FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 39, No 1 (2024), 21–31 https://doi.org/10.22190/FUMI220322001E Original Scientific Papere

ONE-SIDED GENERALIZED (α, β)−REVERSE DERIVATIONS OF ASSOCIATIVE RINGS

Ayşe Engin and Neşet Aydın

Department of Mathematics, Faculty of Science Canakkale Onsekiz Mart University, 17100 Canakkale, Turkiye

ORCID IDs: Ayşe Engin Neşet Aydın **https://orcid.org/0000-0002-1626-5498 https://orcid.org/0000-0002-7193-3399**

Abstract. In this paper, we introduce the notion of the one-sided generalized (α, β) reverse derivation of a ring R. Let R be a semiprime ring, ρ be a non-zero ideal of R, α be an epimorphism of ρ , β be a homomorphism of ρ (α be a homomorphism of $ρ, β$ be an epimorphism of $ρ$) and $γ : ρ \to R$ be a non-zero $(α, β)$ -reverse derivation. We show that there exists $F : \varrho \to R$, an *l*-generalized (α, β) -reverse derivation (an r-generalized (α, β) -reverse derivation) associated with γ iff $F(\rho), \gamma(\rho) \subset C_R(\rho)$ and F is an r-generalized (β, α) -derivation (an *l*-generalized (β, α) -derivation) associated with (β, α) -derivation γ on ρ . This theorem generalized the results of A. Aboubakr and S. Gonzalez proved in [1, Theorem 3.1, and Theorem 3.2].

Keywords: Semiprime ring, prime ring, one-sided generalized (α, β) −reverse derivation, (α, β) – reverse derivation.

1. Introduction

Throughout the paper, R is an associative ring with Z , which the center of R denotes. Recall that a ring R is prime if for any $r_1, r_2 \in R$, $r_1 R r_2 = (0)$ implies $r_1 = 0$ or $r_2 = 0$, and is a semiprime in case $r_1 \in R$, $r_1 R r_1 = (0)$ implies $r_1 = 0$. For $r_1, r_2 \in R$, $[r_1, r_2]$ denotes the element $r_1r_2 - r_2r_1$. The symbol $[r_1, r_2]$ stands for Lie commutator of r_1 and r_2 and it satisfies the basic commutator identities: for each $r_1, r_2, r_3 \in R$, $[r_1 + r_2, r_3] = [r_1, r_3] + [r_2, r_3]$, $[r_1, r_2 + r_3] = [r_1, r_2] + [r_1, r_3]$, $[r_1r_2, r_3] = r_1 [r_2, r_3] + [r_1, r_3] r_2$, $[r_1, r_2r_3] = [r_1, r_2] r_3 + r_2 [r_1, r_3]$. We denote the

Received March 22, 2022, revised: July 11, 2023, accepted: September 04, 2023

Communicated by Dijana Mosić

Corresponding Author: Ayşe Engin. E-mail addresses: ayseayraan@gmail.com (A. Engin), neseta@comu.edu.tr (N. Aydın)

²⁰¹⁰ Mathematics Subject Classification. Primary 16N60; Secondary 16W30

[©] 2024 by University of Niˇs, Serbia | Creative Commons License: CC BY-NC-ND

identity mapping of R by id_R ; that is, the mapping $id_R : R \to R$ is defined as $id_R(r_1) = r_1$, for all $r_1 \in R$. For a non-empty subset A of R, $C_R(A)$ is defined as $C_R(A) = \{r \in R : [r, x] = 0, \text{ for all } x \in A\}.$

Let α, β be any two mapping of R. An additive mapping $\delta : R \to R$ is called an (α, β) -derivation if $\delta(r_1r_2) = \delta(r_1)\alpha(r_2) + \beta(r_1)\delta(r_2)$ holds, for all $r_1, r_2 \in R$. An additive mapping $\varphi : R \to R$ is called a right generalized (α, β) –derivation (a left generalized (α, β) –derivation) of R associated with δ , if $\varphi(r_1r_2) = \delta(r_1)\alpha(r_2)$ + $\beta(r_1)\varphi(r_2)$ $(\varphi(r_1r_2) = \varphi(r_1)\alpha(r_2) + \beta(r_1)\delta(r_2))$, for all $r_1, r_2 \in R$ and φ is said to be a generalized (α, β) -derivation of R with δ if it is both a right and a left generalized (α, β) -derivation of R associated with δ .

Many authors have investigated the relationship between the commutativity of a ring and the act of derivation $((\alpha, \beta)$ -derivation, reverse derivation, (α, β) -reverse derivation, generalized reverse derivation, etc.) defined on the ring. Herstein (1957) was the first to introduce the concept of reverse derivation. An additive mapping $g: R \to R$ is a reverse derivation if $g(r_1r_2) = g(r_2)r_1 + r_2g(r_1)$, for all $r_1, r_2 \in R$. In [4], it is shown that if a prime ring R with a characteristic different from two admits non-zero reverse derivation g, then q is a derivation of R . An additive mapping $d: R \to R$ is an (α, β) –reverse derivation if $d(r_1r_2) = d(r_2)\alpha(r_1) + \beta(r_2)d(r_1)$, for all $r_1, r_2 \in R$. In [8], Chaudhry and Thaheem shown that if a semiprime ring R admits non-zero (α, β) -reverse derivation d, then d is (α, β) -reverse derivation of R. Here, α and β are automorphism of R. An additive mapping $H : R \to R$ is called l-generalized reverse derivation (r-generalized reverse derivation) In [1], A. Aboubakr and S. Gonzalez (2015) introduced one-sided generalized reverse derivation. An additive mapping $H : R \to R$ is called an *l*-generalized reverse derivation (r-generalized reverse derivation) if there exists a reverse derivation $g: R \to R$ such that $H(r_1r_2) = H(r_2)r_1 + r_2g(r_1)$ $(H(r_1r_2) = g(r_2)r_1 + r_2H(r_1)$, for all $r_1, r_2 \in R$. In [1], they have indicated that if a semiprime ring R admits nonzero one-sided generalized reverse derivation H associated with reverse derivation q, then H is a one-sided generalized derivation with associated derivation q . Reverse derivation, generalized reverse derivation, (α, β) -reverse derivation, generalized (α, β) -reverse derivation, multiplicative reverse derivation, multiplicative generalized reverse derivation, multiplicative (α, β) -reverse derivation, and multiplicative generalized (α, β) -reverse derivation of prime or semiprime rings have been studied by a lot of scholars in the literature. (see [2],[3],[4], [9],[10],[12],[13],[14],[15],[16].)

This paper extends the notion of one-sided reverse derivation to one-sided generalized (α, β) -reverse derivation.

Definition 1.1. Let R be a ring, α , β be a mapping of R, and γ be an (α, β) -reverse derivation of R. An additive mapping $F: R \to R$ is said to be an r-generalized (α, β) -reverse derivation of R associated with γ if

$$
F(r_1r_2) = \gamma(r_2)\alpha(r_1) + \beta(r_2)F(r_1)
$$

for all $r_1, r_2 \in R$, F is said to be an l–generalized (α, β) -reverse derivation of R associated with γ if

$$
F(r_1r_2) = F(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1)
$$

for all $r_1, r_2 \in R$ and F said to be a generalized (α, β) –reverse derivation of R associated with γ if it is both an r-generalized and l−generalized (α , β)-reverse derivation of R associated with γ .

When $\alpha = \beta = id_R$, an r-generalized (*l*-generalized) (α, β) -reverse derivation is a r-generalized (l-generalized) reverse derivation. Thus, the one-sided generalized reverse derivation is a special case of one-sided generalized (α, β) -reverse derivation.

This study consists of 2 parts. In the first part, we show that If R is a 2-torsion free semiprime ring, α, β are automorphisms of R, and $\gamma : R \to R$ is a non-zero (α, β) -reverse derivation, then γ is an (α, β) -derivation on R. With this result, we will show that the concepts of (α, β) -reverse derivation and (α, β) -derivation overlap in 2 torsion-free semiprime rings in which α and β are automorphisms of the ring. In the second part, we give a generalization of [1, Theorem 3.1, Theorem 3.2, and Corollary 3.3], which is the main result of the article. In that case, one-sided generalized (α, β) -reverse derivation and one-sided generalized (β, α) -derivation overlap in a semiprime ring where only one of α and β is an epimorphism of the ring. Thus we will show that the intersection of the set of all generalized (α, β) -derivation and the set of all generalized (α, β) -reverse derivation is different from the empty set. At the end of the paper, we showed that in case α is a homomorphism of R and β is an epimorphism of R; there is no non-zero generalized (α, β) -reverse derivation associated with (α, β) -reverse derivation of noncommutative prime ring R.

From now on, R is an associative ring, Z is the center of R, and $\alpha, \beta : R \to R$ are homomorphisms.

2. Preliminary

In this section, we give some auxiliary results that will need later. We begin our discussion with several examples related to (α, β) -reverse derivation and one-sided generalized (α, β) -reverse derivation.

Lemma 2.1. [7, Lemma 3] If the prime ring R contains a commutative non-zero right ideal I, then R is commutative.

Lemma 2.2. [7, Lemma 4] Let b and ab be in the center of a prime ring R. If b is not zero, then a is in Z, the center of R.

Lemma 2.3. [11, Corollary 2.1] Let R be a 2-torsion free semiprime ring, α , β be automorphisms of R and $L \nsubseteq Z(R)$ be a non-zero square-closed Lie ideal of R. If $\delta: R \to L$ satisfying

(2.1)
$$
(a^2)^{\delta} = a^{\delta} \alpha(a) + \beta(a) a^{\delta}, \text{ for all } a \in L
$$

and $a^{\delta}, \beta(a) \in L$, then δ is a (α, β) –derivation on L.

Example 2.1. Consider the ring $R = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{Z} \right\}$, where $\mathbb Z$ the ring of integers. Let us define $\alpha : R \to R$, $\beta : R \to R$, and $d : R \to R$ as follows:

$$
\alpha \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & a_{11} \end{array} \right]
$$
\n
$$
\beta \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} a_{22} & 0 \\ 0 & 0 \end{array} \right]
$$
\n
$$
d \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & a_{11} - a_{22} \\ 0 & 0 \end{array} \right]
$$

.

.

It is easy to check that d is both an (α, β) -reverse derivation and an (α, β) -derivation.

Example 2.2. Consider the ring $R = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{Z} \right\}$, where $\mathbb Z$ the ring of integers. Define the mappings $\alpha : R \to R$, $\beta : R \to R$, and $d : R \to R$ as follows:

$$
\alpha \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & a_{11} \end{array} \right]
$$
\n
$$
\beta \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} a_{22} & 0 \\ 0 & 0 \end{array} \right]
$$
\n
$$
d \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & -a_{12} \\ 0 & 0 \end{array} \right]
$$

It is easy to check that d is an (α, β) -reverse derivation. But d is not an (α, β) -derivation.

Example 2.3. Consider the ring $R = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{Z} \right\}$, where $\mathbb Z$ the ring of integers. Define the mappings $\alpha : R \to R$, $\beta : R \to R$, and $d : R \to R$ as follows:

$$
\alpha \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & a_{22} \end{array} \right]
$$
\n
$$
\beta \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} a_{11} & 0 \\ 0 & 0 \end{array} \right]
$$
\n
$$
d \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & a_{12} \\ 0 & 0 \end{array} \right].
$$

It is easy to check that d is an (α, β) -derivation. But d is not an (α, β) -reverse derivation.

Example 2.4. Let $(R_1, +, *)$ be a commutative ring and (R_2, \oplus, \otimes) be a noncommutative ring. Let's consider operation \otimes : $R_2 \times R_2 \to R_2$, $r \otimes s = s \otimes r$. With these operations (R_2, \oplus, \otimes) called opposite ring and it is shown R_2^{op} . α, β are homomorphisms of R_2 , δ : $R_2 \to R_2^{op}$ is an (β, α) -derivation, and φ : $R_2 \to R_2^{op}$ is a left generalized (β, α) –derivation with δ. Define the mappings $\tilde{\alpha}, \beta : R_2 \times R_1 \to R_2 \times R_1$, and $\widetilde{\delta}, \widetilde{\varphi}: R_2 \times R_1 \to R_2^{op} \times R_1$ as follows:

$$
\begin{aligned}\n\widetilde{\alpha}(r,s) &= (\alpha(r),s) \\
\widetilde{\beta}(r,s) &= (\beta(r),s) \\
\widetilde{\delta}(r,s) &= (\delta(r),s) \\
\widetilde{\varphi}(r,s) &= (\varphi(r),s).\n\end{aligned}
$$

Then it is straightforward to verify that $\tilde{\varphi}$ is an *l*−generalized (α, β) -reverse derivation with (α, β) –reverse derivation $\tilde{\delta}$ of $R_2 \times R_1$. But $\tilde{\varphi}$ is not a generalized (α, β) -derivation with (α, β) -derivation $\tilde{\delta}$ of $R_2 \times R_1$.

Example 2.5. Let $(R_1, +, *)$ and (R_2, \oplus, \otimes) be a rings as defined in example 2.4. Let α, β be homomorphisms of R_2 , $\delta: R_2 \to R_2^{op}$ be an (β, α) -derivation, and $\varphi: R_2 \to R_2^{op}$ be a right generalized (β, α) –derivation with δ . Define the mappings $\tilde{\alpha}, \tilde{\beta}: R_2 \times R_1 \to R_2 \times R_1$ and $\widetilde{\delta}, \widetilde{\varphi} : R_2 \times R_1 \to R_2^{op} \times R_1$ as follows:

$$
\begin{array}{rcl} \widetilde{\alpha}(r,s) & = & (\alpha(x),s) \\ \widetilde{\beta}(r,s) & = & (\beta(x),s) \\ \widetilde{\delta}(r,s) & = & (\delta(x),s) \\ \widetilde{\varphi}(r,s) & = & (\varphi(x),s) \, . \end{array}
$$

Then it is straightforward to verify that $\tilde{\varphi}$ is an r−generalized (α, β) -reverse derivation with (α, β) -reverse derivation $\widetilde{\delta}$ of $R_2 \times R_1$. But $\widetilde{\varphi}$ is not a generalized (α, β) -derivation with (α, β) -derivation $\tilde{\delta}$ of $R_2 \times R_1$.

3. (α, β) – Reverse Derivation

Theorem 3.1. Let R be a 2-torsion free semiprime ring, α, β be automorphisms of R. If $\gamma: R \to R$ is a non-zero (α, β) -reverse derivation, then γ is an (α, β) derivation on R.

Proof. Suppose that R is non-commutative ring. Let $r_1 \in R$. From the hypothesis, we get

$$
\gamma(r_1^2) = \gamma(r_1)\alpha(r_1) + \beta(r_1)\gamma(r_1).
$$

This equation ensures equality of (2.1) . We know that the ring R is a square closed Lie ideal of R. So, we can think of R instead of L in Lemma 2.3. Thus, γ is an (α, β) –derivation on R because of Lemma 2.3. While R is a commutative ring, (α, β) -reverse derivation of R is (α, β) -derivation of R. So, the proof ends. \square

Theorem 3.2. Let R be a semiprime ring, ρ is a non-zero two-sided ideal of R, α be an epimorphism of ρ and β be a homomorphism of ρ (or α be a homomorphism of $ρ$ and β be an epimorphism of $ρ$). There exists $γ: ρ \to R$ a non-zero $(α, β)$ -reverse derivation iff $\gamma(\rho) \subset C_R(\rho)$ and γ is (β, α) -derivation on ρ .

Proof. We only prove case of no parenthesis. The another one has the same argument. Let $x_1, x_2, x_3 \in \varrho$. Since γ is (α, β) −reverse derivation on ϱ , we have (3.1)

$$
\gamma(x_1x_2x_3) = \gamma(x_1(x_2x_3)) = \gamma(x_3)\alpha(x_2)\alpha(x_1) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_2)\beta(x_3)\gamma(x_1)
$$

and

(3.2)
\n
$$
\gamma(x_1x_2x_3) = \gamma((x_1x_2)x_3) = \gamma(x_3)\alpha(x_1)\alpha(x_2) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_3)\beta(x_2)\gamma(x_1).
$$

From (3.1) and (3.2),

(3.3)
$$
\gamma(x_3) [\alpha(x_1), \alpha(x_2)] = [\beta(x_3), \beta(x_2)] \gamma(x_1).
$$

Replacing x_3 by x_2 in (3.3),

 $\gamma(x_2)$ $\alpha(x_1), \alpha(x_2)$] = 0

for all $x_1, x_2 \in \rho$. Because α is an epimorphism of ρ , for each $x_1, x_2 \in \rho$, we get

(3.4)
$$
\gamma(x_2) [x_1, \alpha(x_2)] = 0.
$$

Take $r \in R$. Substituting x_1x_3r for x_1 in (3.4), we obtain $\gamma(x_2)x_1x_3[r, \alpha(x_2)]=0$, for all $x_1, x_2, x_3 \in \varrho, r \in R$. So implies that

$$
(3.5) \qquad \qquad \gamma(x_2)\varrho\varrho\left[R,\alpha(x_2)\right]=(0)
$$

for all $x_2 \in \rho$. Because ρ is a semiprime ring, it must contain a family ρ of prime ideals such that $\cap \rho = (0)$. Let ρ_{φ} be a typical member of this family and $x_2 \in \varrho$; by (3.5),

$$
\gamma(x_2)\varrho \subset \rho_{\varphi} \text{ or } [R, \alpha(x_2)] \subset \rho_{\varphi}.
$$

Let $M = \{x_2 \in \varrho : \gamma(x_2)\varrho \subset \rho_\varphi\}$ and $N = \{x_2 \in \varrho : [R, \alpha(x_2)] \subset \rho_\varphi\}$. Clearly, each group M and N is additive subgroup of ϱ such that $\varrho = M \cup N$. But a group cannot be a set union of two proper subgroups. Hence, $M = \varrho$ or $N = \varrho$. Since ρ_{φ} is ideal of ϱ , it holds that $\gamma(\varrho)\varrho[R,\alpha(\varrho)] \subset \rho_{\varphi}$. Thus $\gamma(\varrho)\varrho[R,\alpha(\varrho)] \subset \cap \rho = (0)$. Because α is an epimorphism of ϱ , it provides that $\gamma(\varrho)\varrho[R,\varrho] = 0$. Let $x_1, x_2, x_3 \in \varrho, r \in R$. Means that,

(3.6)
$$
\gamma(x_1)x_2 [r, x_3] = 0.
$$

Let $x_4 \in \varrho$. In (3.6), replacing r by $x_4\gamma(x_1)$ and x_3 by x_2 , we get

(3.7)
$$
\gamma(x_1)x_2x_4[\gamma(x_1), x_2] = 0.
$$

In (3.6), substituting x_2 by x_4 , we get $\gamma(x_1)x_4$ [r, x_3] = 0. In this equation replacing x_3 by x_2 , r by $\gamma(x_1)$ and multiply from the left by x_2 , it holds

(3.8)
$$
x_2 \gamma(x_1) x_4 [\gamma(x_1), x_2] = 0.
$$

From (3.7) and (3.8),

(3.9)
$$
[\gamma(x_1), x_2] x_4 [\gamma(x_1), x_2] = 0, \text{ for all } x_1, x_2, x_4 \in \varrho.
$$

Since ρ is a semiprime ring,

$$
[\gamma(x_1), x_2] = 0
$$
, for all $x_1, x_2 \in \varrho$.

That is $\gamma(\varrho) \subset C_R(\varrho)$. We get

$$
\gamma(x_1x_2) = \gamma(x_2)\alpha(x_1) + \beta(x_2)\gamma(x_1)
$$

$$
= \gamma(x_1)\beta(x_2) + \alpha(x_1)\gamma(x_2)
$$

for all $x_1, x_2 \in \varrho$. This means that γ is (β, α) -derivation on ϱ . The converse is trivial. \square

One-Sided Generalized (α, β)−Reverse Derivations of Associative Rings 27

If consider R instead of ρ in Theorem 3.2, we get

Corollary 3.1. Let R be a semiprime ring, α be an epimorphism of R and β be a homomorphism of R (or α be a homomorphism of R and β be an epimorphism of R). There exists $\gamma: R \to R$ a non-zero (α, β) -reverse derivation iff central γ is (β, α) -derivation on R.

Corollary 3.2. Let R be a prime ring, α be an epimorphism of R and β be a homomorphism of R (or α be a homomorphism of R and β be an epimorphism of R). There exists $\gamma: R \to R$ a non-zero (α, β) -reverse derivation iff R is commutative and γ is an (α, β) -derivation of R.

Proof. We only prove a case in which α is an epimorphism of R and β is a homomorphism of R. Another case has the similar argument. By Corollary 3.1, γ is a central (β, α) –derivation of R. Let $r_1, r_2 \in R$. It is clear that

$$
[\gamma(r_1r_2), \beta(r_2)] = 0.
$$

Applying Lie commutator features, we get

$$
[\gamma(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1), \beta(r_2)] = [\gamma(r_2)\alpha(r_1), \beta(r_2)] + [\beta(r_2)\gamma(r_1), \beta(r_2)]
$$

$$
= \gamma(r_2) [\alpha(r_1), \beta(r_2)] + [\gamma(r_2), \beta(r_2)] \alpha(r_1)
$$

$$
+ \beta(r_2) [\gamma(r_1), \beta(r_2)] + [\beta(r_2), \beta(r_2)] \gamma(r_1)
$$

for all $r_1, r_2 \in R$. In the last equation, since $\gamma(r_1), \gamma(r_2) \in Z$, we have

$$
\gamma(r_2) [\alpha(r_1), \beta(r_2)] = 0
$$

for all $r_1, r_2 \in R$. Let $r_3 \in R$. Since α is an epimorphism of R, we get

 $\gamma(r_2)r_3 [r_1, \beta(r_2)] = 0.$

Thus, for each $r_2 \in R$, we write

$$
\gamma(r_2)R[R,\beta(r_2)] = (0).
$$

By the primeness of R, for each $r_2 \in R$, we get

$$
\gamma(r_2) = 0 \text{ or } \beta(r_2) \in Z.
$$

Let $M = \{r_2 \in R : \gamma(r_2) = 0\}$ and $N = \{r_2 \in R : \beta(r_2) \in Z\}$. Clearly, each group M and N is additive subgroup of R such that $R = M \cup N$. But a subgroup cannot be a set union of two proper subgroups. Hence, $M = R$ or $N = R$. Since γ is a non-zero (α, β) –reverse derivation of R, it happens $\beta(R) \subset Z$. Since $\gamma(r_1r_2) \in Z$ and Z is a subring of R , we have

$$
\gamma(r_2)\alpha(r_1) \in Z, \text{ for all } r_1, r_2 \in R.
$$

In view of Lemma 2.2, for each $r_1 \in R$, we have $\alpha(r_1) \in Z$. In addition, since α is an epimorphism of R , we have R is commutative. Therefore, we conclude that

$$
\gamma(r_1r_2) = \gamma(r_2r_1) = \gamma(r_1)\alpha(r_2) + \beta(r_1)\gamma(r_2)
$$

for all $r_1, r_2 \in R$. This implies γ is an (α, β) -derivation of R. \Box

28 A. Engin and N. Aydın

4. One-Sided Generalized (α, β) – Reverse Derivation

Theorem 4.1. Let R be a semiprime ring, ρ is a non-zero two-sided ideal of R, α be an epimorphism of ρ , β be homomorphism of ρ and $\gamma : \rho \to R$ be a non-zero (α, β) -reverse derivation. There exists $F : \varrho \to R$, a l-generalized (α, β) -reverse derivation associated with γ iff $F(\rho), \gamma(\rho) \subset C_R(\rho)$ and F is r-generalized (β, α) derivation associated with (β, α) -derivation γ on ρ .

Proof. Let $x_1, x_2, x_3 \in \rho$. Using the definition of l-generalized (α, β) -reverse derivation one can easily see that

(4.1)
$$
F(x_1(x_2x_3)) = F(x_3)\alpha(x_2)\alpha(x_1) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_2)\beta(x_3)\gamma(x_1)
$$

and

$$
(4.2) \qquad F((x_1x_2)x_3) = F(x_3)\alpha(x_1)\alpha(x_2) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_3)\beta(x_2)\gamma(x_1)
$$

Combining (4.1) and (4.2) ,

(4.3)
$$
F(x_3) [\alpha(x_2), \alpha(x_1)] = [\beta(x_3), \beta(x_2)] \gamma(x_1).
$$

Substituting x_3 by x_2 in (4.3),

$$
F(x_2) [\alpha(x_2), \alpha(x_1)] = 0
$$

for all $x_1, x_2 \in \varrho$. Since α is an epimorphism of ϱ , for each $x_1, x_2 \in \varrho$, we have

(4.4)
$$
F(x_2) [\alpha(x_2), x_1] = 0.
$$

Taking $x_3 \in \varrho, r \in R$. Replacing x_1 by x_1x_3r in (4.4), $F(x_2)x_1x_3[\alpha(x_2), r] = 0$. For each $x_2 \in \varrho$, we have $F(x_2)\varrho\varrho[\alpha(x_2), R] = (0)$. Now, when similar steps are applied to the steps from equality (3.5) to equality (3.9), for each $x_1, x_2, x_3 \in \varrho$, we have $[F(x_1), x_2] x_3 [F(x_1), x_2] = 0$. Since ϱ is a semiprime ring,

$$
[F(x_1), x_2] = 0
$$

for all $x_1, x_2 \in \varrho$. That is $F(\varrho) \subset C_R(\varrho)$. Moreover, if γ is (α, β) –reverse derivation of R, then by Theorem 3.2, $\gamma(\varrho) \subset C_R(\varrho)$ and γ is an (β, α) –derivation on ϱ . Hence,

$$
F(x_1x_2) = F(x_2)\alpha(x_1) + \beta(x_2)\gamma(x_1)
$$

= $\gamma(x_1)\beta(x_2) + \alpha(x_1)F(x_2)$

for all $x_1, x_2 \in \rho$ and F is a r-generalized (β, α) -derivation associated with (β, α) – derivation γ on ϱ . The converse is a trivial. \square

Corollary 4.1. Let R be a semiprime ring, α be an epimorphism of R, β be homomorphism of R and $\gamma : R \to R$ be a non-zero (α, β) -reverse derivation. There exists $F: R \to R$, a l-generalized (α, β) -reverse derivation associated with γ iff $F(I), \gamma(I) \subset Z$ and F is r-generalized (β, α) -derivation associated with (β, α) derivation γ of R.

Theorem 4.2. Let R be a semiprime ring, ρ is a non-zero two-sided ideal of R, α be a homomorphism of ρ , β be an epimorphism of ρ and $\gamma : \rho \to R$ be a non-zero (α, β) -reverse derivation. There exists $F : \rho \to R$, a r-generalized (α, β) -reverse derivation associated with γ iff $F(\rho), \gamma(\rho) \subset C_R(\rho)$ and F is l–generalized (β, α) derivation associated with (β, α) -derivation γ on ρ .

Proof. By a similar proof in Theorem 4.1, desired is achieved. \square

Corollary 4.2. Let R be a semiprime ring, α be an homomorphism of R, β be an epimorphism of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. There exists $F: R \to R$, a r-generalized (α, β) -reverse derivation associated with γ iff $F(R), \gamma(R) \subset Z$ and F is l–generalized (β, α) -derivation associated with (β, α) derivation γ of R.

Theorem 4.3. Let R be a semiprime ring, α and β be an epimorphisms of R and $\gamma: R \to R$ be a non-zero (α, β) –reverse derivation. If there exists $F: R \to$ R, a non-zero l-generalized (α, β) -reverse derivation (r-generalized (α, β) -reverse derivation) associated with γ then R contains a non-zero central ideal.

Proof. Assume that $F: R \to R$ is a l-generalized (α, β) -reverse derivation associated with non-zero (α, β) -reverse derivation γ of R. From Corollary 4.1, it holds $\gamma(R), F(R) \subset Z$. For all $r_1, r_2 \in R$,

$$
[F(r_1r_2), \beta(r_2)] = 0
$$

is obtained. This means

$$
F(r_2)\left[\alpha(r_1), \beta(r_2)\right] = 0
$$

for all $r_1, r_2 \in R$. Because α is an epimorphism of R, for each $r_1, r_2 \in R$, we get $F(r_2) [r_1, \beta(r_2)] = 0$. Let r_3 . Replacing r_1 by r_1r_3 in $F(r_2) [r_1, \beta(r_2)] = 0$, we get

$$
F(r_2)r_1[r_3,\beta(r_2)]=0
$$

Now, when similar steps are applied to the steps from equality (3.5) to equality (3.9), for each $r_1, r_2, r_3 \in R$, we have $F(r_1) [r_2, \beta(r_3)] = 0$. Because β is an epimorphism of *R*, we get $F(r_1) [r_2, r_3] = 0$. That is

$$
[F(r_1)r_2, r_3] = 0
$$

for all $r_1, r_2, r_3 \in R$. This means $F(R)R \subset Z$. Since F is non-zero l–generalized (α, β) –reverse derivation and R is semiprime, $F(R)R \neq (0)$. $F(R)R$ is obviously central ideal of R. The proof has a similar argument if F is r−generalized (α, β) –reverse derivation of R. \square

Corollary 4.3. Let R be a semiprime ring, α and β be an epimorphisms of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. If there exists $F: R \to R$, a non-zero generalized (α, β) -reverse derivation associated with γ then R contains a non-zero central ideal.

Corollary 4.4. Let R be a prime ring, α and β be an epimorphisms of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. If there exists $F: R \to R$, a nonzero generalized (α, β) -reverse derivation associated with d then R is commutative ring and F is a generalized (α, β) -derivation associated with an (α, β) -derivation γ of R.

Theorem 4.4. Let R be a noncommutative prime ring, α be a homomorphism of R and β be an epimorphism of R. If $F: R \to R$ is a generalized (α, β) -reverse derivation associated with non-zero (α, β) -reverse derivation γ of R then $F = \gamma$.

Proof. Assume that $F: R \to R$ is a generalized (α, β) -reverse derivation associated with non-zero (α, β) -reverse derivation γ of R. Let $r_1, r_2 \in R$. Then,

$$
F(r_1r_2) = F(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) = \gamma(r_2)\alpha(r_1) + \beta(r_2)F(r_1).
$$

That is,

$$
(F - \gamma)(r_2)\alpha(r_1) - \beta(r_2)(F - \gamma)(r_1) = 0.
$$

Let us introduce mapping $\varphi : R \to R$, $\varphi(r_1) = (F - \gamma)(r_1)$. Moreover, the last equation implies that

(4.5)
$$
\varphi(r_2)\alpha(r_1) = \beta(r_2)\varphi(r_1).
$$

Let $r_1, r_2 \in R$. Since F is an r-generalized (α, β) -reverse derivation (l- of generalized (α, β) -reverse derivation) R and γ is an (α, β) -reverse derivation of R, the mapping φ respectively ensures:

$$
\varphi(r_1r_2) = (F - \gamma)(r_1r_2) = \gamma(r_2)\alpha(r_1) + \beta(r_2)F(r_1) - \gamma(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) \n= \beta(r_2)\varphi(r_1)
$$

and

$$
\varphi(r_1r_2) = (F - \gamma)(r_1r_2) = F(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) - \gamma(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) \n= \varphi(r_2)\alpha(r_1).
$$

That is,

(4.6)
$$
\varphi(r_1r_2) = \beta(r_2)\varphi(r_1).
$$

(4.7)
$$
\varphi(r_1r_2) = \varphi(r_2)\alpha(r_1).
$$

Let $r_3 \in R$. Writing r_2r_3 by r_2 in (4.5), we get

$$
\varphi(r_2r_3)\alpha(r_1) - \beta(r_2r_3)\varphi(r_1) = 0.
$$

In the last equality, using (4.6) and (4.7) , we get

$$
\beta([r_3,r_2])\varphi(r_1)=0
$$

for all $r_1, r_2, r_3 \in R$. Because β is an epimorphism, for each $r_1, r_2, r_3 \in R$, we have $[r_3, r_2] \varphi(r_1) = 0$. Given that R is a noncommutative prime ring, we get $\varphi = 0$. That is, $F = \gamma$. \Box

Acknowledgment

This paper is derived from the first author's doctoral dissertation supervised by the second author.

REFERENCES

- 1. A. ABOUBAKR and S. GONZALEZ: (α, β) reverse derivation on semiprime rings. Siberian Mathematical Journal $56(2)$ (2015), 199–205.
- 2. A. Ali and A. Bano: Multiplicative (generalized) reverse derivations on semiprime ring. European Journal of Pure and Applied Mathematics 11(3) (2018), 717–729.
- 3. C. J. S. REDDY, N. SUBBARAYUDU and C. V. S. R. REDDY: A Note on multiplicative (generalized)-(α , β)-reverse derivations on left Ideals in prime rings. Global Journal of Pure and Applied Mathematics 18(2) (2022), 425–431.
- 4. G. S. Sandhu and D. Kumar: Annihilator conditions of multiplicative reverse derivations on prime rings. International electronic journal of algebra $25(25)$ (2019), 87–103.
- 5. I. N. Herstein: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8(6) (1957), 1104–1110.
- 6. I. N. Herstein: Rings with involution. The University of Chicago Press, 1976.
- 7. J. H. Mayne: Centralizing mappings of prime rings. Canad. Math. Bull. 27(1) (1984), 122–126.
- 8. M. A. CHAUDHRY and A. B. THAHEEM: $On (\alpha, \beta)-derivations of semiprime rings II$. Demonstratıo Mathematica 37(4) (2004), 793–802.
- 9. M. S. Samman and A. B. Thaheem: Derivations on semiprime rings. Int. Journal of Pure and Applied Math. 2(4) (2003), 465–472.
- 10. M. S. Samman and N. Alyamani: Derivations and reverse derivations in semiprime rings. Int. Math. Forum 39(2) (2007), 1895–1902.
- 11. N. U. REHMAN and E. K. SÖĞÜTÇÜ: Lie ideals and jordan Triple (α, β) −derivations in rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. $69(1)$ (2020), 528–539.
- 12. S. K. Tiwari, R. K. Sharma and B. Dhara: Some theorems of commutativity on semiprime rings with mappings. Southeast Asian Bull. Math $42(2)$ (2018), 279-292.
- 13. S. Huang: Generalized reverse derivations and commutativity of prime rings. Communications in Mathematics 27 (2019), 43–50.
- 14. Y. AHMED and M. ASLAM: On diversity of generalized reverse derivations in rings. Journal of Mechanics of Continua and Mathematical Sciences 15(6) (2020), 118–126.
- 15. Z. Z. M. ALHAIDARY and A. H. MAJEED: Square closed Lie ideals and multiplicative (generalized) (α, β) reverse derivation of prime rings. Journal of Discrete Mathematical Sciences & Cryptography $24(7)$ (2021), 2037–2046.
- 16. Z. Z. M. Alhaidary and A. H. Majeed: Commutativity results for multiplicative (generalized) (α, β) reverse derivations on prime rings. Iraqi Journal of Science 62(9) (2021), 3102–3113.