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Abstract. This paper deals with the study of generalized Cauchy-Riemann (in short,
GCR) screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds giving
a characterization theorem with some non-trivial examples of such submanifolds. Inte-
grability conditions of distributions D1, D2, D

′
1 and D′

2 on GCR screen pseudo-slant
lightlike submanifolds of indefinite Sasakian manifolds have been obtained. Further-
more, we obtain necessary and sufficient conditions for foliations determined by the
above distributions to be totally geodesic.
Keywords: Radical distribution, screen distribution, lightlike transversal vector bun-
dle, screen transversal vector bundle, pseudo-slant lightlike submanifolds, Gauss and
Weingarten formulae.

1. Introduction

Riemannian and semi-Riemannian geometries have been active as well as in-
teresting areas of research work in differential geometry. In the present time, the
geometry of manifolds and their submanifolds used by most of the branches of
mathematics and physics. Indeed, lightlike geometry has its applications in general
relativity as some smooth parts of event horizons of the Kruskal-Kerr black holes.
As we know, the properties of a manifold depend on the metric which depened
on it. We study manifolds with positive definite metric in Riemannian geometry.
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A lightlike submanifold M of a semi-Riemannian manifold M̄ is a submanifold on
which the induced metric is degenerate.

Actually, the theory of lightlike submanifolds of a semi-Riemannian manifold
was introduced by Duggal and Bejancu in 1996 (see [13]). Moreover, Chen et al.
defined bi-slant submanifolds in Kaehler manifolds (see [21]). In (see [11], [12]) the
geometry of slant and semi-slant submanifolds of Kaehler manifolds was studied by
Cabrerizo and his coauthors. A. Lotta coined the notion of slant immersion of a
Riemannian manifold into an almost contact metric manifold.

Furthermore, A. Carriazo introduced bi-slant submanifolds of almost Hermitian
and almost contact metric manifolds and later the notion of pseudo-slant subman-
ifolds was generalized by him. Recently in 1994, the notion of slant submanifold
by semi-slant submanifolds of Kaehler manifolds was extended by N. Papaghuic
(see [18]). In (see [2], [4]), Sahin studied the geometry of slant and screen-slant
lightlike submanifolds of indefinite Hermitian manifolds. The theory of slant, CR
lightlike submanifolds, SCR lightlike submanifolds of indefinite Kaehler manifolds
and indefinite Sasakian manifolds has been studied in (see [13], [14]).

The main objective of the present paper is to introduce the notion of GCR screen
pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. The paper is
arranged as follows : In section 2, we collected some useful basic results and formu-
laes. Section 3 focused on the study GCR screen pseudo-slant lightlike submanifolds
of an indefinite Sasakian manifold with example. Section 4 is dedicated to the study
of foliations determined by distributions on GCR screen pseudo-slant lightlike sub-
manifolds of indefinite Sasakian manifolds.

2. Preliminaries

The notation and formulas used in this paper are followed by (see [12]). A
submanifold (Mm, g) immersed in a semi-Riemannian manifold (M̄m+n, ḡ) is called
a lightlike submanifold in which induced metric g from ḡ is degenerate and the rank
of radical distribution Rad(TM) is r, where 1 ≤ r ≤ m. RadTM = TM ∩ TM⊥,
where

TM⊥ =
⋃

x∈M{u ∈ TxM̄ : ḡ(u, v) = 0, ∀v ∈ TxM}.

Now we consider the tangent bundle TM splits orthogonally into a non-degenerate
distribution S(TM), called screen distribution and a degenerate (radical) distribu-
tion Rad(TM), called radical distribution, i.e.

(2.1) TM = Rad(TM)⊕orth S(TM).

Let S(TM⊥) be a semi-Riemannian complementary vector bundle of Rad(TM)
in TM⊥, called screen transversal vector bundle. Since for any local basis {ξi}
of Rad(TM) there exists a local null frame {Ni} of sections with values in the
orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that ḡ(ξi, Nj) = δij and
ḡ(Ni, Nj) = 0, it follows that there exists a lightlike transversal vector bundle
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ltr(TM) locally spanned by {Ni}. Now suppose that the transversal bundle tr(TM)
splits orthogonally into lightlike transversal vector bundle ltr(TM) and screen
transversal vector bundle S(TM⊥),

(2.2) tr(TM) = ltr(TM)⊕orth S(TM⊥).

Then, tr(TM) is a complementary which is not orthogonal vector bundle to TM
in TM̄ |M , i.e.

(2.3) TM̄ |M = TM ⊕ tr(TM).

and therefore

(2.4) TM̄ |M = S(TM)⊕orth [Rad(TM)⊕ ltr(TM)]⊕orth S(TM⊥).

Although S(TM) is not unique but it is canonically isomorphic to the factor
vector bundle TM/RadTM (see [13]).

Following result is important to this paper.

Proposition 2.1. [14] The lightlike second fundamental forms of a lightlike sub-
manifold M do not depend on S(TM), S(TM⊥) and ltr(TM).

Following this, we say that a submanifold (M, g, S(TM), S(TM⊥)) of M̄ is
Case 1: r-lightlike if r ⩽ min(m,n),
Case 2: co-isotropic if r = n ⩽ m, S(TM⊥) = {0},
Case 3: isotropic if r = m ⩽ n, S(TM) = {0},
Case 4: totally lightlike if r = m = n, S(TM) = S(TM⊥) = {0}.

The Gauss and Weingarten formulae are given as

(2.5) ∇̄XY = ∇XY + h(X,Y ),

(2.6) ∇̄XV = −AV X +∇t
XV.

for all X,Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where {∇XY,AV X} belong to Γ(TM)
and {h(X,Y ),∇t

XV } belong to Γ(tr(TM)). Here, ∇ and ∇t are linear connections
on M and on the vector bundle tr(TM) respectively. The second fundamental form
h is a symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM)) and the
shape operator AV is a linear endomorphism of Γ(TM). From (2.5) and (2.6) we
have

(2.7) ∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∀ X,Y ∈ Γ(TM).

(2.8) ∇̄XN = −ANX +∇l
XN +Ds(X,N), ∀ N ∈ Γ(ltr(TM)).

(2.9) ∇̄XW = −AWX +Dl(X,W ) +∇s
XW, ∀ W ∈ Γ(S(TM⊥)).
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where hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), Dl(X,W ) = L(∇t
XW ),

Ds(X,N) = S(∇t
XN), L and S are the projection morphisms of tr(TM) on

ltr(TM) and S(TM⊥) respectively. Thus hl and hs are Γ(ltr(TM))-valued and
Γ(S(TM⊥))-valued lightlike second fundamental form and screen second fundamen-
tal form of M respectively. On the other hand, ∇l and ∇s are linear connections on
ltr(TM) and S(TM⊥) called the lightlike connection and screen transversal con-
nection on M respectively. Now by using (2.5), (2.7)-(2.9) and metric connection
∇̄, we obtain

(2.10) ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX),

(2.11) ḡ(Ds(X,N),W ) = g(N,AWX),

Suppose P̄ is the projection of TM on S(TM). Then from the decomposition
of the tangent bundle of a lightlike submanifold, we have

(2.12) ∇X P̄ Y = ∇∗
X P̄ Y + h∗(X, P̄Y ), ∀ X,Y ∈ Γ(TM),

(2.13) ∇Xξ = −A∗
ξX +∇∗t

Xξ, ξ ∈ Γ(Rad(TM)),

where {∇∗
X P̄ Y,−A∗

ξX} and {h∗(X, P̄Y ),∇∗t
Xξ} belong to Γ(S(TM)) and

Γ(Rad(TM)) respectively. It follows that ∇∗ and ∇∗t are linear connections on
S(TM) and Rad(TM) respectively. On the other hand, h∗ and A∗ are called the sec-
ond fundamental forms of distributions S(TM) and Rad(TM) respectively, which
are Γ(Rad(TM))-valued and Γ(S(TM))-valued F (M)-bilinear forms on Γ(TM) ×
Γ(S(TM)) and Γ(Rad(TM))×Γ(TM) respectively. Now by using the above equa-
tions, we obtain

(2.14) ḡ(hl(X, P̄Y ), ξ) = g(A∗
ξX, P̄Y ),

(2.15) ḡ(h∗(X, P̄Y ), N) = g(ANX, P̄Y ),

(2.16) ḡ(hl(X, ξ), ξ) = 0, A∗
ξξ = 0.

Here the induced connection ∇ on M is not a metric connection in general.
Since ∇̄ is a metric connection, by using (2.7) we get

(2.17) (∇Xg)(Y,Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ).

An odd dimensional semi-Riemannian manifold (M̄, ḡ) is called an ϵ-almost con-
tact metric manifold if there exists a (1, 1) tensor field ϕ, a vector field V called
characteristic vector field and a 1-form η, satisfying

(2.18) ϕ2X = −X + η(X)V, η(V ) = ϵ, ηoϕ = 0, ϕV = 0,
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(2.19) ḡ(ϕX, ϕY ) = ḡ(X,Y )− ϵη(X)η(Y ),

for all X,Y ∈ Γ(TM̄), where ϵ = 1 or −1. It follows that

(2.20) ḡ(V, V ) = ϵ,

(2.21) ḡ(X,V ) = η(X),

(2.22) ḡ(X,ϕY ) = ḡ(ϕX, Y ), ∀X,Y ∈ Γ(TM̄).

Then (ϕ, V, η, ḡ) is called an ϵ-almost contact metric structure on M̄ . An ϵ-
almost contact metric structure (ϕ, V, η, ḡ) is called an indefinite Sasakian structure
if and only if

(2.23) (∇̄Xϕ)Y = ḡ(X,Y )V − ϵη(Y )X,

for all X,Y ∈ Γ(TM̄), where ∇̄ is Levi-Civita connection with respect to ḡ.

An indefinite Sasakian manifold is a semi-Riemannian manifold endowed with
an indefinite Sasakian structure. From (2.23), for any X ∈ Γ(TM̄), we get

(2.24) ∇̄XV = −ϕX.

Suppose (M̄, ḡ, ϕ, η, V ) be an ϵ-almost contact metric manifold. If ϵ = 1, then
M̄ is said to be a spacelike ϵ-almost contact metric manifold and if ϵ = −1, then
M̄ is called a timelike ϵ-almost contact metric manifold. In this paper, we consider
indefinite Sasakian manifolds with spacelike characteristic vector field V .

3. Generalized Cauchy-Riemann Screen Pseudo-slant Lightlike
Submanifolds

The notion of Generalized Cauchy-Riemann (GCR) screen pseudo-slant lightlike
submanifolds of indefinite Sasakian manifolds is introduced in this section. At first,
we state the following lemma which was proved by Sahin ([14]). We shall use this
lemma in defining the notion of GCR screen pseudo-slant lightlike submanifolds of
indefinite Sasakian manifolds.

Lemma 3.1. [14] Let M be a q-lightlike submanifold of an indefinite Sasakian man-
ifold M̄ of index 2q. Suppose that there exists a screen distribution S(TM) such that
ϕRad(TM) ⊂ S(TM) and ϕltr(TM) ⊂ S(TM). Then ϕRad(TM) ∩ ϕltr(TM) =
{0} and any complementry distribution to ϕRad(TM) ⊕ ϕltr(TM) in S(TM) is
Riemannian.

The proof of above lemma follows as in Lemma 4.1 of [4], so we omit it.
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Definition 3.1. [14] Let M be a q-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index 2q such that 2q < dim(M). Then we say that M is a general-
ized Cauchy-Riemann screen pseudo-slant lightlike submanifold of M̄ if the following
conditions are satisfied:
(i) ϕRad(TM) is a distribution on M such that

Rad(TM) = D1 ⊕D2,

where ϕD1 ⊂ S(TM) and ϕD2 ⊂ S(TM⊥). Furthermore, we have ltr(TM) =
L1 ⊕ L2 where ϕL1 ⊂ S(TM) and ϕL2 ⊂ S(TM⊥),
(ii) there exist non-degenerate orthogonal distributions D′

1 and D′
2 on M such that

S(TM) = (ϕD1 ⊕ ϕL1)⊕orth D′
1 ⊕orth D′

2 ⊕orth {V },

where L1 is a distribution of ltr(TM),
(iii) the distribution D′

1 is anti-invariant, i,e. ϕD′
1 ⊂ S(TM⊥),

(v) the distribution D′
2 is slant with angle θ, i.e. for each x ∈ M and each non-zero

vector X ∈ (D′
2)x. This slant angle θ between ϕX and the vector subspace (D′

2)x
is a non-zero constant, which is not depend on the choice of x ∈ M and X ∈ (D′

2)x.

A GCR screen pseudo-slant lightlike submanifold is said to be proper if D′
1 ̸=

{0}; D′
2 ̸= {0} and θ ̸= π/2.

From the above definition, we have the following decomposition:

TM = Rad(TM)⊕orth (ϕD1 ⊕ ϕL1)⊕orth D′
1 ⊕orth D′

2 ⊕orth {V }.

Let (R2m+1
2q , ḡ, ϕ, η, V ) denote the manifold R2m+1

2q with its usual Sasakian struc-
ture given by

η =
1

2
(dz −

m∑
i=1

yi∂xi), V = 2∂z,

ḡ = η ⊗ η +
1

4
(−

q∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi +

m∑
i=q+1

dxi ⊗ dxi + dyi ⊗ dyi),

ϕ(

m∑
i=1

(Xidxi + Yidyi) + Z∂z) =

m∑
i=1

(Yi∂xi −Xi∂yi) +

m∑
i=1

Yiy
i∂z,

where (xi, yi, z) are the cartesian coordinates on R2m+1
2q . Now, we construct

some examples of GCR screen pseudo-slant lightlike submanifolds of an indefinite
Sasakian manifold.

Example 3.1. Let (R17
4 , ḡ, ϕ, η, V ) be an indefinite Sasakian manifold, where ḡ is of

signature (−,−,+,+,+,+,+,+,−,+,−,+,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂y1, ∂y2, ∂y3.∂y4, ∂y5, ∂y6,
∂y7, ∂y8, ∂z}. Suppose M is a submanifold of R17

4 given by x1 = − cosu2, y
1 = sinu2,
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x2 = u1, y2 = u3 − u4

2
, x3 = u2, y3 = 0, x4 = u1, y4 = u3 +

u4

2
, x5 = y6 = u5,

y5 = x6 = u6, x
7 = u7, y

7 = u8, x
8 = k sinu8, y

8 = k cosu8, z = u9 where k is a constant.
The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9}, where

Z1 = 2(∂x2 + ∂x4 + y2∂z + y4∂z),

Z2 = 2(sinu2∂x1 + cosu2∂y1 + ∂x3 + y1 sinu2∂z + y3∂z),

Z3 = 2(∂y2 + ∂y4),

Z4 = (−∂y2 + ∂y4),

Z5 = 2(∂x5 + ∂y6 + y5∂z),

Z6 = 2(∂x6 + ∂y5 + y6∂z),

Z7 = 2(∂x7 + y7∂z),

Z8 = 2(∂y7 + k cosu8∂x8 − k sinu8∂y8 + y8k cosu8∂z),

Z9 = 2(∂z) = V.

Hence Rad(TM) = span{Z1, Z2}. Also it is easy to see that D1 = span{Z1} and D2 =
span{Z2}, where ϕZ1 = −Z3 ∈ Γ(S(TM)) and ϕZ2 = W2 ∈ Γ(S(TM⊥)). Moreover
S(TM) = span{Z3, Z4, Z5, Z6, Z7, Z8, Z9}, where we can see that D′

1 = span{Z5, Z6}
such that ϕZ5 = W3, ϕZ6 = W4, which implies that D′

1 is anti-invariant with respect to
ϕ. Also D′

2 = span{Z7, Z8} is slant distribution with slant angle θ = cos−1(1/
√
1 + k2).

On the other hand the lightlike transversal bundle ltr(TM) is spanned by

N1 = (−∂x2 + ∂x4 − y2∂z + y4∂z),

N2 = (− sinu2∂x1 − cosu2∂y1 + ∂x3 − y1 sinu2∂z + y3∂z).

From this we have ltr(TM) = span{N1, N2}, where L1 = span{N1} and L2 = span{N2}.
Here ϕN1 = −Z4 ∈ Γ(S(TM)) and ϕN2 = W1 ∈ Γ(S(TM⊥)). Also S(TM⊥) is spanned
by

W1 = 2(cosu2∂x1 − sinu2∂y1 − ∂y3 + y1 cosu2∂z),

W2 = 2(− cosu2∂x1 + sinu2∂y1 − ∂y3 − y1 cosu2∂z),

W3 = 2(∂x6 − ∂y5 + y6∂z),

W4 = 2(∂x5 − ∂y6 + y5∂z),

W5 = 2(u7 cosu8∂x8 + u7 sinu8∂y8 + y8u7 cosu8∂z),

W6 = 2(k2∂y7 + k cosu8∂x8 − k sinu8∂y8 + y8k cosu8∂z).

Hence M is a proper GCR screen pseudo-slant 2-lightlike submanifold of R17
4 .

Example 3.2. Let (R17
4 , ḡ, ϕ, η, V ) be an indefinite Sasakian manifold, where ḡ is of

signature (−,−,+,+,+,+,+,+,−,+,−,+,+,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5,
∂y6, ∂y7, ∂y8, ∂z}. Suppose M is a submanifold of R17

4 given by x1 = sinu2, y
1 = − cosu2,

x2 = u1, y2 = u3 − u4

2
, x3 = u2, y3 = 0, x4 = u1, y4 = u3 +

u4

2
, x5 = y6 = u5,

y5 = x6 = u6, x
7 = u7, y

7 = u8, x
8 = k cosu8, y

8 = k sinu8, where k is a constant. The
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local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9}, where

Z1 = 2(∂x2 + ∂x4 + y2∂z + y4∂z),

Z2 = 2(cosu2∂x1 + sinu2∂y1 + ∂x3 + y1 cosu2∂z + y3∂z),

Z3 = 2(∂y2 + ∂y4),

Z4 = (−∂y2 + ∂y4),

Z5 = 2(∂x5 + ∂y6 + y5∂z),

Z6 = 2(∂x6 + ∂y5 + y6∂z),

Z7 = 2(∂x7 + y7∂z),

Z8 = 2(∂y7 − k sinu8∂x8 + k cosu8∂y8 − y8k sinu8∂z),

Z9 = 2(∂z) = V.

Hence Rad(TM) = span{Z1, Z2}. Also it is easy to see that D1 = span{Z1} and D2 =
span{Z2}, where ϕZ1 = −Z3 ∈ Γ(S(TM)) and ϕZ2 = W2 ∈ Γ(S(TM⊥)). Moreover
S(TM) = span{Z3, Z4, Z5, Z6, Z7, Z8}, where we can see that D′

1 = span{Z5, Z6} such
that ϕZ5 = W3, ϕZ6 = W4, which implies that D′

1 is anti-invariant with respect to ϕ. Also
D′

2 = span{Z7, Z8} is slant distribution with slant angle θ = cos−1(1/
√
1 + k2). On the

other hand the lightlike transversal bundle ltr(TM) is spanned by

N1 = (−∂x2 + ∂x4 − y2∂z + y4∂z),

N2 = (− cosu2∂x1 − sinu2∂y1 + ∂x3 − y1 cosu2∂z + y3∂z).

From this we have ltr(TM) = span{N1, N2}, where L1 = span{N1} and L2 = span{N2}.
Here ϕN1 = −Z4 ∈ Γ(S(TM)) and ϕN2 = W1 ∈ Γ(S(TM⊥)). Also S(TM⊥) is spanned
by

W1 = 2(− sinu2∂x1 + cosu2∂y1 − ∂y3 − y1 sinu2∂z),

W2 = 2(sinu2∂x1 − cosu2∂y1 − ∂y3) + y1 sinu2∂z,

W3 = 2(∂x6 − ∂y5 + y6∂z),

W4 = 2(∂x5 − ∂y6 + y5∂z),

W5 = 2(u7 cosu8∂x8 + u7 sinu8∂y8 + y8u7 cosu8∂z),

W6 = 2(k2∂y7 − k sinu8∂x8 + k cosu8∂y8 − y8k sinu8∂z).

Hence M is a proper GCR screen pseudo-slant 2-lightlike submanifold of R17
4 .

Now, for any vector field X tangent to M , we put

(3.1) ϕX = PX + FX,

where PX and FX are the tangential and transversal parts of ϕX respectively. We
denote the projections on D1, D2, ϕD1, ϕL1, D

′
1 and D′

2 in TM by P1, P2, P3, P4,
P5 and P6 respectively. Similarly, we denote the projections of tr(TM) on ltr(TM)
and S(TM⊥) by Q and R respectively. Thus, for any X ∈ Γ(TM), we get

(3.2) X = P1X + P2X + P3X + P4X + P5X + P6X + η(X)V,

Now applying ϕ to (3.2), we have

(3.3) ϕX = ϕP1X + ϕP2X + ϕP3X + ϕP4X + ϕP5X + ϕP6X,
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which gives

(3.4) ϕX = ϕP1X + ϕP2X + ϕP3X + ϕP4X + ϕP5X + fP6X + FP6X,

where fP6X and FP6X denotes the tangential and transversal component of ϕP6X.
Thus we get ϕP1X ∈ Γ(S(TM)), ϕP2X ∈ Γ(ϕD2) ⊂ Γ(S(TM⊥)), ϕP3X ∈
Γ(D1), ϕP4X ∈ Γ(L1) ⊂ Γ(ltr(TM)), ϕP5X ∈ Γ(D′

1), fP6X ∈ Γ(D′
2), FP6X ∈

Γ(CR4W ) ⊂ Γ(S(TM⊥). Also, for any W ∈ Γ(tr(TM)), we have

(3.5) W = QW +RW,

Applying ϕ to (3.5), we obtain

(3.6) ϕW = ϕQW + ϕRW,

which gives

(3.7) ϕW = ϕQ1W + ϕQ2W + ϕR1W + ϕR2W + ϕR3W +BR4W + CR4W,

where, BR3W (resp. CR3W ) denotes the tangential (resp. transversal) component
of ϕR3W . Thus we get ϕQ1W ∈ Γ(S(TM)), ϕQ2W ∈ Γ(S(TM⊥)), ϕR1W ∈
Γ(D2), ϕR2W ∈ Γ(L2), ϕR3W ∈ Γ(D′

1) BR4W ∈ Γ(D′
2), CR4W ∈ Γ(S(TM⊥)).

Now, by using (2.23), (3.4), (3.7) and (2.7)-(2.9) and identifying the components
on D1, D2, ϕD1, ϕL1, D

′
1, D

′
2, ltr(TM) and S(TM⊥), we obtain

(3.8)
P1(∇XϕP1Y ) + P1(∇XϕP3Y ) + P1(∇XfP6Y ) = P1(AϕP2Y X) + P1(AϕP4Y X)+

P1(AϕP5Y X) + P1(AFP6Y X) + ϕP3∇XY − η(Y )P1X,

(3.9)
P2(∇XϕP1Y ) + P2(∇XϕP3Y ) + P2(∇XfP6Y ) = P2(AϕP2Y X) + P2(AϕP4Y X)

+ P2(AϕP5Y X) + P2(AFP6Y X) + ϕR1h
s(X,Y )− η(Y )P2X,

(3.10)
P3(∇XϕP1Y ) + P3(∇XϕP3Y ) + P3(∇XfP6Y ) = P3(AϕP2Y X) + P3(AϕP4Y X)

+ P3(AϕP5Y X) + P3(AFP6Y X) + ϕP1∇XY − η(Y )P3X,

(3.11)
P4(∇XϕP1Y ) + P4(∇XϕP3Y ) + P4(∇XfP6Y ) = P4(AϕP2Y X) + P4(AϕP4Y X)

+ P4(AϕP5Y X) + P4(AFP6Y X) + ϕQ1h
l(X,Y )− η(Y )P4X,

(3.12)
P5(∇XϕP1Y ) + P5(∇XϕP3Y ) + P5(∇XfP6Y ) = fP6∇XY + P5(AϕP2Y X)+

P5(AϕP4Y X) + P5(AϕP5Y X) + P5(AFP6Y X) + ϕR3h
s(X.Y )− η(Y )P5X,
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(3.13)
P6(∇XϕP1Y ) + P6(∇XϕP3Y ) + P6(∇XfP6Y ) = P6(AϕP2Y X) + P6(AϕP4Y X)

+ P6(AϕP5Y X) + P6(AFP6Y X) +BR4h
s(X,Y )− η(Y )P6X,

(3.14) Q1h
l(X,ϕP1Y ) +Q1D

l(X,ϕP2Y ) +Q1h
l(X,ϕP3Y ) +Q1h

l(X, fP6Y )

= ϕP4∇XY + ϕP4h
l(X,Y )−Q1∇l

XϕP4Y −Q1D
l(X,ϕP5Y )−Q1D

l(X,FP6Y ),

(3.15) Q2h
l(X,ϕP1Y ) +Q2D

l(X,ϕP2Y ) +Q2h
l(X,ϕP3Y ) +Q2h

l(X, fP6Y )

= Q2∇l
XϕP4Y −Q2D

l(X,ϕP5Y )−Q2D
l(X,FP6Y ),

(3.16) R1h
s(X, J̄P1Y ) +R1h

s(X, J̄P3Y ) +R1D
s(X, J̄P4Y ) +R1h

s(X, fP6Y )

= J̄P2∇XY −R1∇s
X J̄P2Y −R1∇s

XFP6Y −R1∇s
X J̄P5Y,

(3.17) R2h
s(X, J̄P1Y ) +R2h

s(X, J̄P3Y ) +R2D
s(X, J̄P4Y ) +R2h

s(X, fP6Y )

= J̄Q2h
l(X,Y )−R2∇s

X J̄P2Y −R2∇s
XFP6Y −R2∇s

X J̄P5Y,

(3.18) R3h
s(X,ϕP1Y ) +R3h

s(X,ϕP3Y ) +R3D
s(X,ϕP4Y ) +R3h

s(X, fP6Y )

= ϕP5∇XY −R3∇s
XϕP2Y −R3∇s

XFP6Y −R3∇s
XϕP5Y,

(3.19) R4h
s(X,ϕP1Y ) +R4h

s(X,ϕP3Y ) +R4D
s(X,ϕP4Y ) +R4h

s(X, fP6Y )

= FP6∇XY −R4∇s
XϕP2Y −R4∇s

XFP6Y −R4∇s
XϕP5Y,

(3.20) η(∇XϕP1Y ) + η(∇XϕP3Y ) + η(∇XfP6Y ) = η(AϕP2Y X) + η(AϕP4Y X)

+ η(AϕP5Y X) + η(AFP6Y X) + ḡ(X,Y )V.

Theorem 3.1. Let M be a q-lightlike submanifold of an indefinite Sasakian man-
ifold M̄ of index 2q. Then M is a GCR screen pseudo-slant lightlike submanifold if
and only if
(i) there exists degenerate orthogonal distributions L1 and L2 such that ltr(TM) =
L1 ⊕ L2 where ϕL1 ⊂ S(TM) and ϕL2 ⊂ S(TM⊥),
(ii) the distribution D′

1 is anti-invariant, i.e. ϕD′
1 ⊂ S(TM⊥),

(iii) there exists a constant λ ∈ [0, 1) such that P 2X = −λX, for all X ∈ Γ(D′
2),

where λ = cos2θ and θ is the slant angle of D′
2.

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . Then the distribution D′

1 is anti-invariant with respect to
ϕ and Rad(TM) is a distribution on M such that Rad(TM) = D1 ⊕ D2, where
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ϕD1 ⊂ S(TM) and ϕD2 ⊂ S(TM⊥). Thus ltr(TM) = L1 ⊕ L2, where ϕL1 ⊂
S(TM) and ϕL2 ⊂ S(TM⊥). Therefore for any X ∈ Γ(L1), ϕX ∈ ΓS(TM). Hence
ϕ(ϕX) ∈ Γ(L1), which implies −X ∈ Γ(L1), which proves (i) and (ii).

Now, for any X ∈ Γ(D′
1) we have |PX| = |ϕX| cos θ, i.e.

(3.21) cos θ =
|PX|
|ϕX|

.

In view of (3.21), we get cos2 θ =
|PX|2

|ϕX|2
=

g(PX,PX)

g(ϕX, ϕX)
=

g(X,P 2X)

g(X,ϕ2X)
, which

gives

(3.22) g(X,P 2X) = cos2 θg(X,ϕ2X).

SinceM is a GCR screen pseudo-slant lightlike submanifold, cos2 θ = λ(constant)
∈ [0, 1) and therefore from (3.22) we get g(X,P 2X) = λg(X,ϕ2X) = g(X,λϕ2X),
for all X ∈ Γ(D′

1), which implies

(3.23) g(X, (P 2 − λϕ2)X) = 0

Since (P 2 − λϕ2)X ∈ Γ(D′
1) and the induced metric g = g|D′

1×D′
1
is non-

degenerate (positive definite). From (3.23) we have (P 2−λϕ2)X = 0, which implies

(3.24) P 2X = λϕ2X = −λX, ∀X ∈ Γ(D′
1).

This proves (iii).

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. From (iii), we
have P 2X = λϕ2X, ∀X ∈ Γ(D′

1), where λ ∈ [0, 1).

Now cos θ =
g(ϕX,PX)

|ϕX||PX|
= −g(X,ϕPX)

|ϕX||PX|
= −g(X,P 2X)

|ϕX||PX|
= −λ

g(X,ϕ2X)

|ϕX||PX|
=

λ
g(ϕX, ϕX)

|ϕX||PX|
.

From the above equation, we obtain

(3.25) cos θ = λ
|ϕX|
|PX|

.

Therefore (3.21) and (3.25) give cos2 θ = λ(constant).

Theorem 3.2. Let M be a q-lightlike submanifold of an indefinite Sasakian man-
ifold M̄ of index 2q. Then M is a GCR screen pseudo-slant lightlike submanifold if
and only if
(i) there exist degenerate orthogonal distributions L1 and L2 such that ltr(TM) =
L1 ⊕ L2 where ϕL1 ⊂ S(TM) and ϕL2 ⊂ S(TM⊥),
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(ii) the distribution D′
1 is anti-invariant, i.e. ϕD′

1 ⊂ S(TM⊥),
(iii) there exists a constant λ ∈ (0, 1] such that P 2X = −λX.

Moreover, there exists a constant µ ∈ [0, 1) such that BFX = −µX, for all
X ∈ Γ(D′

2), where D′
1 and D′

2 are non-degenerate orthogonal distributions on M
such that and λ = cos2 θ, θ is slant angle of D′

2.

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . Then the distribution D′

1 is anti-invariant with respect to
ϕ and Rad(TM) is a distribution on M such that Rad(TM) = D1 ⊕ D2, where
ϕD1 ⊂ S(TM) and ϕD2 ⊂ S(TM⊥). Thus ltr(TM) = L1 ⊕ L2, where ϕL1 ⊂
S(TM) and ϕL2 ⊂ S(TM⊥). Therefore for any X ∈ Γ(L1), ϕX ∈ ΓS(TM). Hence
ϕ(ϕX) ∈ Γ(L1), which implies −X ∈ Γ(L1), which proves (i) and (ii).
Now, for any vector field X ∈ Γ(D′

1), we have

(3.26) ϕX = PX + FX,

where PX and FX are the tangential and transversal parts of ϕX respectively.
Applying ϕ to (3.24) and taking the tangential component, we get

(3.27) −X = P 2X +BFX, ∀X ∈ Γ(D′
1).

Since M is a GCR screen pseudo-slant lightlike submanifold, P 2X = −λX, ∀X ∈
Γ(D′

1), where λ ∈ (0, 1] and therefore from (3.25) we get

(3.28) BFX = −µX, ∀X ∈ Γ(D′
1),

where 1−λ = µ(constant) ∈ [0, 1). Now, in view of Theorem 3.1, we have λ = cos2 θ.
This proves (iii).
Conversely, assume that conditions (i), (ii) and (iii) are satisfied. From (3.24) we
get

(3.29) −X = P 2X − µ1X, ∀X ∈ Γ(D′
1),

which implies

(3.30) P 2X = −λ1X, ∀X ∈ Γ(D′
1)

where 1 − µ1 = λ1(constant) ∈ (0, 1]. Therefore, M is a GCR screen pseudo-slant
lightlike submanifold.

Corollary 3.1. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then for any slant distribution D of M with slant
angle θ, we have

g(PX,PY ) = cos2 θg((X,Y )− η(X)η(Y )),

g(FX,FY ) = sin2 θg((X,Y )− η(X)η(Y )),

for all X,Y ∈ Γ(D).
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The proof of the above corollary follows by using similar steps as in the proof of
Corollary 3.1 of [4].

Theorem 3.3. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then the distribution D1 ⊂ Rad(TM) is integrable
if and only if
(i) P1(∇XϕP1Y ) = P1(∇Y ϕP1X) and P6(∇XϕP1Y ) = P6(∇Y ϕP1X),
(ii) Q1h

l(X,ϕP1Y ) = Q1h
l(Y, ϕP1X) and R1h

s(Y, ϕP1X) = R1h
s(X,ϕP1Y ),

(iii) R3h
s(Y, ϕP1X) = R3h

s(X,ϕP1Y ) and R4h
s(Y, ϕP1X) = R4h

s(X,ϕP1Y ),
for all X,Y ∈ Γ(D1).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . SupposeX,Y ∈ Γ(D1). From (3.8), we have P1(∇XϕP1Y ) =
ϕP3∇XY , which implies P1(∇XϕP1Y )− P1(∇Y ϕP1X) = ϕP3[X,Y ]. From (3.13),
we have P6(∇XϕP1Y ) = fP6∇XY + BR4h

s(X,Y ), which gives P6(∇XϕP1Y ) −
P6(∇Y ϕP1X) = fP6[X,Y ]. From (3.14), we have Q1h

l(X,ϕP1Y ) = ϕP4∇XY ,
which gives Q1h

l(X,ϕP1Y )−Q1h
l(Y, ϕP1X) = ϕP4[X,Y ].

From (3.16), we have R1h
s(X,ϕP1Y ) = ϕP2∇XY , which implies R1h

s(X,ϕP1Y )
−R1h

s(Y, ϕP1X) = ϕP2[X,Y ]. From (3.18), we have R3h
s(X,ϕP1Y ) = ϕP5∇XY ,

which implies R3h
s(X,ϕP1Y ) − R3h

s(Y, ϕP1X) = ϕP5[X,Y ]. From (3.19), we
have R4h

s(X,ϕP1Y ) = FP6∇XY + CR4h
s(X,Y ), which gives R4h

s(X,ϕP1Y ) −
R4h

s(Y, ϕP1X) = FP6[X,Y ], which completes the proof.

Theorem 3.4. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then the distribution D2 ⊂ Rad(TM) is integrable
if and only if
(i) P1(AϕP2Y X) = P1(AϕP2XY ) and P3(AϕP2Y X) = P3(AϕP2XY ),
(ii) P6(∇XϕP2Y ) = P6(∇Y ϕP2X) and Q1D

l(X,ϕP2Y ) = Q1D
l(Y, ϕP2X),

(iii) R3∇s
XϕP2Y = R3∇s

Y ϕP2X and R4∇s
XϕP2Y = R4∇s

Y ϕP2X,
for all X,Y ∈ Γ(D2).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . Suppose X,Y ∈ Γ(D1). From (3.8), we have P1(AϕP2Y X) =
−ϕP3∇XY , which implies P1(AϕP2Y X)−P1(AϕP2XY ) = −ϕP3[X,Y ]. From (3.10),
we have P3(AϕP2Y X) = −ϕP1∇XY , which gives P3(AϕP2Y X) − P3(AϕP2XY ) =
−ϕP1[X,Y ]. From (3.13), we have P6(∇XϕP2Y ) = fP6∇XY + BR4h

s(X,Y ),
which gives P6(∇XϕP2Y )− P6(∇Y ϕP2X) = fP6[X,Y ].
From (3.14), we have Q1D

l(X,ϕP2Y ) = −ϕP4∇XY + ϕP4h
l(X,Y ), which im-

plies Q1D
l(X,ϕP2Y ) − Q1D

l(Y, ϕP2X) = −ϕP4[X,Y ]. From (3.16), we have
R3∇s

XϕP2Y = ϕP5∇XY , which gives R3∇s
XϕP2Y − R3∇s

Y ϕP2X = ϕP5[X,Y ].
From (3.17), we have R4∇s

XϕP2Y = FP6∇XY , which implies R4∇s
XϕP2Y−

R4∇s
Y ϕP2X = FP6[X,Y ], which completes the proof.

Theorem 3.5. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then the distribution D′

1 is integrable if and only
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if
(i) P1(AϕP5Y X) = P1(AϕP5XY ) and P3(AϕP5Y X) = P3(AϕP5XY ),
(ii) P6(∇XϕP5Y ) = P6(∇Y ϕP5X) and Q1D

l(X,ϕP5Y ) = Q1D
l(Y, ϕP5X),

(iii) R1h
s(Y, ϕP5X) = R1h

s(X,ϕP5Y ) and R4∇s
XϕP5Y = R4∇s

Y ϕP5X,
for all X,Y ∈ Γ(D′

1).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . Suppose X,Y ∈ Γ(D1). From (3.8), we have P1(AϕP5Y X) =
−ϕP3∇XY , which implies P1(AϕP5Y X)−P1(AϕP5XY ) = −ϕP3[X,Y ]. From (3.10),
we have P3(AϕP5Y X) = −ϕP1∇XY , which gives P3(AϕP5Y X) − P3(AϕP5XY ) =
−ϕP1[X,Y ]. From (3.13), we have P6(∇XϕP5Y ) = fP6∇XY + BR4h

s(X,Y ),
which gives P6(∇XϕP5Y )− P6(∇Y ϕP5X) = fP6[X,Y ].
From (3.14), we have Q1D

l(X,ϕP5Y ) = ϕP4∇XY + ϕP4h
l(Y,X), which implies

Q1D
l(X,ϕP5Y ) − Q1D

l(Y, ϕP5X) = ϕP4[X,Y ]. From (3.16), R1h
s(X,ϕP5Y ) =

ϕP2∇XY , which implies R1h
s(X,ϕP5Y ) − R1h

s(Y, ϕP5X) = ϕP2[X,Y ]. From
(3.17), we have R4∇s

XϕP5Y = FP6∇XY , which gives R4∇s
XϕP5Y −R4∇s

Y ϕP5X =
FP6[X,Y ], which completes the proof.

Theorem 3.6. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then the distribution D′

2 is integrable if and only if
(i) P1(∇XfP6Y )−P1(∇Y fP6X) = P1(AFP6Y X)−P1(AFP6XY ) and P3(∇XfP6Y )−
P3(∇Y fP6X) = P3(AFP6Y X)− P3(AFP6XY ),
(ii) Q1D

l(X, fP6Y )−Q1D
l(Y, fP6X) = Q1D

l(Y, FP6X)−Q1D
l(X,FP6Y ),

(iii) R3h
s(X, fP6Y )−R3h

s(Y, fP6X) = R3∇s
Y FP6X −R3∇s

XFP6Y and
R4h

s(X, fP6Y )−R4h
s(Y, fP6X) = R4∇s

Y FP6X −R4∇s
XFP6Y ,

for all X,Y ∈ Γ(D′
2).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . SupposeX,Y ∈ Γ(D1). From (3.8), we have P1(∇XfP6Y ) =
P1(AFP6Y X)+ϕP3∇XY , which gives P1(∇XfP6Y )−P1(∇Y fP6X) = P1(AFP6Y X)
−P1(AFP6XY )+ϕP3[X,Y ]. From (3.10), we have P3(∇XfP6Y ) = P3(AFP6Y X)+
ϕP1∇XY , which gives P3(∇XfP6Y )−P3(∇Y fP6X) = P3(AFP6Y X)−P3(AFP6XY )
+ ϕP1[X,Y ].

From (3.14), Q1D
l(X, fP6Y ) = ϕP4∇XY − Q1D

l(X,FP6Y ) + ϕP4h
l(X,Y ),

which gives Q1D
l(X, fP6Y )−Q1D

l(Y, fP6X) = ϕP4[X,Y ]−Q1D
l(X,FP6Y ) +

Q1D
l(Y, FP6X). From (3.16), we have R3h

s(X, fP6Y ) = ϕP5∇XY −R3∇s
XFP6Y ,

which implies R3h
s(X, fP6Y )−R3h

s(Y, fP6X) = ϕP5[X,Y ]−R3∇s
XFP6Y+

R3∇s
Y FP6X. From (3.17), we have R4h

s(X, fP6Y ) = FP6∇XY − R4∇s
XFP6Y ,

which implies R4h
s(X, fP6Y ) − R4h

s(Y, fP6X) = FP6[X,Y ] − R4∇s
XFP6Y +

R4∇s
Y FP6X, which completes the proof.

4. Foliations Determined By Distributions

In this section, we obtain necessary and sufficient conditions for foliations deter-
mined by distributions on a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold to be totally geodesic.



Generalized Cauchy-Riemann Screen Pseudo-Slant Lightlike Submanifolds 375

Definition 4.1. A GCR screen pseudo-slant lightlike submanifold M of an indef-
inite Sasakian manifold M̄ is said to be mixed geodesic if its second fundamental
form h satisfies h(X,Y ) = 0, for all X ∈ Γ(D1) and Y ∈ Γ(D2). Thus M is a
mixed geodesic GCR screen pseudo-slant lightlike submanifold if hl(X,Y ) = 0 and
hs(X,Y ) = 0, ∀ X ∈ Γ(D1) and Y ∈ Γ(D2).

Theorem 4.1. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then D1 ⊂ Rad(TM) defines a totally geodesic
foliation if and only if

ḡ(∇XϕP3Z +∇XfP6Z, ϕP1Y ) = ḡ(AϕP4ZX +AϕP5ZX +AFP6ZX,ϕP1Y ),

for all X ∈ Γ(D1) and Z ∈ Γ(S(TM)).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . To prove that D1 ⊂ Rad(TM) defines a totally geodesic
foliation, it is sufficient to show that ∇XY ∈ D1, for all X,Y ∈ Γ(D1). Since ∇̄ is a
metric connection, using (2.7) and (2.19), for anyX,Y ∈ Γ(D1) and Z ∈ Γ(S(TM)),
we get

(4.1) ḡ(∇XY, Z) = ḡ((∇̄Xϕ)Z − ∇̄XϕZ, ϕY ).

Now from (2.20), (3.4) and (4.1) we get

(4.2) ḡ(∇XY, Z) = −ḡ(∇X(ϕP3Z + ϕP4Z + ϕP5Z + ϕP6Z), ϕP1Y ).

In view of (2.7)-(2.9) and (4.2), for any X,Y ∈ Γ(D1) and Z ∈ Γ(S(TM)) we obtain
(4.3)
ḡ(∇XY,Z) = −ḡ(∇XϕP3Z −AϕP4ZX −AϕP5ZX +∇XfP6Z −AFP6ZX,ϕP1Y ),

which completes the proof.

Theorem 4.2. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then D2 ⊂ Rad(TM) defines a totally geodesic
foliation if and only if

ḡ(hs(X,ϕP3Z) + hs(X,ϕP5Z) + hs(X, fP6Z) + hs(X, fP7Z), ϕP2Y )

= −ḡ(Ds(X,ϕP4Z) +∇s
XFP6Z +∇s

XFP7Z, ϕP2Y ),

for all X ∈ Γ(D2) and Z ∈ Γ(S(TM)).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . To prove that D2 ⊂ Rad(TM) defines a totally geodesic
foliation, it is sufficient to show that ∇XY ∈ D2, for all X,Y ∈ Γ(D2). Since ∇̄ is a
metric connection, using (2.7) and (2.19), for anyX,Y ∈ Γ(D2) and Z ∈ Γ(S(TM)),
we get

(4.4) ḡ(∇XY, Z) = ḡ((∇̄Xϕ)Z − ∇̄XϕZ, ϕY ).
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Now from (2.20), (3.4) and (4.1) we get

(4.5) ḡ(∇XY,Z) = −ḡ(∇X(ϕP3Z + ϕP4Z + ϕP5Z + ϕP6Z), ϕP2Y ).

In view of (2.7)-(2.9) and (4.2), for any X,Y ∈ Γ(D2) and Z ∈ Γ(S(TM)) we obtain

(4.6) ḡ(∇XY,Z) = −ḡ(hs(X,ϕP3Z) +Ds(X,ϕP4Z) +∇s
XϕP5Z

+ hs(X, fP6Z) +∇s
XFP6Z, ϕP2Y )

which completes the proof.

Theorem 4.3. Let M be a GCR screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then D′

2 defines a totally geodesic foliation if and
only if
(i) ḡ(−AXϕZ, fY ) = −ḡ(∇s

XϕZ, FY ),
(ii) ḡ(AϕQ2NX −∇XϕQ1N, fY ) = ḡ(hs(X,ϕQ1N) +∇s

XϕQ2N,FY ),
(iii) ḡ(AϕWX, fY ) = ḡ(Ds(X,ϕW ), FY )
for all X,Y ∈ Γ(D′

2), Z ∈ Γ(D′
1), W ∈ Γ(ϕltr(TM)) and N ∈ Γ(ltr(TM)).

Proof. Let M be a GCR screen pseudo-slant lightlike submanifold of an indefinite
Sasakian manifold. The distribution D′

2 defines a totally geodesic foliation if and
only if ∇XY ∈ Γ(D′

2), ∀ X,Y ∈ Γ(D′
2). Since ∇̄ is a metric connection for any

X,Y ∈ Γ(D′
2) and Z ∈ Γ(D′

1), we get

(4.7) ḡ(∇XY, Z) = ḡ(∇̄XϕY, ϕZ) = −ḡ(∇̄XϕZ, ϕY ).

From (2.7), (3.1) and (4.7) we get

(4.8) ḡ(∇XY,Z) = −ḡ(−AXϕZ +∇s
XϕZ, fY + FY ).

In view of (2.8) and (4.8) we obtain

(4.9) ḡ(∇XY,Z) = −ḡ(−AXϕZ, fY )− ḡ(∇s
XϕZ, FY ).

Now by (4.9) we get the required result

(4.10) ḡ(−AXϕZ, fY ) = −ḡ(∇s
XϕZ, FY ).

Now for any X,Y ∈ Γ(D′
2) and N ∈ Γ(ltr(TM)) we have

(4.11) ḡ(∇XY,N) = ḡ(∇̄XϕY, ϕN) = −ḡ(∇̄XϕN, ϕY ).

From (2.7), (3.1) and (4.11) we get

(4.12) ḡ(∇XY,N) = −ḡ(ϕQ1N + ϕQ2N, fY + FY ).

In view of (4.12) we obtain
(4.13)
ḡ(∇XY,N) = −ḡ(∇XϕQ1N −AϕQ2NX, fY )− ḡ(hs(X,ϕQ1N) +∇s

XϕQ2N,FY ).
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Now from (4.13) we get the required result

(4.14) ḡ(AϕQ2NX −∇XϕQ1N, fY ) = ḡ(hs(X,ϕQ1N) +∇s
XϕQ2N,FY ).

Now for any X,Y ∈ Γ(D′
2) and W ∈ Γ(ϕltr(TM)) we have

(4.15) ḡ(∇XY,W ) = ḡ(∇̄XϕY, ϕW ) = −ḡ(∇̄XϕW,ϕY ).

From (2.9), (3.1) and (4.15) we get

(4.16) ḡ(∇XY,W ) = −ḡ(−AϕWX +Ds(X,ϕW ), fY + FY ).

In view of (4.16) we obtain

(4.17) ḡ(∇XY,W ) = ḡ(AϕWX, fY )− ḡ(FY,Ds(X,ϕW )).

Now from (4.17) we get the required result

(4.18) ḡ(AϕWX, fY ) = ḡ(Ds(X,ϕW ), FY ),

which completes the proof.
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