N ∪ {0}. Then we have from Theorem 4.1 that

‖y − y‖B 6
3
[
M + ε(b−a)α

Γ(α+2)

]
(

1−Θ
)

6
3
∑n−1
j=0

‖cj−dj‖
j! + 3× 8

7(
1− 7

10Γ(α+2)

)
=

3
∑n−1
j=0

‖cj−dj‖
j! + 24

7(
1− 7

10Γ(α+2)

) .(5.13)

This shows that the closeness of solutions and dependency of solutions on functions
involved therein.

5.5. Dependence on Parameters

Finally, we shall prove the dependency of solutions on real parameters.
We consider the following integral equations involving real parameters µ1, µ2:

cDαy(t) =
3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3
+ µ1

]
,(5.14)

and

cDαy(t) =
3t

5

[ t− sin(y(t))

2
+
y(0) + y(1)

3
+ µ2

]
,(5.15)
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for t ∈ [0, 1], n − 1 < α ≤ n (n ∈ N). Based on the above discussion, one can
observe that p(t) = p(t) = r(t) = 3t

5 and therefore, we have Θ = Θ. Hence by
making similar arguments and from Theorem 4.3, one can has

‖y − y‖B 6
3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1−Θ
)

6
3
[
M + |µ1 − µ2|Iaαr(t)

]
(

1− 7
10Γ(α+2)

)
6

3
[
M + |µ1 − µ2|Iaα( 3t

5 )
]

(
1− 7

10Γ(α+2)

)
6

3
[
M + |µ1 − µ2| 35

tα+1

Γ(α+2)

]
(

1− 7
10Γ(α+2)

)
6

3
[∑n−1

j=0
‖cj−dj‖

j! + 3
5 |µ1 − µ2| 1

Γ(α+2)

]
(

1− 7
10Γ(α+2)

) .(5.16)

In particular, we choose α = 5
2 , then we have n = [α] + 1 = [ 5

2 ] + 1 = 2 + 1 = 3 and

7

10Γ(α+ 2)
=

7

10Γ( 5
2 + 2)

=
7

10Γ( 9
2 )

=
7

10× 105
16

√
π

=
7× 16

10× 105×
√
π

=
112

1050×
√
π

=
562

525×
√
π

' 0.0602

< 1.

This proves that the T is a contraction with contractivity factor 56
150×

√
π

. Using this

factor and putting particular values of cj , dj , j = 0, 1, 2, the estimates in (5.7),
(5.8), (5.13) and (5.16) can be simplified further.
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6. Conclusions

Using the S-iterative approach, we discussed the first main result, which deals with
the existence and uniqueness of the solution to the IVP (1.1)-(1.2). Next, we dis-
cussed various properties of solutions like continuous dependence on the initial data,
closeness of solutions, and dependence on parameters and functions involve therein.
Finally, we provided an appropriate example to support all of the findings.

Acknowledgement: The authors are very grateful to the referees for their com-
ments and remarks.
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