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1. Introduction

The flux usually describes an effect that appears to pass through a surface or
substance. It is a concept in applied mathematics and vector calculus that have
many applications in physics which we can cite fluid mechanics, thermodynamics,
electromagnetism, radiation, energy and in particular particle flux (see [3] and [13]).
In vector calculus, the flux is a scalar quantity, defined as the surface integral of the
perpendicular component of a vector field over a surface.

Let M be an arbitrary surface in a Riemannian manifold (N, g) , −→n is the normal

vector and
−→
V is a smooth vector field on N. The flux V corresponding to the vector−→

V , passes through the surface M is given by

V =

∫
M
g(
−→
V ,−→n )ds
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For simplicity, we denote the vectors
−→
V ,−→n by V, n. The normal component of flux

V is
g (V, n) = v cos θ

here θ is the angle between V and n.When the angle θ is π
2 (i.e.V ⊥ n.) , the surface

M is called flux surface.

The flux surfaces M can also be characterized following the character of the flux
vector V . If V is a magnetic vector fields (i.e. which is zero divergences according to
Biot and Savart’s law see [2], [7] and [10]) then M is called flux surface according to
the magnetic vector fields V and we denoted it for simplify V -magnetic flux surface.
Moreover, if V is a Killing i.e. magnetic vector fields satisfying the Killing equation

g(∇XV, Y ) + g(∇Y V,X) = 0

then M is called Killing V -magnetic flux surface, where ∇ is a connection and
X,Y are a vector fields on M.

When M is V -magnetic flux surface, the vector V does not cross M anywhere
(i.e. magnetic flux V traversing M is zero). This gives rise to the definition of a
scalar flux function f which ∇f ⊥ n and f is constant on M.

When V is a magnetic field with toroidal nested flux surfaces, two magnetic
fluxes can be defined from two corresponding surfaces (see [1] and [13]). The poloidal
flux is defined by

V1 =

∫
Mp

g(V, n)dS

where Mp is a ring-shaped ribbon stretched between the magnetic axis and the flux
surface. Likewise, the toroidal flux is defined by

V2 =

∫
Mt

g(V, n)dS

where Mt is a poloidal section of the flux surface.

Considered as fourth state of matter, the plasma is the famous example of flux
surface. Plasma is a hot ionized gas composed of approximately equal numbers of
positively charged ions and negatively charged electrons, making it a good electrical
conductor. The electrical conductivity creates currents flowing in a plasma that



Killing Magnetic Flux Surfaces in Heisenberg Three-Group 977

interact with magnetic field to create the force needed for containment. Ordinary
matter ionizes and forms plasma at temperatures above about 5000 K, and most of
the visible matter in the universe is in a plasma state.
Plasma particles can be confined and shaped by magnetic field lines that combine
to act like an invisible bottle. By fixing magnetic field lines toroidal around the
interior of the tokamak, the ions and electrons in the plasma are forced to move
slightly around these field lines, preventing them from escaping from the container.
If it is assumed that the plasma is magnetized everywhere, the magnetic field does
not disappear on this surface. The authors, in [8], have shown that the outermost,
bounding surface must be a flux surface, it is natural to suppose the confinement
region to be filled with a sequence of flux surfaces, each enclosing the next. In fact,
flux surfaces provides a barrier to collisionless charged particles in the magnetic field.
Most of the universe is in the form of a plasma with a magnetic field perforated.
(see for more detail [1], [2], [8] and [11]).

Recently in [10], the Killing magnetic flux surfaces were determined in Euclidian
space. In our study, we determine all Killing magnetic flux surfaces and their cor-
responding Killing scalar flux functions in the three-dimensional Heisenberg group.

The paper is organized as follows. In section 2, we present an Overview on a
geometry of Heisenberg 3-group H3 with its four Killing vectors representations.
The section 3 is devoted to the determination of parameterisations of Killing flux
surfaces with examples and its associate Killing magnetic scalar flux functions.

2. Geometry of Heisenberg group H3

The Heisenberg group H3 is a Lie group diffeomorphic to R3 with the standard
representation in SL(3,R) as

H3 =


 1 x z

0 1 y
0 0 1

 | (x, y, z) ∈ R3


endowed with the multiplication

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 − x1y2).

All left-invariant Riemannian metrics on the H3 are isometric to the Riemannian
metric gH3

which is invariant with respect to the left-translations corresponding to
that multiplication, given by

(2.1) gH3
=

1

λ2
dx2 + dy2 + (xdy + dz)2.

where λ is a strictly positif real number.

We define an orthonormal basis (ei)i=1,3 , by

(2.2) e1 = ∂y − x∂z, e2 = λ∂x, e3 = ∂z,
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and its dual basis
(
ωi
)
i=1,3

, by

ω1 = dy; ω2 =
1

λ
dx; ω3 = xdy + dz.

The Lie bracket of the basis (ei)i=1,3 are given by the following identities

(2.3) [e1, e2] = λe3; [e1, e3] = [e2, e3] = 0

The Levi-Civita connection ∇ of the metric gH3 with respect to the left-invariant
basis (ei)i=1,3 is

(2.4)


∇e1e1 = 0
∇e1e2 = λ

2 e3
∇e1e3 = −λ

2 e2

;
∇e2e1 = −λ

2 e3
∇e2e2 = 0
∇e2e3 = λ

2 e1

;
∇e3e1 = −λ

2 e2
∇e3e2 = λ

2 e1
∇e3e3 = 0

.

The Lie algebra of Killing vector fields of (H3, gH3
) is generated by the basis K =

(Ki)i=1,4, where the killing vectors (Ki)i=1,4 are presented in the following

K1 = ∂z, K2 = ∂y, K3 = ∂x− y∂z,(2.5)

K4 = λ2y∂x− x∂y − 1

2
(λ2y2 − x2)∂z.

We can rewrite the killing vectors in the base (ei)i=1,3, using the Eq.(2.2), as

K1 = e3, K2 = e1 + xe3, K3 =
1

λ
e2 − ye3,(2.6)

K4 = −xe1 + λye2 +
1

2
(3x2 − λ2y2)e3.

(for more detail see [2], [5] and [6]).

3. Killing flux surfaces in (H3, gH3
)

Definition 3.1. Let M be a smooth surface in a Riemannian manifold (N, g) and
n be its normal vector field. The surface M is called a flux surface of a smooth
vector field V on (N, g) if

g(V,n) = 0

everywhere on M . Moreover, if V is a Killing magnetic field then M is called a
Killing magnetic flux surface corresponding to V .

Lemma 3.1. Let f be a scalar function in (N, g), then the Riemannian gradient
of f is

∇f = fx∂x+ fy∂y + fz∂z = fye1 +
fx
λ
e2 + (xfy + fz) e3

In the sequel, to simplify, we denoted a flux surface M corresponding to the
smooth vector field V by V -flux surface and if V is Killing magnetic vector M
is denoted by Killing V -flux surface. We use the computer software ”Wolfram
Mathematica” to present the surface figures in Euclidean 3-space.
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3.1. K1-Flux surfaces in (H3, gH3
)

Let M be a surface in (H3, gH3
) and X(u, v) = (x(u, v), y(u, v), z(u, v)) be its

parametrization. The tangent vectors Xu = ∂X
∂u and Xv = ∂X

∂v are described by

Xu = xu∂x+ yu∂y + zu∂z = yue1 +
xu
λ
e2 + (xyu + zu) e3

Xv = xv∂x+ yv∂y + zv∂z = yve1 +
xv
λ
e2 + (xyv + zv) e3

Its normal vector n in the base (ei)i=1,3 is

(3.1) n =
Xu ×Xv

∥Xu ×Xv∥
=

1

∥Xu ×Xv∥

 xu

λ (xyv + zv)− xv

λ (xyu + zu)
yv (xyu + zu)− yu (xyv + zv)

1
λ (yuxv − xuyv)


Before starting the determination of Killing magnetic flux surfaces in (H3, gH3),

we will confront to the resolution of PDEs, therefore, we use the following notation
and proposition.

Notation 3.1. Let x(u, v), y(u, v) and z(u, v) be a functions in R2. We denote by
the real functions ψ1,2,3 (u, v) =constant, the solution of ODEs

du

xu
= −dv

xv
,
du

yu
= −dv

yv
and

du

zu
= −dv

zv

respectively.

Proposition 3.1. Let f P and Q be a real functions with a respect to the param-
eters u, v. The solutions of the PDE

Pfu +Qfv = 0

are:
1. If P ≡ 0 (resp. Q = 0) then f (u, v) = f (u) (resp. f (u, v) = f (u))
2. f P,Q ̸= 0 then f (u, v) = φ (ψ (u, v)) where ψ (u, v) = cst is solution of ODE

du

P
= −dv

Q

and φ an arbitrary real function in u and v.

Proof. See the method to solve PDE in [12].

Theorem 3.1. Let M be a surface in (H3, gH3
) and X(u, v) = (x(u, v), y(u, v), z(u, v))

be its parametrization. Then M is a K1-flux surface of the Killing vector field K1

given in Eq.(2.6) if and only if

xvyu − xuyv = 0
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Proof. It’s a direct consequence by using the inner product, in the orthonormal
base (ei)i=1,3 defined in the Definition 3.1, of the normal vector n given from the
Eq.(3.1) and the Killing vector K1.

Proposition 3.2. All K1-flux surfaces in (H3, gH3
) are parameterized by

1. X(u, v) = (x(u, v), φ(ψ1(u, v)), z(u, v)),

2. X(u, v) = (φ(ψ2(u, v)), y(u, v), z(u, v)),

3. X(u, v) = (φ1(u), φ2 (u) , z(u, v))

4. X(u, v) = (φ1(v), φ2 (v) , z(u, v))

where x, z y and φ,φ1,2 are an arbitrary smooth functions in R2 and R, respectively.

Proof. Using the Notation 3.1 and the Proposition 3.1, the parameterizationsX(u, v)
is a general solution of the first order linear PDE given in the Theorem 3.1 for an ar-
bitrary functions x and y for the assertions 1 and 2, respectively. For the assertions
3 and 4, it’s direct consequence from assertions 1 of the Proposition 3.1.

Example 3.1. 1. Let x(u, v) = uv, from the Proposition 3.2, we have

du

v
= −dv

u

its solution is

(3.2) ψ1(u, v) = u2 + v2 = c constant

then the surface M1 parameterized by

X(u, v)=
(
uv, φ

(
u2 + v2

)
, z(u, v)

)
is K1-flux surface in (H3, gH3), where φ and z are an arbitrary smooth functions in R and
R2 respectively. (See Figure 3.1)

2. Let y(u, v) = (c+ a cos v) cosu, similarly, using the Proposition 3.2, we have

−du
(c+ a cos v) sinu

=
dv

a sin v cosu

its solution is

ψ2(u, v) = (2a sin v + cv) sinu = c constant

then the surface M2 parameterized by

X(u, v)= (φ ((2a sin v + cv) sinu) , (c+ a cos v) cosu, z(u, v))

is K1-flux surface in (H3, gH3), where φ and z are an arbitrary smooth functions in R and
R2, respectively.(See Figure 3.2)
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Fig. 3.1: K1-flux surface X(u; v) = (uv, sin(u2+v2), u3+v)) in (H3; gH3) presented
in (R3, geuc).

3.1.1. Scalar flux functions

Definition 3.2. Let f be a function on (N, g) . Then f is called a scalar flux
function corresponding to the magnetic vector field V if its value is constant on the
V -magnetic flux surface M , and

g (V,∇f) = 0

we denoted here f, to simplify, a V -magnetic scalar flux function. Moreover, if V
is magnetic and Killing, f is denoted by Killing V -magnetic scalar flux function.

Now, we can present the following theorem.

Theorem 3.2. Let M be a K1-magnetic flux surface in (H3, gH3). Then the func-
tion f given by

f (x, y, z) = ψ(xz − y)

and constant on M is K1-magnetic scalar flux function to M, where ψ is an arbitrary
smooth function in R.

Proof. Using the Definition 3.2 and the Lemma 3.1, we have

g (K1,∇f) = xfy + fz = 0

by solving the above first order PDE we get K1-magnetic scalar flux function f .

Example 3.2. Using the Example 3.1, we have the K1-magnetic flux surface M param-
eterized by X(u, v)=

(
uv, φ

(
u2 + v2

)
, z(u, v)

)
, where φ and z are an arbitrary smooth

functions. The K1-magnetic scalar flux function f to M, from the Theorem 3.2, is in
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Fig. 3.2: K1-Flux surface X(u, v) = (2 sin v sinu; cos v cosu; sinuv) in (H3, gH3)
presented in (R3, geuc).

the form f (x, y, z) = ψ(xz − y) and it must be constant on M, (i.e. f (X(u, v)) ≡ C a
constant). We have

f (X(u, v)) = ψ(uv z(u, v)− y
(
u2 + v2

)
)

by choosing the functions {
y = IdR

z(u, v) = u
v
+ v

u

we obtain

f (X(u, v)) = ψ(0) a constant

then f (x, y, z) = ψ(xz − y) is K1-magnetic scalar flux function to the magnetic K1-flux
surface M parameterized by X(u, v)=

(
uv, u2 + v2, u

v
+ v

u

)
given in Figures 3.3.

3.2. K2-Flux surfaces in (H3, gH3)

In this subsection, we characterise and present all K2-flux surfaces corresponding
to the Killing vector field K2 given in the Eq.(2.6).

Theorem 3.3. Let M be a surface in (H3, gH3
) and X(u, v) = (x(u, v), y(u, v), z(u, v))

be its parametrization. Then M is a K2-flux surface if and only if

xuzv − xvzu = 0

Proof. The proof is similar as the proof of the Theorem 3.1 using the Killing vector
K2 given in Eq.(2.6).
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Fig. 3.3: K1-Magnetic flux surface M parameterized by
X(u, v)=

(
uv, u2 + v2, uv + v

u

)
Proposition 3.3. All K1-flux surfaces in (H3, gH3

) are parameterized by

1. X(u, v) = (x(u, v), y(u, v), φ(ψ1(u, v))),

2. X(u, v) = (φ(ψ3(u, v)), y(u, v), z(u, v)),

3. X(u, v) = (φ1(u), y(u, v), φ2(u))

4. X(u, v) = (φ1(v), y(u, v), φ2 (v))

where x, z y and φ,φ1,2 are an arbitrary smooth functions in R2 and R, respectively.

Proof. The proof is similar to the proof of the Proposition 3.2.

Example 3.3. Let x(u, v) = uv, from the Proposition 3.2, the Notation 3.1 and a same
computation as the Example 3.1, we have

ψ1(u, v) = u2 + v2 = c constant

then the surface M parameterized by

X(u, v)=
(
uv, y(u, v), φ

(
u2 + v2

))
is K2-flux surface in (H3, gH3), where φ and u are an arbitrary smooth functions in R and
R2, respectively.

3.2.1. K2-Magnetic scalar flux functions

A same as Subsubsection 3.1.1., we have the following theorem.
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Theorem 3.4. Let M be a K2-magnetic flux surface in (H3, gH3
). Then the func-

tion f given by
f (x, y, z) = ψ(xy −

(
1 + x2

)
z)

and constant on M is K2-magnetic scalar flux function to M, where ψ is an arbitrary
real smooth function.

Proof. Using the Definition 3.2 and the Lemma 3.1, we have

g (K1,∇f) =
(
1 + x2

)
fy + xfz = 0 = 0

we get K2-magnetic scalar flux function f by solving the above linear first order
PDE.

Example 3.4. We want to determine the K1-magnetic scalar flux function f to M given
in Example 3.3. From the Theorem 3.4, the K1-magnetic scalar flux function is in the
form f (x, y, z) = ψ(xy−

(
1 + x2

)
z) and it must be constant on M, i.e. f (X(u, v)) ≡ C a

constant. We have

f (X(u, v)) = ψ(uv ∗ y(u, v)−
(
1 + u2v2

)
φ
(
u2 + v2

)
)

by choosing the functions

y =
c

uv
+

(
1

uv
+ uv

)
φ
(
u2 + v2

)
; c ∈ R

we obtain
f (X(u, v)) = ψ(c) a constant

then f is K2-magnetic scalar flux function to the K2-flux surface M parameterized by

X(u, v)=

(
uv,

c

uv
+

(
1

uv
+ uv

)
φ
(
u2 + v2

)
, φ

(
u2 + v2

))
where φ and c are real function and constant, respectively. We present M for c=1 and

φ (x) = sinx, in Figures 3.4.

3.3. K3-Flux surfaces in (H3, gH3
)

Similarly, as in the above subsections, we have the following theorem for K3-flux
surfaces.

Theorem 3.5. Let M be a surface in (H3, gH3
) and X(u, v) = (x(u, v), y(u, v), z(u, v))

be its parametrization. Then M is a K3-flux surface if and only if{
xuyv − xvyu = 0 and
yvzu − yuzv = 0

Proof. The proof is similar as the Theorem 3.1 using the Killing vector K3.
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Fig. 3.4: K2-flux surface M for K2-magnetic scalar flux function f

Proposition 3.4. The parametric surfaces in (H3, gH3
) with the parametrization

X(u, v) given by

1. X(u, v) =
(
x(u, v), φ1(ψ1(u, v)), φ2(ψ2(u, v))

)
,

2. X(u, v) = (φ1(ψ2(u, v)), y(u, v), φ2(ψ2(u, v))) ,

3. X(u, v) =
(
φ2(ψ2(u, v)), φ1(ψ3(u, v)), z(u, v)

)
are K3-flux surfaces, where x, y, z and φ1,2 are an arbitrary smooth functions in R2

and R, respectively and the real function ψ2 (u, v) =constant the solution of ODE

du

φ1(ψ1,3(u, v))u
= − dv

φ1(ψ1,3(u, v))v

for the assertions 1,3 respectively, and we assume that ∂(x,y,z)
∂(u,v) ̸= 0.

Proof. The PDEs of the Theorem 3.5 hold when the system

S :

{
yvzu − yuzv = 0
xuyv − xvyu = 0

vanish and using the same method in the Theorem 3.1 with the Notation 3.1 and
the Proposition 3.1, we get all K3-flux surfaces presented in the assertions 1, 3.

Example 3.5. We construct an example using the assertion 3 of the Proposition 3.4.
Let x(u, v) = u2 + v2, using the Propositions 3.1, 3.4 and the Notation 3.1, we have

du

2u
= −dv

2v
its solution is



986 M. H. Dida and F. Hathout

ψ1(u, v) = uv = c constant

and y(u, v) = φ1(uv). By chousing φ1(x) = x2, again, we have

du(
(uv)2

)
u

= − dv(
(uv)2

)
v

and
ψ2(u, v) = u2 + v2 = 0

then the surface M parameterized by

X(u, v)=
(
u2 + v2, (uv)2 , φ

(
u2 + v2

))
is K3-flux surface in (H3, gH3), where φ is an arbitrary smooth function. We present,
in (R3, geuc), the K3-flux surface X(u, v)=

(
u2 + v2, (uv)2 , ln

(
u2 + v2

))
in (H3, gH3) in

Figures 3.5.

Fig. 3.5: K3-Magnetic flux surface X(u, v)=
(
u2 + v2, (uv)

2
, ln

(
u2 + v2

))

3.3.1. K3-Magnetic Scalar flux functions

Similarly as Subsubsections 3.1.1. and 3.2.1., we have,

Theorem 3.6. Let M be a K3-magnetic flux surface in (H3, gH3). Then the func-
tion f given by

f (x, y, z) = ψ
(
λ2x2 + ln y2, λ2yx+ z

)
and constant on M is K3-magnetic scalar flux function to M, where ψ is an

arbitrary smooth function in R2.
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Proof. The proof is similar to the Theorems 3.2 and 3.4 proofs.

Example 3.6. Let y(u, v) = u + v, using the assertion 2 of the Proposition 3.4 and
similar computation as the the Example 3.5, we ge the K3-magnetic flux surface M in
(H3, gH3) parameterized by

X(u, v) = (φ1(u+ v), u+ v, φ2(u+ v))

where φ1,2 are an arbitrary smooth real functions. By choosing

φ1 ≡ IdR; φ2(x) = 2 lnx and ψ (x, y) = x− y + c (c ∈ R)

the function

f (x, y, z) = ψ
(
λ2x2 + ln y2, λ2yx+ z

)
= λ2x2 + ln y2 − λ2yx− z + c

is constant on K4-magnetic flux surface M parameterized by

X(u, v) = (u+ v, u+ v, 2 ln(u+ v))

in (H3, gH3), from the Theorem 3.6, f is K3-magnetic scalar flux function to M.

3.4. K4-Flux surfaces in (H3, gH3
)

Finally, as seen in the above subsections, we consider K4-flux surfaces in (H3, gH3
).

Theorem 3.7. Let M be a surface in (H3, gH3
) and X(u, v) = (x(u, v), y(u, v), z(u, v))

be its parametrization. Then M is a K4-flux surface if and only if

(
1

2
y2λ2 − 5

2
x2

)
(xuyv − xvyu)− x (xuzv − xvzu)− yλ2 (yuzv − yvzu) = 0

Proof. Using the Killing vectorK4, we get the proof with same proof as the Theorem
3.1.

Proposition 3.5. The parametric surfaces in (H3, gH3
) with the parametrization

X(u, v) given as

1. X(u, v) = (x(u, v), φ(ψ1(u, v)), φ(ψ1(u, v))) ,

2. X(u, v) = (φ(ψ2(u, v)), y(u, v), φ(ψ2(u, v))) ,

3. X(u, v) = (φ(ψ3(u, v)), φ(ψ3(u, v)), z(u, v))

4. X(u, v) =
(
φ(ψ3(u, v)),

±
√
5

λ φ(ψ3(u, v)), z(u, v)
)

5. X(u, v) =
(
x(u, v), ±

√
5

λ x(u, v), φ(ψ1(u, v))
)

are K4-flux surfaces, where x, y, z and φ are an arbitrary real smooth functions in

R2 and R respectively, and we assume that ∂(x,y,z)
∂(u,v) ̸= 0.
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Proof. Similarly as the Theorem 3.5, it’s not easy to solve the PDE of the Theorem
3.7. We can find some solutions when the systems

S1 :

 xuyv − xvyu = 0
xuzv − xvzu = 0
yuzv − yvzu = 0

or S2 :

 y ±
√
5

λ x = 0
xuzv − xvzu = 0
yuzv − yvzu = 0

vanish. Using the Notation 3.1 and the Proposition 3.1, the solutions of the system
S1 is

1. (x(u, v), φ(ψ1(u, v)), φ(ψ1(u, v))) ,

2. (φ(ψ2(u, v)), y(u, v), φ(ψ2(u, v))) ,

3. (φ(ψ3(u, v)), φ(ψ3(u, v)), z(u, v))

where φ is an arbitrary real function and ∂(x,y,z)
∂(u,v) ̸= 0. For the system S2, for an

arbitrary function z, the solutions of the equations (S2)2,3 are

x(u, v) = φ1(ψ3(u, v)) and y(u, v) = φ2(ψ3(u, v))

substituting the last equations in the equation (S2)1 , we get

φ2 = ±
√
5

λ
φ1

hence, the solution of (S2) is
(
φ1(ψ3(u, v)),

±
√
5

λ φ1(ψ3(u, v)), z(u, v)
)
, which prove

the assertion.
For an arbitrary function x, we have y = ±

√
5

λ x by the equation (S2)1 and the
equations (S2)2.3 become the same and

z(u, v) = φ(ψ1(u, v))

and similar result when we take an arbitrary function y. Then the solution of (S2)
is (

x(u, v), ±
√
5

λ x(u, v), φ(ψ1(u, v))
)

where ψ1,2 are given in the Notation 3.1 and φ is an arbitrary real function.

Example 3.7. 1. Let x(u, v) = sinuv, from the assertion 1 of Proposition 3.5 and the
Notation 3.1, we have

du

v
= −dv

u
its solution is

ψ1(u, v) = u2 + v2 = c constant

the surface M parameterized by

X(u, v) =
(
sinuv, φ(u2 + v2), φ(u2 + v2)

)
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Fig. 3.6: Planar K4-flux surface X(u, v)=
(
sinuv, cos(u2 + v2), cos(u2 + v2)

)
is K4-flux surface in (H3, gH3), where φ1,2 are an arbitrary smooth real functions.
We present in (R3, geuc), the K4-flux surface X(u, v)=

(
sinuv, cos

(
u2 + v2

)
, cos(u2 + v2)

)
in (H3, gH3) in Figure 3.6.

2. Let x(u, v) = u2 + v, similarly we have

du

2u
= −dv

its solution is
ψ1(u, v) = u− 2uv = c constant

the surface M parameterized by

X(u, v) =

(
u2 + v,±

√
5

λ

(
u2 + v

)
, φ(u− 2uv)

)
is Killing K4-flux surface in (H3, gH3), where φ is an arbitrary smooth real function. (see
Figure 3.7)

3.4.1. K4-Magnetic scalar flux functions

Following the Subsubsections 3.1.1., 3.2.1. and 3.3.1., we have,

Theorem 3.8. Let M be a K4-magnetic flux surface in (H3, gH3
). Then the func-

tion f given by

f (x, y, z) = ψ

((
3

4
x2 − 1

)
x2 +

(
1− λ2

2
x2

)
y2, x3 − λ2y2x+ 2yz

)
and constant on M is K4-magnetic scalar flux function to M, where ψ an arbitrary
smooth function.
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Fig. 3.7: Planar K4-flux surface X(u; v) =
(
u2 + v,

√
5
2

(
u2 + v

)
, sin(u− 2uv)

)
in

(H3; gH3) presented in (R3, geuc).

Proof. We get the proof a same as in the Theorems 3.2, 3.4 and 3.6.

Example 3.8. Let x(u, v) = u2 + v, from the Example 3.72, we ge the K4-magnetic flux
surface M in (H3, gH3) parameterized by

X(u, v) =

(
u2 + v,

√
5

λ

(
u2 + v

)
, φ(u− 2uv)

)
where φ is an arbitrary smooth real function. By choosing

λ =
√
5 and ψ(a, b) = ψ(a)

the function

f (x, y, z) = ψ

((
3

4
x2 − 1

)
x2 +

(
1− 3

4
x2

)
y2, x3 − 3

2
y2x+ 2yz

)
is K4-magnetic scalar flux function to K4-flux surface M parameterized by

X(u, v) =
(
u2 + v,

(
u2 + v

)
, φ(u− 2uv)

)
in (H3, gH3), here f (x, y, z) = ψ (0) a constant on M.

REFERENCES

1. A. H. Boozer: Physics of magnetically confined plasmas, Rev. Mod. Phys. 76(2004),
1071-1141.

2. M. Barros and A. Romero: Magnetic vortices, EPL 77(2007), 34002.



Killing Magnetic Flux Surfaces in Heisenberg Three-Group 991

3. R. B. Bird, W. E. Stewart and E. N. Lightfoot: Transport Phenomena, Wiley.
ISBN 0-471-07392-X, (1960).

4. W. Batat and A. Zaeim: On symmetries of the Heisenberg group,
arXiv:1710.04539v1.

5. L. Capogna, D. Danielli, S.D. Pauls and J.T. Tyson: An introduction to the
Heisenberg group and the sub-Riemannian isoperimetric problem. (Progress in Mathe-
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