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Abstract. In this paper, we consider an impulsive Sturm–Lioville problem on Sturmian
time scales. We investigate the existence and uniqueness of the solution of this problem.
We study some spectral properties and self-adjointness of the boundary-value problem.
Later, we construct the Green function for this problem. Finally, an eigenfunction
expansion is obtained.
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1. Introduction

Impulsive differential equations have recently been subject to an increasing num-
ber of investigations since they occur in mathematical modeling of various areas of
science, e.g., population dynamics, economics, optimal control, and chemotherapy.
These equations have been studied by several authors (see [3, 9, 16, 17, 18, 21] ).

In the ’80s, Stefan Hilger introduced the theory of time scales. This theory
aims to unify continuous-time and discrete-time equations. Due to its numerous
application in science, many authors have obtained a lot of results about this subject
(see [4, 7, 5, 6, 10, 11, 13, 20]).

On the other hand, there are some papers including impulsive dynamic equa-
tions. The results on such problems can be found, for example, in [1, 8, 12, 15].
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Our goal in this paper is to study some spectral properties of the impulsive dynamic
Sturm–Liouville problem on Sturmian time scales defined as

(1.1) −
[
p (t) z∆ (t)

]∇
+ q (t) z (t) = λz (t) , t ∈ J = [a, c) ∪ (c, b],

where T is a Sturmian time scale, J ⊂ T, λ ∈ C, q(.) is a real-valued continuous
function, p (.) is nabla differentiable function on J, p (t) ̸= 0 for all t ∈ J, and p∇ (.)
is continuous.

Our paper is organized as follows. In the second section, an existence and
uniqueness theorem for Eq. (1.1) with impulsive condition is proved. The minimal
and maximal operators have been introduced, some results are presented and the
self-adjointness of the boundary-value problem have been investigated. In the third
section, Green’s function is constructed. Finally, an eigenfunction expansion is given
in the last section.

First, we recall some necessary fundamental concepts of time scales, and we refer
to [10, 11, 7, 13] for more details.

A time scale T is an arbitrary nonempty closed subset of the real numbers. The
jump operators σ, ρ : T → T are defined by

σ (t) = inf {s ∈ T : s > t} , t ∈ T

and
ρ (t) = sup {s ∈ T : s < t} , t ∈ T.

A point t ∈ T is left scattered if σ (t) ̸= t and left dense if σ (t) = t. A point t ∈ T
is right scattered if ρ (t) ̸= t and right dense if ρ (t) = t. Moreover, σ (ρ (t)) =
ρ (σ (t)) = t, t ∈ T (see [2]).

2. Impulsive Sturm–Liouville equation on Sturmian time scales

In this section, the existence and uniqueness of solutions of the impulsive dy-
namic Sturm–Liouville equation on Sturmian time scales are proved. Later, minimal
symmetric operators are introduced in the regular cases. Furthermore, some results
are given.

Let us consider the dynamic Sturm–Liouville equation

(2.1) Γ(z) := −
[
p (t) z∆ (t)

]∇
+ q (t) z (t) = λz (t) , t ∈ J,

with impulsive condition
Z (c+) = CZ (c−) ,

where T is a Sturmian time scale, J ⊂ T, λ ∈ C, q(.) is a real-valued continuous
function, p (.) is nabla differentiable function on J, p (t) ̸= 0 for all t ∈ J, p∇ (.) is
continuous,

Z =

(
z
pz∆

)
, C =

(
d1 0
0 d2

)
,
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and d1, d2 are real numbers such that detC = d1d2 > 0.Note that Z (c+) and Z (c−)
represent right and left limits with respect to the time scale, and in addition, the
points a, b, c ∈ J are left dense.

It has been denoted by L2
∇(J) that the Hilbert space with the inner product

(f, g) :=

∫ c

a

f (t) g (t)∇t+ δ

∫ b

c

f (t) g (t)∇t,

where f, g ∈ L2
∇(J) and δ = 1

d1d2
.

Then we obtain the following theorem.

Theorem 2.1. Eq. (2.1) has a unique solution z in L2
∇(J) such that

(2.2) Z(a, λ) = K =

(
k1
k2

)
, Z (c+) = CZ (c−) ,

where k1, k2 are given constants.

Proof. Let z (t) be a solution of Eq. (2.1) and let p (t) z∆ (t) = y (t) . Then, we have

z∆ (t) = p−1 (t) y (t) .

It follows from (2.1) that

y∇ (t) = (q (t)− λ) z (t) .

Since

y∆ (t) = y∇ (σ (t)) = (q (σ (t))− λ) z (σ (t))

= (q (σ (t))− λ)
{
z (t) + [σ (t)− t] z∆ (t)

}
= (q (σ (t))− λ)

{
z (t) + [σ (t)− t] p−1 (t) y (t)

}
.

we get the following first-order system:

Z∆ (t) = A (t, λ)Z (t, λ) ,

where

A (t, λ) =

(
0 p−1 (t)

(q (σ (t))− λ) p−1 (t) [σ (t)− t] (q (σ (t))− λ)

)
,

and

Z (t) =

(
z (t, λ)
y (t, λ)

)
.

It is clear that the matrix A (t, λ) is regressive, i.e., I2 + µσ (t)A (t, λ) (µσ (t) =
σ (t) − t) is invertible. By [[10], Theorem 5.8], we deduce that Eq. (2.1) has a
unique solution z (t, λ) with conditions (2.2).
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Consider the set

Dmax

=

z ∈ L2
∇(J) :

z is ∆-absolutely continuous and pz∆ is ∇-absolutely
continuous functions on all subintervals of J,

one-sided limits z (c±) and pz∆ (c±) exist and finite,
Z (c+) = CZ (c−) and Γ(z) ∈ L2

∇(J).


Then we define the maximal operator Lmax on Dmax by the equality Lmaxz = Γ(z).
The operator Lmin, that is the restriction of the operator Lmax to Dmin is called the
minimal operator, where

(2.3) Dmin =
{
z ∈ Dmax : z (a) = p (a) z∆ (a) = z (b) = p (b) z∆ (b) = 0

}
.

For arbitrary two functions z1, z2 ∈ Dmax, we have the following Green’s formula

(Γ(z1), z2)− (z1,Γ(z2))

=
∫ c
a

[
Γ(z1)(t)z2(t)− z1(t)Γ(z2)(t)

]
∇t

+δ
∫ b
c

[
Γ(z1)(t)z2(t)− z1(t)Γ(z2)(t)

]
∇t

(2.4) = δ[z1, z2] (b)− δ[z1, z2] (c+) + [z1, z2] (c−)− [z1, z2] (a) ,

where

[z1, z2] (t) :=W∆ (z1, z2) (t) = p (t)
{
z1(t)z∆2 (t)− z∆1 (t)z2(t)

}
.

Theorem 2.2. The operator Lmin is Hermitian.

Proof. From (2.3) and (2.4), we get the desired result.

Theorem 2.3. Let η ∈ L2
∇(J). Then, the equation

(2.5) Γ (z) = η

has a solution z (t) satisfying the conditions

(2.6) Z (a) = Z (b) = 0, Z (c+) = CZ (c−) ,

if and only if the function η is orthogonal to all solutions of the equation Γ (z) = 0
satisfying the condition Z (c+) = CZ (c−) .
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Proof. Let z (t) be the solution of the equation Γ (z) = η satisfying the conditions

(2.7) Z (a) = 0, Z (c+) = CZ (c−) .

There exists one such solution. Let us denote by y1 and y2, a fundamental system
of solutions of the equation Γ (y) = 0 satisfying the conditions

Y (c+) = CY (c−) ,

(2.8)

Y1 (b) =

(
y1 (b)

p (b) y∆1 (b)

)
=

(
1
0

)
,

Y2 (b) =

(
y2 (b)

p (b) y∆2 (b)

)
=

(
0
1

)
.

From (2.4), we obtain
(η, yi) = (Γ (z) , yi)

(2.9) = δ[z, yi] (b)− δ[z, yi] (c+) + [z, yi] (c−)− [z, yi] (a) + (z,Γ (yi)) .

By (2.7), we deduce that [z, yi] (a) = 0 and δ[z, yi] (c+) − [z, yi] (c−) = 0. Since
Γ (yi) = 0, we have

(2.10) (η, yi) = δ[z, yi] (b) =

{
−δp (b) z∆(b) for i = 1,

δz (b) for i = 2.

It follows from Theorem 2.3 that

(2.11) Ω⊕ F = L2
∇(J),

where Ω is the set of all solutions of the equation Γ (z) = 0 satisfying the condition
Z (c+) = CZ (c−) , and F is the range of the operator Lmin.

Theorem 2.4. Let α1, α2, α3, α4 ∈ C. Then there exists a function z ∈ Dmax

satisfying the following conditions

(2.12)

Z (a) =

(
z (a)

p (a) z∆ (a)

)
=

(
α1

α2

)
,

Z (b) =

(
z (b)

p (b) z∆ (b)

)
=

(
α3

α4

)
.

Proof. Let α = α2 = 0 and let η be an arbitrary vector in L2
α(J) satisfying the

conditions

(2.13) (η, yi) =

{
−α4 for i = 1,
α3 for i = 2.



656 B. P. Allahverdiev and H. Tuna

where y1 and y2 are a fundamental system of solutions of the equation Γ (y) = 0.
There exists such a vector η. Indeed if we put η = c1y1+ c2y2, then (2.13) provide a
system of equations in the constants ci (i = 1, 2) whose determinant is the same as
the Gram determinant for the linearly independent functions y1, y2, and does not
vanish.

Let x denote the solution of the equation Γ (x) = η satisfying the conditions

(2.14) X (a) =

(
x (a)

p (a)x∆ (a)

)
=

(
0
0

)
, X (c+) = CX (c−) ,

From (2.4), we conclude that

(η, yi) = (Γ (x) , yi) =

(2.15) δ[x, yi] (b)− δ[x, yi] (c+) + [x, yi] (c−)− [x, yi] (a) + (x,Γ (yi)) .

By virtue of Γ (yi) = 0 and (2.14), we see that [x, yi] (a) = 0 and δ[x, yi] (c+) −
[x, yi] (c−) = 0.

It follows now from (2.8) and (2.10) that

[x, yi] (b) =

{
−p (b)x∆(b) for i = 1,

x (b) for i = 2.

From (2.13) and (2.15), we get

X (b) =

(
α3

α4

)
.

Thus, we have constructed a function x ∈ Dmax such that

X (a) =

(
0
0

)
, X (b) =

(
α3

α4

)
.

Similarly, we can construct a function x1 ∈ Dmax such that

X1 (a) =

(
α1

α2

)
, X1 (b) =

(
0
0

)
.

Hence the function z = x+ x1 ∈ Dmax satisfies (2.12).

Theorem 2.5. Dmin is dense in L2
∇(J).

Proof. Let ζ⊥Dmin and let y be any particular solution of the equation Γ (y) = ζ
satisfying the condition Y (c+) = CY (c−) . Therefore, for z ∈ Dmin, we conclude
that

(y, Lminz) = (Lmaxy, z) = (Γ (y) , z) = (ζ, z) = 0.

From Theorem 2.3 and (2.11), we get y ∈ Ω and ζ = Γ (y) = 0.
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Theorem 2.2 and Theorem 2.5 imply that Lmin is a symmetric operator.

Theorem 2.6. The equality Lmax = L∗
min holds.

Proof. Since Lmax ⊂ L∗
min, it suffices to show that L∗

min ⊂ Lmax. Let ζ ∈ D∗
min, where

D∗
min is the domain of the operator L∗

min. Let L
∗
minζ = ν and ξ (x) be any particular

solution of the equation Γ (ξ) = ν satisfying the condition Z (c+) = CZ (c−) . Then,
for every z ∈ Dmin, we obtain

(2.16) (ν, z) = (Γ (ξ) , z) = (Lmaxξ, z) = (ξ, Lminz) .

Therefore, we have

(2.17) (ν, z) = (L∗
minζ, z) = (ζ, Lminz) .

Subtracting (2.17) from (2.16 ), we conclude that (ξ − ζ, Lminz) = 0, i.e., ξ−ζ ∈ F⊥.

It follows from (2.11) that ξ − ζ ∈ Ω ⊂ Dmax and ξ ∈ Dmax. Then we have
Γ (ξ − ζ) = 0, i.e., Γ(ζ) = Γ(ξ) = ν = L∗

minζ and L∗
min ⊂ Lmax.

Theorem 2.7. The following relation holds

L∗
max = Lmin.

Proof. It follows from Theorem 2.6 that L∗
max = L∗∗

min ⊃ Lmin. Hence

(2.18) L∗
max ⊂ L∗

min = Lmax,

due to Lmin ⊂ Lmax. Let ξ ∈ D∗
max, where D

∗
max is the domain of the operator L∗

max.
From (2.18), we see that ξ ∈ Dmax and L∗

maxξ = Lmaxξ. This yields (L∗
maxξ, z) =

(ξ, Lmaxz) , and (Lmaxξ, z) = (ξ, Lmaxz) for all z ∈ Dmax. From (2.4), it may be
concluded that

(2.19) δ[ξ, z] (b)− δ[ξ, z] (c+) + [ξ, z] (c−)− [ξ, z] (a) = 0

for all z ∈ Dmax. Hence Eq. (2.19) is possible only if

ξ (a) = p (a) ξ∆ (a) = ξ (b) = p (b) ξ∆ (b) = 0,

i.e., ξ ∈ Dmin. Hence and from (2.18) it follows that L∗
max ⊂ Lmin.

By Theorem 2.7, we see that Lmin is a closed symmetric operator.

Consider the impulsive dynamic Sturm–Liouville equation

(2.20) Γ(z) = λz(t), t ∈ J,

with the boundary conditions

(2.21) a11z(a) + a12p (a) z
∆(a) = 0,
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(2.22)
z (c+)− d1z (c−) = 0,

p (c+) z∆ (c+)− d2p (c−) z∆ (c−) = 0,

(2.23) a21z(b) + a22p (b) z
∆(b) = 0,

where aij , (i, j = 1, 2), d1 and d2 are real numbers such that a211 + a212 ̸= 0, a221 +
a222 ̸= 0 and d1d2 > 0.

Theorem 2.8. The impulsive dynamic Sturm–Liouville operator L defined by (2.20)–
(2.23) is self-adjoint on the space L2

∇(J).

Proof. From (2.4), (2.21), (2.23), and (2.22), we can get the desired result.

From Theorem 2.8, we have the following corollary.

Corollary 2.1. The impulsive dynamic Sturm–Liouville operator L defined by
(2.20)–(2.23) has the following properties.

(i) All eigenvalues are real and simple.

(ii) The eigenfunctions f(t, µ1) and g(t, µ2) corresponding to distinct eigenvalues
µ1 and µ2 are orthogonal.

3. Construction of Green’s function

Consider the following boundary value problem

(3.1) −
[
p (t) z∆ (t)

]∇
+ q (t) z (t) = h (t) , t ∈ J,

together with the conditions (2.21)-(2.23). Denote by

φ (t, λ) =

{
φ1 (t, λ) , t ∈ [a, c)
φ2 (t, λ) , t ∈ (c, b]

and

ψ (t, λ) =

{
ψ1 (t, λ) , t ∈ [a, c)
ψ2 (t, λ) , t ∈ (c, b]

two basic solutions of Eq. (2.1) which satisfy the following initial conditions

φ1(a) = −a12, p (a)φ∆
1 (a) = −a11,

ψ2(b) = −a22, p (b)ψ∆
2 (b) = −a21,

and both transmission conditions. It is clear that

D (λ) = −W∆ (φ,ψ) = −W1,∆ (φ1, ψ1) = −δW2,∆ (φ2, ψ2) ̸= 0.



Impulsive Sturm–Liouville Problems on Time Scales 659

Then we obtain the general solution of Eq. (2.1) in the form

z (t, λ) =

{
α1φ1 (t, λ) + β1ψ1 (t, λ) , t ∈ [a, c)
α2φ2 (t, λ) + β2ψ2 (t, λ) , t ∈ (c, b],

where α1, α2, β1 and β2 are arbitrary constants. Applying the method of variation
of constants, we search the general solution of the non-homogenous Eq. (3.1) in the
form

z (t, λ) =

{
α1 (t, λ)φ1 (t, λ) + β1 (t, λ)ψ1 (t, λ) , t ∈ [a, c)
α2 (t, λ)φ2 (t, λ) + β2 (t, λ)ψ2 (t, λ) , t ∈ (c, b],

where the functions α1 (t, λ) , α2 (t, λ) , β1 (t, λ) and β2 (t, λ) satisfy the following
equations: for t ∈ [a, c),

(3.2)


α∆
1 (t, λ)φ1 (t, λ) + β∆

1 (t, λ)ψ1 (t, λ) = 0,

α∆
1 (t, λ)

[
p (ρ (t))φ∆

1 (ρ (t) , λ)
]

+β∆
1 (t, λ)

[
p (ρ (t))ψ∆

1 (ρ (t) , λ)
]
= h (t) ,

and

(3.3)


α∆
2 (t, λ)φ2 (t, λ) + β∆

2 (t, λ)ψ2 (t, λ) = 0,

α∆
2 (t, λ)

[
p (ρ (t))φ∆

2 (ρ (t) , λ)
]

+β∆
2 (t, λ)

[
p (ρ (t))ψ∆

2 (ρ (t) , λ)
]
= h (t) ,

for t ∈ (c, b].

On the other hand,∣∣∣∣ φ1 (t, λ) ψ1 (t, λ)
p (ρ (t))φ∆

1 (ρ (t) , λ) p (ρ (t))ψ∆
1 (ρ (t) , λ)

∣∣∣∣ =W1,∆ (φ1, ψ1) (ρ (t)) ̸= 0,

and ∣∣∣∣ φ2 (t, λ) ψ2 (t, λ)
p (ρ (t))φ∆

2 (ρ (t) , λ) p (ρ (t))ψ∆
2 (ρ (t) , λ)

∣∣∣∣ =W2,∆ (φ2, ψ2) (ρ (t)) ̸= 0.

If we use the formula

z (t) = z (ρ (t)) + (t− ρ (t)) z∆ (ρ (t)) ,



660 B. P. Allahverdiev and H. Tuna

we get ∣∣∣∣ φ1 (t, λ) ψ1 (t, λ)
p (ρ (t))φ∆

1 (ρ (t) , λ) p (ρ (t))ψ∆
1 (ρ (t) , λ)

∣∣∣∣
= p (ρ (t))

[
φ1 (ρ (t) , λ) + (t− ρ (t))φ∆

1 (ρ (t) , λ)
]
ψ∆
1 (ρ (t) , λ)

−p (ρ (t))
[
ψ1 (ρ (t) , λ) + (t− ρ (t))ψ∆

1 (ρ (t) , λ)
]
φ∆
1 (ρ (t) , λ)

= p (ρ (t))
[
φ1 (ρ (t) , λ)ψ

∆
1 (ρ (t) , λ)− ψ1 (ρ (t) , λ)φ

∆
1 (ρ (t) , λ)

]
=W1,∆ (φ1, ψ1) (ρ (t)) .

From (3.2) and (3.3), we conclude that

α∆
1 (t, λ) = α∇

1 (σ (t) , λ) = − 1
D(λ)h (t)ψ1 (t, λ) ,

β∆
1 (t, λ) = β∇

1 (σ (t) , λ) = 1
D(λ)h (t)φ1 (t, λ) ,

for t ∈ [a, c), and

α∆
2 (t, λ) = α∇

2 (σ (t) , λ) = − 1
D(λ)δh (t)ψ2 (t, λ) ,

β∆
2 (t, λ) = β∇

2 (σ (t) , λ) = 1
D(λ)δh (t)φ2 (t, λ) ,

for t ∈ (c, b]. Hence

α1 (σ (t) , λ) = 1
D(λ)

∫ c
t
h (x)ψ1 (x, λ)∇x+ α1, t ∈ [a, c),

β1 (σ (t) , λ) = 1
D(λ)

∫ t
a
h (x)φ1 (x, λ)∇x+ β1, t ∈ [a, c),

α2 (σ (t) , λ) = 1
D(λ)δ

∫ b
t
h (x)ψ2 (x, λ)∇x+ α2, t ∈ (c, b],

β2 (σ (t) , λ) = 1
D(λ)δ

∫ t
c
h (x)φ2 (x, λ)∇x+ β2, t ∈ (c, b],

and

α1 (t, λ) = 1
D(λ)

∫ c
ρ(t)

h (x)ψ1 (x, λ)∇x+ α1, t ∈ [a, c),

β1 (t, λ) = 1
D(λ)

∫ ρ(t)
a

h (x)φ1 (x, λ)∇x+ β1, t ∈ [a, c),

α2 (t, λ) = 1
D(λ)δ

∫ b
ρ(t)

h (x)ψ2 (x, λ)∇x+ α2, t ∈ (c, b],

β2 (t, λ) = 1
D(λ)δ

∫ ρ(t)
c

h (x)φ2 (x, λ)∇x+ β2, t ∈ (c, b].
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Thus, the general solution of the non-homogenous Eq. (3.1) is given by the formula

(3.4) z (t, λ) =



φ1(t,λ)
D(λ)

∫ c
ρ(t)

h (x)ψ1 (x, λ)∇x+ α1φ1 (t, λ)

+ψ1(t,λ)
D(λ)

∫ ρ(t)
a

h (x)φ1 (x, λ)∇x+ β1ψ1 (t, λ) ,

t ∈ [a, c),

φ2(t,λ)
D(λ) δ

∫ b
ρ(t)

h (x)ψ2 (x, λ)∇x+ α2φ2 (t, λ)

+ψ2(t,λ)
D(λ) δ

∫ ρ(t)
c

h (x)φ2 (x, λ)∇x+ β2ψ2 (t, λ) ,

t ∈ (c, b].

From (3.4), we obtain
(3.5)

z∆ (t, λ) =



φ∆
1 (t,λ)
D(λ)

∫ c
ρ(t)

h (x)ψ1 (x, λ)∇x+ α1φ
∆
1 (t, λ)

+
ψ∆

1 (t,λ)
D(λ)

∫ ρ(t)
a

h (x)φ1 (x, λ)∇x+ β1ψ
∆
1 (t, λ) ,

t ∈ [a, c),

φ∆
2 (t,λ)
D(λ) δ

∫ b
ρ(t)

h (x)ψ2 (x, λ)∇x+ α2φ
∆
2 (t, λ)

+
ψ∆

2 (t,λ)
D(λ) δ

∫ ρ(t)
c

h (x)φ2 (x, λ)∇x+ β2ψ
∆
2 (t, λ) ,

t ∈ (c, b].

From (2.21), we get

(3.6) β1 = 0.

By the condition (2.23), we obtain

(3.7) α2 = 0.

From (3.6), (3.7), and (2.22), we get the following system:

β2φ2 (c+, λ)− d1α1ψ1 (c−, λ)

= φ2(c+,λ)
D(λ) δ

∫ b
c
h (x)ψ2 (x, λ)∇x

−d1 ψ1(c−,λ)
D(λ)

∫ c
a
h (x)φ1 (x, λ)∇x,

β2p (c+)φ∆
2 (c+, λ)− α1d2p (c−)ψ∆

1 (c−, λ)

=
p(c+)φ∆

2 (c+,λ)
D(λ) δ

∫ b
c
h (x)ψ2 (x, λ)∇x

−d2 p(c−)ψ∆
1 (c−,λ)

D(λ)

∫ c
a
h (x)φ1 (x, λ)∇x.
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Since ∣∣∣∣ φ2 (c+, λ) −d1ψ1 (c−, λ)
p (c+)φ∆

2 (c+, λ) −d2p (c−)ψ∆
1 (c−, λ)

∣∣∣∣
=

∣∣∣∣ φ2 (c+, λ) −ψ2 (c+, λ)
p (c+)φ∆

2 (c+, λ) −p (c+)ψ∆
2 (c+, λ)

∣∣∣∣
=W2,∆ (φ2, ψ2) = − 1

δD (λ) ,

we obtain

α1 =
1

D (λ)
δ

∫ b

c

h (x)ψ2 (x, λ)∇x,

and

β2 =
1

D (λ)

∫ c

a

h (x)φ1 (x, λ)∇x.

Hence

z (t, λ) =
(
G(t, x, λ), h(t)

)
, t ∈ J,

where

(3.8) G(t, x, λ) =


1

D(λ)
ψ(t, λ)φ(x, λ), a ≤ x ≤ t ≤ b, t ̸= c, x ̸= c

1

D(λ)
φ(t, λ)ψ(x, λ), a ≤ t ≤ x ≤ b, t ̸= c, x ̸= c.

4. Eigenfunction expansion

In this section, we shall give an eigenfunction expansion. In this context, we
need the following definition and theorem.

Definition 4.1. Let M(t, x) be a function in C2 where a < t and x < b. If∫ b

a

∫ b

a

|M(t, x)|2∇t∇x < +∞,

then M(t, x) is called the ∇-Hilbert–Schmidt kernel.

Theorem 4.1. [19] Let A be an operator defined as

(4.1) A {xi} = {yi} ,

where

(4.2) yi =

∞∑
k=1

aikxk, i, k ∈ N := {1, 2, 3, , , }.
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If

(4.3)

∞∑
i,k=1

|aik|2 < +∞,

then A is the compact operator in l2,where l2 is the standard sequence space.

There is no loss of generality in assuming that λ = 0 is not an eigenvalue. Thus
we have

G(t, x) := G(t, x, 0)

(4.4) =


− 1

W∆ (φ,ψ)
ψ(t)φ(x), a ≤ x ≤ t ≤ b, t ̸= c, x ̸= c

− 1

W∆ (φ,ψ)
φ(t)ψ(x), a ≤ t ≤ x ≤ b, t ̸= c, x ̸= c.

Theorem 4.2. G(t, x) defined by the formula (4.4) is a ∇-Hilbert–Schmidt kernel.

Proof. It follows from (4.4) that∫ b

a

∇αt

∫ t

a

|G(t, x)|2∇x < +∞,

and ∫ b

a

∇αt

∫ b

t

|G(t, x)|2∇x < +∞,

since the inner integral exists and the product ψ(t)φ(x) belongs to L2
∇(J)×L2

∇(J).
Then, we see that

(4.5)

∫ b

a

∫ b

a

|G(t, x)|2∇t∇x < +∞.

Theorem 4.3. Let L be an operator defined as

(Lh)(t) =
(
G(t, x), h(x)

)
.

Then the operator L is self-adjoint and compact.

Proof. Let f, g ∈ L2
∇(J). Since G(t, x) = G(x, t) we obtain

(Lf, g) =
∫ b
a
(Lf)(t)g(t)∇t

=
∫ b
a

[∫ b
a
G(t, x)f(x)∇x

]
g(t)∇t

=
∫ b
a
f(x)

[∫ b
a
G(x, t)g(t)∇t

]
∇x = (f,Lg).
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Let

ϕi = ϕi (t) =

{
ϕ
(1)
i (t), t ∈ [a, c)

ϕ
(2)
i (t), t ∈ (c, b]

(i ∈ N)

be a complete, orthonormal basis of L2
∇(J). From Theorem 4.2, we can define

xi = (f, ϕi) =
∫ c
a
f (1) (t)ϕ

(1)
i (t)∇t+ δ

∫ b
c
f (2) (t)ϕ

(2)
i (t)∇t,

yi = (g, ϕi) =
∫ c
a
g(1) (t)ϕ

(1)
i (t)∇t+ δ

∫ b
c
g(2) (t)ϕ

(2)
i (t)∇t,

aik =
∫ c
a

∫ c
a
G (x, t)ϕ

(1)
i (x)ϕ

(1)
k (t)∇x∇t

+δ2
∫ b
c

∫ b
c
G (x, t)ϕ

(2)
i (x)ϕ

(2)
k (t)∇x∇t (i, k ∈ N).

It is clear that L2
∇(J) is mapped isometrically the space l2. Consequently, our

integral operator transforms into the operator defined by the formula (4.1) in the
space l2 by this mapping, and the condition (4.5) is translated into the condition
(4.3). Hence this operator and with it, the original operator is compact.

Theorem 4.4. The eigenvalues of the operator L form an infinite sequence {λi}∞i=1

of real numbers which can be ordered so that

|λ1| < |λ2| < ... < |λi| < ..., |λi| → ∞ as i→ ∞.

The set of all normalized eigenfunctions of L forms an orthonormal basis for L2
∇(J)

and for z ∈ L2
∇(J), Lz = h, Lh = z, Lϕi = λiϕi (i ∈ N) the eigenfunction expansion

formula

Lh =

∞∑
i=1

λi(h, ϕi)ϕi

is valid.

Proof. From Theorem 4.3 and the Hilbert–Schmidt theorem (see [14]), we see that
L has an infinite sequence of non-zero real eigenvalues {ηi}∞i=1 with ηi → 0 (i→ ∞).
Then, we obtain

|λi| =
1

|ηi|
→ ∞ as i→ ∞.

Furthermore, let {ϕi}∞i=1 denote an orthonormal set of eigenfunctions corresponding
to {ηi}∞i=1 . Hence, we get

z = Lh =
∑∞
i=1 (z, ϕi)ϕi =

∑∞
i=1 (Lh, ϕi)ϕi

=
∑∞
i=1 (h, Lϕi)ϕi =

∑∞
i=1 λi (z, ϕi)ϕi.
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