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Abstract. In the present paper, we study canal hypersurfaces according to generalized
Bishop frames of type B (parallel transport frame), type C and type D in Euclidean
4-space and obtain Gaussian, mean and principal curvatures of them in general form.
We give some results for their flatness, minimality and we examine the Weingarten
canal hypersurfaces according to these frames. Especially, we investigate the tubular
hypersurfaces by taking the radius function is constant in these canal hypersurfaces.
Keywords: Canal Hypersurface, Tubular Hypersurface, Generalized Bishop Frames,
Weingarten Hypersurface.

1. General Information and Basic Concepts

A canal surface given by the following parametric expression

Ω(u, v) = α(u)− ρ(u)ρ′(u)T (u) + ρ(u)
√

1− ρ′2(u) (cos vN(u) + sin vB(u))

is formed by the envelope of the spheres whose centers lie on a curve and radius vary
depending on this curve. Here, α(x) is a unit speed curve is called the spine curve or
center curve, {T,N,B} is the Frenet frame of α(x) and ρ(x) is the radius function. If
the radius function ρ(x) is constant, then the canal surface is called tubular or pipe
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surface ([20], [21], [29]). Also, if the center curve of the canal surface is a straight
line, then it becomes a revolution surface. Canal and tubular surfaces have been
applied to many fields, such as the solid and the surface modeling for CAD/CAM,
construction of blending surfaces, shape re-construction and so on. In this context,
canal and tubular (hyper)surfaces have been studied by many geometers in different
spaces (see [6], [15], [22]-[26], [29]-[31], [33], [37]-[40], [41] and etc).

Furthermore, although Frenet frame has been used in lots of studies about dif-
ferent differential geometric characterizations of curves and surfaces, sometimes
geometers need alternative frames because of Frenet frame cannot be identified at
the points where the curvature is zero. Hence, new alternative frames to the Frenet
frame such as Bishop frame (parallel transport frame), generalized Bishop frames,
Darboux frame or extended Darboux frame have been defined by geometers and
the differential geometry of curves and surfaces started to be considered according
to these alternative frames (see [1], [2], [7], [9]-[14], [27], [28], [30], [35], [36], and
etc).

Here, let we recall some basic notions about Frenet frame, parallel transport
frame, generalized Bishop frames and the curvatures of hypersurfaces in E4.

Let {e1, e2, e3, e4} be the standart basis of Euclidean 4-space E4. If
−→x = (x1, x2, x3, x4), −→y = (y1, y2, y3, y4) and −→z = (z1, z2, z3, z4) are three vectors in

E4, then the inner product is defined by 〈−→x ,−→y 〉 =
4∑

i=1

xiyi and the vector product

is defined by

−→x ×−→y ×−→z = det


e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

 .
If α : I ⊂ R −→ E4 is a unit speed curve in Euclidean 4-space and {T,N,B1, B2}

is the moving Frenet frame along α, then the Frenet formulas are given by
T ′

N ′

B′
1

B′
2

 =


0 κ 0 0
−κ 0 τ 0
0 −τ 0 σ
0 0 −σ 0




T
N
B1

B2

 ,(1.1)

where T, N, B1 and B2 denote the unit tangent, the principal normal, the first
binormal and the second binormal vector fields, respectively; κ, τ and σ are the
curvature functions according to Frenet frame of the curve α [16].

In [17], the authors have used the tangent vector T (s) and three relatively par-
allel vector fields M1(s), M2(s) and M3(s) to construct an alternative frame which
is called a parallel transport frame along the curve α in E4. If {T,N,B1, B2} is a
Frenet frame along a unit speed curve α = α(s) : I → E4 and {T,M1,M2,M3} de-
notes the parallel transport frame of the curve α, then the relation may be expressed
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as

T (s) = T (s),
N(s) = cos θ(s) cosψ(s)M1(s) + (− cosφ(s) sinψ(s) + sinφ(s) sin θ(s) cosψ(s))M2(s)

+ (sinφ(s) sinψ(s) + cosφ(s) sin θ(s) cosψ(s))M3(s),
B1(s) = cos θ(s) sinψ(s)M1(s) + (cosφ(s) cosψ(s) + sinφ(s) sin θ(s) sinψ(s))M2(s)

+ (− sinφ(s) cosψ(s) + cosφ(s) sin θ(s) sinψ(s))M3(s),
B2(s) = − sin θ(s)M1(s) + sinφ(s) cos θ(s)M2(s) + cosφ(s) cos θ(s)M3(s),

(1.2)

where θ(s), ψ(s) and φ(s) are the Euler angles. Also, the alternative parallel trans-
port frame (we’ll call it as generalized Bishop frame of type B) equations are

T ′

M ′
1

M ′
2

M ′
3

 =


0 k1 k2 k3
−k1 0 0 0
−k2 0 0 0
−k3 0 0 0




T
M1

M2

M3

 ,(1.3)

where k1, k2 and k3 are curvature functions according to parallel transport frame
of the curve α and their expressions are as follows k1(s) = κ(s) cos θ(s) cosψ(s),

k2(s) = κ(s) (− cosφ(s) sinψ(s) + sinφ(s) sin θ(s) cosψ(s)) ,
k3(s) = κ(s) (sinφ(s) sinψ(s) + cosφ(s) sin θ(s) cosψ(s)) .

(1.4)

On the other hand, if we regard an orthonormal frame on a regular curve I → En

parametrized by arc-length parameters as a matrix valued function Z : I → O(n)
such that the frame consists of the row vectors of Z, then for a frame on a regular
curve, we will call the matrix valued function X such that Z′ = XZ the coefficient
matrix of the frame. In this context, Nomoto and Nozawa have introduced 16
kinds of alternative frames called generalized Bishop frames on regular curves on
E4, excluding frames whose coefficient matrix has a zero column vector [35]. They
have seen that these frames are classified into four types up to the action of the
symmetric group G3 of order 3 which swaps the second, third and fourth vector of
the frame as follows: 

0 � � �
−� 0 0 0
−� 0 0 0
−� 0 0 0

 ;

 type B


0 � � 0
−� 0 0 �
−� 0 0 0

0 −� 0 0

 ,


0 � � 0
−� 0 0 0
−� 0 0 �

0 0 −� 0

 ,


0 � 0 �
−� 0 0 0

0 0 0 �
−� 0 −� 0

 ,


0 � 0 �
−� 0 � 0

0 −� 0 0
−� 0 0 0

 ,


0 0 � �
0 0 � 0
−� −� 0 0
−� 0 0 0

 ,


0 0 � �
0 0 0 �
−� 0 0 0
−� −� 0 0

 ;


typeC
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
0 � 0 0
−� 0 � �

0 −� 0 0
0 −� 0 0

 ,


0 0 � 0
0 0 � 0
−� −� 0 �

0 0 −� 0

 ,


0 0 0 �
0 0 0 �
0 0 0 �
−� −� −� 0

 ;

 typeD


0 � 0 0
−� 0 � 0

0 −� 0 �
0 0 −� 0

 ,


0 0 0 �
0 0 � �
0 −� 0 0
−� −� 0 0

 ,


0 0 0 �
0 0 � 0
0 −� 0 �
−� 0 −� 0

 ,


0 � 0 0
−� 0 0 �

0 0 0 �
0 −� −� 0

 ,


0 0 � 0
0 0 � �
−� −� 0 0

0 −� 0 0

 ,


0 0 � 0
0 0 0 �
−� 0 0 �

0 −� −� 0

 .


typeF

Here they have seen that, there are the following 4 equivalence classes of these 16 frames
on curves up to the change of the order of vectors fixing the first one which is the tangent
vector: If a frame has a coefficient matrix of the respective form for some functions x1,
x2, x3 up to the change of the order of vectors fixing the first one, we call it a generalized
Bishop frame of type B, C, D and F, respectively:

0 x1 x2 x3

−x1 0 0 0
−x2 0 0 0
−x3 0 0 0

 ,


0 x1 x2 0
−x1 0 0 x3

−x2 0 0 0
0 −x3 0 0

 ,
type B type C

0 x1 0 0
−x1 0 x2 x3

0 −x2 0 0
0 −x3 0 0

 ,


0 x1 0 0
−x1 0 x2 0

0 −x2 0 x3

0 0 −x3 0

 .
type D type F

So, if {T,M1,M2,M3} denotes the generalized Bishop frames of the curve α, then we
can write


T ′

M ′1
M ′2
M ′3

 =




0 b1 b2 b3
−b1 0 0 0
−b2 0 0 0
−b3 0 0 0




T
M1

M2

M3

 ,


0 c1 c2 0
−c1 0 0 c3
−c2 0 0 0

0 −c3 0 0




T
M1

M2

M3

 ,
type B type C

0 d1 0 0
−d1 0 d2 d3

0 −d2 0 0
0 −d3 0 0




T
M1

M2

M3

 ,


0 f1 0 0
−f1 0 f2 0

0 −f2 0 f3

0 0 −f3 0




T
M1

M2

M3

 .
type D type F

(1.5)
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It is obvious that, if we consider bi = ki (i = 1, 2, 3 and ki are the principal curvature
functions according to generalized Bishop frame of type B of the curve α) in 1.5 of type
B, then the frame becomes parallel transport frame (1.3) which has been stated above.
Furthermore, the frame of type F is closely related to the Frenet frame; it is Frenet frame
if both f1 and f2 are positive. By Bishop’s theorem, every regular curve admits a Bishop
frame, but there are well known examples of regular curves which do not admit the Frenet
frame. Also, a curve is said to be 2-regular if both the tangent vector and its derivative
are nowhere vanishing and in this context, the authors have given a main result as ”Every
2-regular curve on E4 admits a frame of type C and D, respectively” in [35]. In this study,
we will construct our canal hypersurface with the aid of the generalized Bishop frames of
type B, type C, type D of the center curve α(u) (which will be considered as regular for
characterizations of type B and 2-regular for characterizations of type C and type D) and
give some important geometric characterizations about them.

Furthermore, the differential geometry of different types of (hyper)surfaces in 4-dimensional
spaces has recently become a popular topic studied by geometers ([3]-[5], [8], [18], [19],
[34], and etc). If
Ω : U ⊂ E3 −→ E4, Ω(x1, x2, x3) = (Ω1(x1, x2, x3),Ω2(x1, x2, x3),Ω(x1, x2, x3),Ω4(x1, x2, x3))
is a hypersurface in E4, then the unit normal vector field, the matrix forms of the first
and second fundamental forms are

NΩ =
Ωx1 × Ωx2 × Ωx3
‖Ωx1 × Ωx2 × Ωx3‖

,(1.6)

[gΩ
ij ] =

 gΩ
11 gΩ

12 gΩ
13

gΩ
21 gΩ

22 gΩ
23

gΩ
31 gΩ

32 gΩ
33

(1.7)

and

[hΩ
ij ] =

 hΩ
11 hΩ

12 hΩ
13

hΩ
21 hΩ

22 hΩ
23

hΩ
31 hΩ

32 hΩ
33

 ,(1.8)

respectively. Here gΩ
ij =

〈
Ωxi ,Ωxj

〉
, hΩ

ij =
〈
Ωxixj ,NΩ

〉
, Ωxi = ∂Ω(x1,x2,x3)

∂xi
, Ωxixj =

∂2Ω(x1,x2,x3)
∂xixj

, i, j ∈ {1, 2, 3}. Also, the shape operator of the hypersurface Ω is

SΩ = [aΩ
ij ] = [gΩ

ij ]
−1.[hΩ

ij ],(1.9)

where [gΩ
ij ]
−1 is the inverse matrix of [gΩ

ij ].

With the aid of (1.6)-(1.9), the Gaussian and mean curvatures of a hypersurface in E4

are given by

KΩ = det(SΩ) =
det[hΩ

ij ]

det[gΩ
ij ]

(1.10)

and

3HΩ = tr(SΩ),(1.11)

respectively [32]. We say that a hypersurface is flat or minimal, if it has zero Gaussian
curvature or zero mean curvature, respectively.

After recalling some basic notions about generalized Bishop frames and the Gaussian
and mean curvatures of hypersurfaces in E4 in this section, we study on canal hypersur-
faces according to generalized Bishop frames in E4 in the second section. We obtain the
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Gaussian, mean and principal curvatures with the aid of first and second derivatives of
canal hypersurface according to generalized Bishop frames and give some results about
their flatness and minimality. Also we give a characterization about Weingarten canal hy-
persurfaces according to generalized Bishop frames. In the third section of this study, we
give some characterizations, which have been given for canal hypersurfaces in the second
section, for tubular hypersurfaces according to generalized Bishop frames in E4.

2. Canal Hypersurfaces according to Generalized Bishop Frames in E4

In this section, we study the canal hypersurfaces according to generalized Bishop frames
in Euclidean 4-space E4. In this context, firstly we obtain Gaussian, mean and principal
curvatures of a canal hypersurface C according to generalized Bishop frames with the aid of
its first and second derivatives. Also, we give some results for flat, minimal and Weingarten
canal hypersurfaces.

Let us consider the canal hypersurface C according to generalized Bishop frames of
type B, type C and type D in E4 given by

C(u, v, t) = α(u)−
(
ρ(u)ρ′(u)

)
T (u)

± ρ(u)
√

1− ρ′(u)2 [(cos v cos t)M1(u) + (sin v cos t)M2(u) + (sin t)M3(u)] ,(2.1)

where u ∈ [0, l] and v, t ∈ [0, 2π). We must note that, from now on we state α = α(u),

ρ = ρ(u), ρ′ = dρ(u)
du

, T = T (u), M1 = M1(u), M2 = M2(u), M3 = M3(u); we will consider
the ”±” in equation (2.1) as ”+” and we will give our results for ”+”. One can obtain
similar results by taking the sign as ”−”. Also throughout this study, the center curve α(u)
will be consider as a regular curve when we investigate the generalized Bishop frames of
type B and α(u) will be consider as a 2-regular curve when we investigate the generalized
Bishop frames of type C and D.
In all of the following calculations and results,

� if one takes α is regular and a = b = 1, c = d = 0, xi = bi = ki, then the results
belong to generalized Bishop frame of type B (parallel transport frame);

� if one takes α is 2-regular and a = d = 1, b = c = 0, xi = ci, then the results belong
to generalized Bishop frame of type C;

� if one takes α is 2-regular and a = b = 0, c = d = 1, xi = di, then the results belong
to generalized Bishop frame of type D,

where i ∈ {1, 2, 3}.

First, from (1.5) and (2.1), the first derivatives of the canal hypersurface (2.1) according
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to generalized Bishop frames of type B, type C and type D are obtained as

Cu =
(

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
))

T

+

(
ρ′
√

1− ρ′2 cos v cos t− ρ
(
ρ′x1 +

(cx2 sin v cos t+dx3 sin t)(1−ρ′2)+ρρ′′ cos v cos t√
1−ρ′2

))
M1

+

(
ρ′
√

1− ρ′2 sin v cos t+ ρ

(
x2

(
c
√

1− ρ′2 cos v cos t− aρ′
)
− ρ′ρ′′ sin v cos t√

1−ρ′2

))
M2

+

(
ρ′
√

1− ρ′2 sin t+ ρ

(
x3

(
−bρ′ + d

√
1− ρ′2 cos v cos t

)
− ρ′ρ′′ sin t√

1−ρ′2

))
M3,

Cv = −ρ
√

1− ρ′2 ((sin v cos t)M1 − (cos v cos t)M2) ,

Ct = −ρ
√

1− ρ′2 ((cos v sin t)M1 + (sin v sin t)M2 − (cos t)M3) ,
(2.2)
where

W = x1 cos v cos t+ ax2 sin v cos t+ bx3 sin t.(2.3)

From (1.6) and (2.2), the unit normal vector field of C in E4 is

N C = −ρ′T +
√

1− ρ′2 ((cos v cos t)M1 + (sin v cos t)M2 + (sin t)M3) .(2.4)

Also, the coefficients of the first fundamental form are given by

gC11 = 1
1−ρ′2



(
1− ρ′2

) (
1− ρ′2 − ρ

(√
1− ρ′2W + ρ′′

))2

+

(
ρ (cx2 sin v cos t+ dx3 sin t)

(
1− ρ′2

)
ρρ′
√

1− ρ′2x1 − ρ′
(
1− ρ′2 − ρρ′′

)
cos v cos t

)2

+

(
aρρ′

√
1− ρ′2x2 − cρ

(
1− ρ′2

)
x2 cos v cos t

−ρ′
(
1− ρ′2 − ρρ′′

)
sin v cos t

)2

+

(
bρρ′

√
1− ρ′2x3 − dρ

(
1− ρ′2

)
x3 cos v cos t

−ρ′
(
1− ρ′2 − ρρ′′

)
sin t

)2


,

gC12 = gC21 = ρ2

 −x2

(
aρ′
√

1− ρ′2 cos v − c
(
1− ρ′2

)
cos t

)
+ sin v

(
x1ρ
′√1− ρ′2 + d

(
1− ρ′2

)
x3 sin t

)  cos t,

gC13 = gC31 = ρ2

(
ρ′
√

1− ρ′2 (x1 cos v + ax2 sin v) sin t

−x3

(
bρ′
√

1− ρ′2 cos t− d
(
1− ρ′2

)
cos v

) ) ,
gC22 = ρ2(1− ρ′2) cos2 t, gC23 = gC32 = 0, gC33 = ρ2(1− ρ′2)

(2.5)

and it follows that

det[gCij ] = ρ4(1− ρ′2)
(

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
))2

cos2 t.(2.6)

Now, for obtaining the coefficients of the second fundamental form, let we give the
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second derivatives Cxixj = ∂2C
∂xixj

of the canal hypersurface (2.1):



Cuu = C1
uuT + C2

uuM1 + C3
uuM2 + C4

uuM3,

Cuv = Cvu =
(√

1− ρ′2ρ (x1 sin v − ax2 cos v) cos t
)
T

+ cos t√
1−ρ′2

(
ρρ′ρ′′ sin v − (1− ρ′2) (cρx2 cos v + ρ′ sin v)

)
M1

− cos t√
1−ρ′2

(
(cρx2 sin v − ρ′ cos v) (1− ρ′2) + ρρ′ρ′′ cos v

)
M2

− (dρ
√

1− ρ′2x3 sin v cos t)M3,

Cut = Ctu =
√

1− ρ′2ρ (x1 cos v sin t+ ax2 sin v sin t− bx3 cos t)T

+ 1√
1−ρ′2

( (
(ρ (cx2 sin v sin t− dx3 cos t)− ρ′ cos v sin t) (1− ρ′2)

)
+ρρ′ρ′′ cos v sin t

)
M1

+ sin t√
1−ρ′2

(
ρρ′ρ′′ sin v − (cρx2 cos v + ρ′ sin v) (1− ρ′2)

)
M2

+ 1√
1−ρ′2

(
ρ′
(
1− ρ′2 − ρρ′′

)
cos t− dρ(1− ρ′2)x3 cos v sin t

)
M3,

Cvv = −ρ
√

1− ρ′2 ((cos v cos t)M1 + (sin v cos t)M2) ,

Cvt = Ctv = ρ
√

1− ρ′2 ((sin v sin t)M1 − (cos v sin t)M2) ,

Ctt = −ρ
√

1− ρ′2 ((cos v cos t)M2 + (sin v cos t)M3 + (sin t)M4) ,

(2.7)

where

C1
uu = ρρ′

(
x2

1 + a2x2
2 + b2x2

3

)
− 2ρ′

√
1− ρ′2W − 3ρ′ρ′′ − ρρ′′′ + 2ρρ′ρ′′W√

1−ρ′2

+ρ
√

1− ρ′2
(
x1 (cx2 sin v cos t+ dx3 sin t)
−
(
acx2

2 + bdx2
3 + x′1

)
cos v cos t− ax′2 sin v cos t− bx′3 sin t

)
,

C2
uu = x1 − 2ρ′2x1 − 2ρ′

√
1− ρ′2 (cx2 sin v cos t+ dx3 sin t)− 2ρρ′′x1

− ρ
√

1− ρ′2
( (

x2
1 + c2x2

2 + d2x2
3

)
cos v cos t

+ (ax1x2 + cx′2) sin v cos t+ (bx1x3 + dx′3) sin t

)
+ 2ρρ′ρ′′(cx2 sin v cos t+dx3 sin t)−2ρ′2ρ′′ cos v cos t−ρρ′′2 cos v cos t−ρρ′ρ′′′ cos v cos t√

1−ρ′2

− ρρ′2ρ′′2 cos v cos t

(1−ρ′2)3/2
+
√

1− ρ′2ρ′′ cos v cos t+ ρρ′
(
acx2

2 + bdx2
3 − x′1

)
,

C3
uu = −

((
a2 + c2

)
ρ
√

1− ρ′2x2
2 sin v cos t

)
+ x2

 a− cρρ′x1 − 2aρ′2 − (ab+ cd) ρ
√

1− ρ′2x3 sin t− 2aρρ′′

+
((2cρ′−aρx1)(1−ρ′2)−2cρρ′ρ′′)√

1−ρ′2
cos v cos t


− 1

(1−ρ′2)3/2


(
4ρ′2 − 3ρ′4 − 1

)
ρ′′ sin v cos t

+ρ

 ((
1− ρ′2

)( aρ′
√

1− ρ′2
−c
(
1− ρ′2

)
cos v cos t

)
x′2

)
+
(
ρ′′2 + ρ′

(
1− ρ′2

)
ρ′′′
)

sin v cos t


 ,
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C4
uu = 1

(1−ρ′2)3/2

 ρ

 (
1− ρ′2

) (
d
(
1− ρ′2

)
cos v cos t

−bρ′
√

1− ρ′2

)
x′3

−ρ′ρ′′′ sin t


−ρ′′2 sin t


+
(
1− 4ρ′2 + 3ρ′4

)
ρ′′ sin t


−
((
b2 + d2

)
ρ
√

1− ρ′2x2
3 sin t

)
+ x3

 b− dρρ′x1 − 2bρ′2 − (ab+ cd) ρ
√

1− ρ′2x2 sin v cos t− 2bρρ′′

− ((bρx1−2dρ′)(1−ρ′2)+2dρρ′ρ′′)√
1−ρ′2

cos v cos t

 .

Thus, from (1.8), (2.4) and (2.7), the coefficients of the second fundamental form are given
by

hC
11 = ρ′′ +



−4W (1− ρ′2)3/2

+ρ



4x2
1(1− ρ′2)

(
cos2 v cos2 t+ ρ′2(1− cos2 v cos2 t)

)
−x2

2(1− ρ′2)


−4(c2 + a2 sin2 v) cos2 t

+ρ′


4c2ρ′ cos2 t

−a2ρ′
(

3 + cos(2v)
−2 cos(2t) sin2 v

)
+8ac

√
1− ρ′2 cos v cos t




−4x2

(
(ab+ cd)(1− ρ′2)2x3 sin(2t)

−2a
√

1− ρ′2ρ′′ cos t

)
sin v

+4x1


x2(1− ρ′2)

(
2cρ′

√
1− ρ′2 sin v

+a(1− ρ′2) cos t sin(2v)

)
cos t

−x3(1− ρ′2)

(
−2dρ′

√
1− ρ′2 sin t

−b(1− ρ′2) cos v sin(2t)

)
+2
√

1− ρ′2ρ′′ cos v cos t



−4

 x2
3(1− ρ′2)


2bdρ′

√
1− ρ′2 cos v cos t

−d2(1− ρ′2)

(
cos2 v cos2 t
+ sin2 t

)
−b2

(
sin2 t+ ρ′2 cos2 t

)


−2b
√

1− ρ′2ρ′′x3 sin t+ ρ′′2






4(−1+ρ′2)

hC
12 = hC

21 = ρ

 x2

(
aρ′
√

1− ρ′2 cos v − c(1− ρ′2) cos t
)

−
(
d(1− ρ′2)x3 sin t+ ρ′

√
1− ρ′2x1

)
sin v

 cos t,

hC
13 = hC

31 = ρ

(
−ρ′

√
1− ρ′2 (x1 cos v + ax2 sin v) sin t

+x3

(
bρ′
√

1− ρ′2 cos t− d(1− ρ′2) cos v
) ) ,

hC
22 = −ρ(1− ρ′2) cos2 t, hC

23 = hC
32 = 0, hC

33 = −ρ(1− ρ′2)

(2.8)

and it implies

det[hC
ij ] = ρ2 (1− ρ′2) (√1− ρ′2W + ρ′′

)(
1− ρ′2 − ρ

(√
1− ρ′2W + ρ′′

))
cos2 t.(2.9)

So, from (1.10), (2.6) and (2.9), we have

Proposition 2.1. The Gaussian curvature of the canal hypersurfaces (2.1) according
to generalized Bishop frames of type B (parallel transport frame), type C and type D in
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Euclidean 4-space is

KC =

√
1− ρ′2W + ρ′′

ρ2
(

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
)) .(2.10)

Corollary 2.1. The canal hypersurfaces (2.1) according to generalized Bishop frames of
type B (parallel transport frame), type C and type D in Euclidean 4-space cannot be flat
when x1 6= 0.

Proof. Let we suppose that canal hypersurfaces (2.1) is flat; i.e. KC = 0. From (2.3) and
(2.10), we get

(x1 cos v + ax2 sin v) cos t+ bx3 sin t+
ρ′′√

1− ρ′2
= 0.(2.11)

Since the set {cos t, sin t, 1} is linear independent, we have

x1 cos v + ax2 sin v = bx3 =
ρ′′√

1− ρ′2
= 0.(2.12)

Also, since the set {cos v, sin v} is linear independent in the first part of (2.12), it must be
x1 = ax2 = 0 and this is a contradiction.

Corollary 2.2. Let C be a canal hypersurface according to generalized Bishop frame of
type B (parallel transport frame) given by (2.1) in E4. When α is a straight line, the canal
hypersurface C is flat if and only if ρ(u) = λu+ µ, (λ, µ ∈ R, λ 6= ±1).

Proof. If α is a straight line, then all of the curvature functions ki, i ∈ {1, 2, 3}, according
to generalized Bishop frame of type B (parallel transport frame) of α vanish. So from
(2.10), the Gaussian curvature becomes (for a = b = 1, c = d = 0)

KC =
ρ′′

ρ2 (1− ρ′2 − ρρ′′)(2.13)

and so, the proof completes from (2.13).

Also, after finding the inverse of the matrix of the first fundamental form and using
this and (2.8) in (1.9), the shape operator of the canal hypersurface (2.1) is obtained by

SC =

 SC
11 SC

12 SC
13

SC
21 SC

22 SC
23

SC
31 SC

32 SC
33

 ,(2.14)

where the nonzero components of this matrix are

SC
11 =

√
1−ρ′2W+ρ′′

1−ρ′2−ρ
(√

1−ρ′2W+ρ′′
) ,

SC
21 =

ρ′
√

1−ρ′2(x1 sin v−ax2 cos v) sec2 t+(1−ρ′2)(cx2+dx3 sin v tan t) sec t

ρ
(
− sec t+ρ

√
1−ρ′2(x1 cos v+ax2 sin v+bx3 tan t)+(ρ′2+ρρ′′) sec t

) ,

SC
31 = − ρ

′
√

1−ρ′2(x1 cos v sin t+ax2 sin v sin t−bx3 cos t)+d(1−ρ′2)x3 cos v

ρ
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

)) ,

SC
22 = SC

33 = − 1
ρ
.

Hence from (1.11) and (2.14), we get
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Proposition 2.2. The mean curvature of the canal hypersurfaces (2.1) according to gen-
eralized Bishop frames of type B (parallel transport frame), type C and type D in Euclidean
4-space is

HC = −
2
(
1− ρ′2

)
− 3ρ

(√
1− ρ′2W + ρ′′

)
3ρ
(

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
)) .(2.15)

Corollary 2.3. The canal hypersurfaces (2.1) according to generalized Bishop frames
of type B (parallel transport frame), type C and type D in Euclidean 4-space cannot be
minimal when x1 6= 0.

Proof. Let we suppose that canal hypersurfaces (2.1) is minimal; i.e. HC = 0. From (2.3)
and (2.15), we get

(x1 cos v + ax2 sin v) cos t+ bx3 sin t−
2
(
1− ρ′2

)
− 3ρρ′′

3ρ
√

1− ρ′2
= 0.(2.16)

With similar procedure in the proof of Corollary 2.1, the proof completes.

Corollary 2.4. Let C be a canal hypersurface according to generalized Bishop frame of
type B (parallel transport frame) given by (2.1) in E4. When α is a straight line, the canal
hypersurface C is minimal if and only the differential equation

2− 2ρ′2(u)− 3ρ(u)ρ′′(u) = 0(2.17)

holds.

Proof. If α is a straight line, then from (2.10), the mean curvature becomes (for a = b = 1,
c = d = 0)

HC = −2− 2ρ′2(u)− 3ρ(u)ρ′′(u)

3ρ (1− ρ′2 − ρρ′′) .(2.18)

Thus from (2.18), the proof is obvious.

By solving the equation (2.17) (see [26]), we get the following corollary:

Corollary 2.5. Let α be a straight line. Then, the canal hypersurface (2.1) according to
generalized Bishop frame of type B (parallel transport frame) in E4 is minimal if and only

if the radius function ρ(x) is given by

∫
dρ√

1−
(
λ
ρ

) 4
3

= ±x+ µ, (λ, µ ∈ R).

Here, from (2.10) and (2.15), we can state the following theorem which gives an im-
portant relation between Gaussian and mean curvatures of the canal hypersurfaces (2.1)
according to generalized Bishop frames of type B, type C and type D:

Corollary 2.6. The Gaussian curvature K and the mean curvature H of the canal hyper-
surfaces (2.1) according to generalized Bishop frames of type B (parallel transport frame),
type C and type D in E4 satisfy

HC =
1

3
(KCρ2 − 2

ρ
).(2.19)
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Now, if HuKv − HvKu = 0, HuKt − HtKu = 0 or HvKt − HtKv = 0 hold on
a hypersurface, then we call the hypersurface as (H,K){u,v}-Weingarten, (H,K){u,t}-
Weingarten or (H,K){v,t}-Weingarten hypersurface, respectively.

From (2.10) and (2.15), we have

KC
u =


3ρρ′(1− ρ′2)3/2W2 + (2ρ′3ρ′′ + ρ′ρ′′ (−2 + 5ρρ′′))

√
1− ρ′2

+ρ′(1− ρ′2)
(
−2 + 2ρ′2 + 7ρρ′′

)
W + ρ

(√
1− ρ′2ρ′′′ +Wu

)
−ρρ′2

(√
1− ρ′2ρ′′′ + 2Wu

)
+ ρρ′4Wu


ρ3
√

1−ρ′2
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

))2 ,

KC
v = (1−ρ′2)3/2Wv

ρ2
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

))2 ,

KC
t = (1−ρ′2)3/2Wt

ρ2
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

))2

(2.20)

and

HC
u =


2ρ′(1− ρ′2)5/2 − 4ρρ′(1− ρ′2)

(
(1− ρ′2)W +

√
1− ρ′2ρ′′

)
+ρ2

(
3ρ′(1− ρ′2)3/2W2 + 7ρ′(1− ρ′2)ρ′′W + 5ρ′ρ′′2

√
1− ρ′2

+
√

1− ρ′2ρ′′′ − ρ′2
(√

1− ρ′2ρ′′′ + 2Wu

)
+Wu + ρ′4Wu

) 
3ρ2
√

1−ρ′2
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

))2 ,

HC
v = (1−ρ′2)3/2Wv

3
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

))2 ,

HC
t = (1−ρ′2)3/2Wt

3
(
1−ρ′2−ρ

(√
1−ρ′2W+ρ′′

))2 ,

(2.21)

where 
Wu = x′1 cos v cos t+ ax′2 sin v cos t+ bx′3 sin t,
Wv = cos t (−x1 sin v + ax2 cos v) ,
Wt = − sin t (x1 cos v + ax2 sin v) + bx3 cos t.

(2.22)

So (2.20)-(2.22), we have

Proposition 2.3. The canal hypersurface (2.1) according to generalized Bishop frames
of type B (parallel transport frame), type C and type D in E4 is (HC,KC){v,t}-Weingarten
hypersurface.

Proposition 2.4. The canal hypersurface (2.1) according to generalized Bishop frames
of type B (parallel transport frame), type C and type D in E4 cannot be (HC,KC){u,v} and
(HC,KC){u,t}-Weingarten hypersurface when x1 6= 0.

Proof. Using (2.20)-(2.22), we get

HC
uK

C
v −HC

vK
C
u =

2ρ′(1− ρ′2)2

(
ρ
(

(1− ρ′2)W +
√

1− ρ′2ρ′′
)

−(1− ρ′2)3/2

)
(x1 sin v − ax2 cos v) cos t

3ρ′4
(

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
))4 .

(2.23)
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Let the canal hypersurface (2.1) according to generalized Bishop frames of type B
(parallel transport frame), type C and type D in E4 is (HC,KC){u,v}-Weingarten and
x1 6= 0. Then from (2.23), we get

2ρ′(1− ρ′2)2
(
−(1− ρ′2)3/2 + ρ

(
(1− ρ′2)W +

√
1− ρ′2ρ′′

))
(x1 sin v − ax2 cos v) cos t = 0

and here, we have(
−(1− ρ′2)3/2 + ρ

(
(1− ρ′2)W +

√
1− ρ′2ρ′′

))
(x1 sin v − ax2 cos v) = 0.(2.24)

Because of the set {sin v, cos v} is linear independent and x1 6= 0, the second part of (2.24)
cannot be zero. Hence the first part of (2.24) must be zero, i.e.

−(1− ρ′2)3/2 + ρ
(

(1− ρ′2)W +
√

1− ρ′2ρ′′
)

= 0.(2.25)

Using (2.3) in (2.25), we get

cos t (x1 cos v + ax2 sin v) + bx3 sin t− 1− ρ′2 − ρρ′′

ρ
√

1− ρ′2
= 0.

Since the set {cos t, sin t, 1} is linear independent, we have

x1 cos v + ax2 sin v = bx3 =
1− ρ′2 − ρρ′′

ρ
√

1− ρ′2
= 0.(2.26)

So, from the first part of (2.26), it must be x1 = 0 and this is a contradiction.

Similarly, from (2.20)-(2.22), we get

HC
uK

C
t −HC

t K
C
u =

2ρ′(1− ρ′2)2

(
Wρ(1− ρ′2) +

√
1− ρ′2ρρ′′

−(1− ρ′2)3/2

) x1 cos v sin t
+ax2 sin v sin t
−bx3 cos t


3ρ′4

(
1− ρ′2 − ρ

(
W
√

1− ρ′2 + ρ′′
))4

(2.27)

and if the canal hypersurface (2.1) according to generalized Bishop frames of type B
(parallel transport frame), type C and type D in E4 is (HC,KC){u,t}, then from (2.27),
we reach a similar contradiction with above. So, the proof completes.

Proposition 2.5. The canal hypersurface (2.1) according to generalized Bishop frame of
type B (parallel transport frame) is (HC,KC){u,v}-Weingarten and (HC,KC){u,t}-Weingarten
hypersurface when α is a straight line.

Also, from (2.14) we have

det(SC − λI3) =
(1 + λρ)2

(
−λ+ λρ′2 +

√
1− ρ′2W + ρ′′ + λρ

(√
1− ρ′2W + ρ′′

))
ρ2
(

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
)) .

(2.28)
By solving the equation det(SC−λI3) = 0 from (2.28), we obtain the principal curvatures
of the canal hypersurfaces (2.1) according to generalized Bishop frames of type B, type C
and type D in E4 as follows:
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Proposition 2.6. The principal curvatures of the canal hypersurfaces (2.1) according to
generalized Bishop frames of type B (parallel transport frame), type C and type D in E4

are

λC
1 = λC

2 = −1

ρ
, λC

3 =

√
1− ρ′2W + ρ′′

1− ρ′2 − ρ
(√

1− ρ′2W + ρ′′
) .(2.29)

3. Tubular Hypersurfaces according to Generalized Bishop Frames in
E4

In this section, we study the tubular hypersurfaces according to generalized Bishop frames
in E4. By taking ρ(u) = ρ =constant in (2.1), we get the tubular hypersurface T according
to generalized Bishop frames in E4 as

T (u, v, t) = α(u)± ρ [(cos v cos t)M1(u) + (sin v cos t)M2(u) + (sin t)M3(u)] ,(3.1)

where u ∈ [0, l] and v, t ∈ [0, 2π). Considering ”±” as ”+” in (3.1), we obtain the following
results:

Firstly, from (1.5) and (3.1), the first derivatives of the tubular hypersurface (3.1) are
obtained as



Tu = (1− ρW)T − ρ (cx2 cos t sin v + dx3 sin t)M1

+ (cρx2 cos v cos t)M2 + (dρx3 cos v cos t)M3,

Tv = −ρ ((sin v cos t)M1 − (cos v cos t)M2) ,

Tt = −ρ ((cos v sin t)M1 + (sin v sin t)M2 − (cos t)M3) .

(3.2)

From (1.6) and (3.2), the unit normal vector field of T in E4 is

N T = (cos v cos t)M1 + (sin v cos t)M2 + (sin t)M3.(3.3)

Also, the nonzero coefficients of the first fundamental form are given by


gT11 = (ρ cos t cos v)2 (c2x2

2 + d2x2
3

)
+ ρ2 (cx2 cos t sin v + dx3 sin t)2 + (1− ρW) 2,

gT12 = ρ2 (cx2 cos t+ dx3 sin v sin t) cos t, gT13 = dρ2x3 cos v, gT22 = ρ2 cos2 t, gT33 = ρ2

(3.4)
and it follows that

det[gTij ] = ρ4 (1− ρW)2 cos2 t.(3.5)

Now, for obtaining the coefficients of the second fundamental form, let we give the
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second derivatives Txixj = ∂2T
∂xixj

of the tubular hypersurface (3.1) as follows

Tuu =

ρ
 x1 (cx2 cos t sin v + dx3 sin t)
−
(
acx2

2 + bdx2
3 + x′1

)
cos v cos t

−ax′2 sin v cos t− bx′3 sin t

− ρρ′′′
T

+

(
x1 − ρ

( (
x2

1 + c2x2
2 + d2x2

3

)
cos v cos t

+ (ax1x2 + ck′1) sin v cos t+ (bx1x3 + dx′1) sin t

))
M1

+

(
−
(
a2 + c2

)
ρx2

2 sin v cos t
+x2 (a− aρx1 cos v cos t− (ab+ cd) ρx3 sin t) + cρx′2 cos v cos t

)
M2

+

(
x3 (b− bρx1 cos v cos t− (ab+ cd) ρx2 sin v cos t)
−
(
b2 + d2

)
ρx2

3 sin t+ dρx′3 cos v cos t

)
M3,

Tuv = Tvu = (ρ (x1 sin v − ax2 cos v) cos t)T − (cρx2 cos v cos t)M1

− (cρx2 sin v cos t)M2 − (dρx3 sin v cos t)M3,
Tut = Ttu = ρ (x1 cos v sin t+ ax2 sin t sin v − bx3 cos t)T

+ ρ (cx2 sin v sin t− dx3 cos t)M1 − (cρx2 sin t cos v)M2 − (dρx3 sin t cos v)M3,
Tvv = −ρ ((cos v cos t)M1 + (sin v cos t)M2) ,
Tvt = Ttv = ρ ((sin v sin t)M1 − (sin t cos v)M2) ,
Ttt = −ρ ((cos v cos t)M1 + (sin v cos t)M2 + (sin t)M3) .

(3.6)

Thus, from (1.8), (3.3) and (3.6), the nonzero coefficients of the second fundamental form
are given by

hT11 = −ρx2
1 cos2 v cos2 t+ ρ

2

(
−a2 − 2c2 + a2 cos(2v)

)
x2

2 cos2 t
+ x2 (a− 2(ab+ cd)ρ sin tx3) cos t sin v
+ x3

(
b sin t− ρ

(
d2 cos2 v cos2 t+ (b2 + d2) sin2 t

)
x3

)
+ x1 (1− 2ρ (ax2 cos t sin v + bx3 sin t)) cos v cos t,

hT12 = −ρ (cx2 cos t+ dx3 sin t sin v) cos t,
hT13 = −dρx3 cos v, hT22 = −ρ cos2 t, hT33 = −ρ

(3.7)

and it implies
det[hTij ] = ρ2W (1− ρW) cos2 t.(3.8)

So from (1.10), (3.5) and (3.8), we get

Proposition 3.1. The Gaussian curvature of the tubular hypersurfaces (3.1) according
to generalized Bishop frames of type B (parallel transport frame), type C and type D in E4

is

KT =
W

ρ2(1− ρW)
.(3.9)

Thus from (3.9), we have

Corollary 3.1. Let T be a tubular hypersurface according to generalized Bishop frame
of type B (parallel transport frame) given by (3.1) in E4. When α is a straight line, the
tubular hypersurface T is flat.

Also, after finding the inverse of the matrix of the first fundamental form and using
this and (3.7) in (1.9), the shape operator of the tubular hypersurface (3.1) is obtained by

ST =

 ST11 ST12 ST13

ST21 ST22 ST23

ST31 ST32 ST33

 ,(3.10)
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where the nonzero components of this matrix are

ST11 = W
1−ρW ,

ST21 = (cx2+dx3 sin v tan t) sec t
ρ(− sec t+ρx1 cos v+aρx2 sin v+bρx3 tan t)

,

ST31 = − dx3 cos v
ρ(1−ρW)

,

ST22 = ST33 = − 1
ρ
.

Hence from (1.11) and (3.10), we reach that

Proposition 3.2. The mean curvature of the tubular hypersurface (3.1) according to
generalized Bishop frames of type B (parallel transport frame), type C and type D in E4 is

HT =
−2 + 3ρW
3ρ(1− ρW)

.(3.11)

Thus from (3.11), we get

Corollary 3.2. Let T be a tubular hypersurface according to generalized Bishop frame
of type B (parallel transport frame) given by (3.1) in E4. When α is a straight line, the
tubular hypersurface T is not minimal and it has negative mean curvature −2

3ρ
.

Furthermore, from (3.9) and (3.11), we have

Proposition 3.3. The tubular hypersurface (3.1) according to generalized Bishop frames
of type B (parallel transport frame), type C and type D in E4 is (HT ,KT ){u,v}, (HT ,KT ){u,t}
and (HT ,KT ){v,t}-Weingarten hypersurface.

Also, from (3.10) we have

det(ST − λI3) =
(1 + λρ)2

(
−1− λρ+ 1

1−ρW

)
ρ3

.(3.12)

By solving the equation det(ST −λI3) = 0 from (3.12), we obtain the principal curvatures
of the tubular hypersurfaces (3.1) in E4 as follows:

Proposition 3.4. The principal curvatures of the tubular hypersurfaces (3.1) according
to generalized Bishop frames of type B (parallel transport frame), type C and type D in E4

are

λT1 = λT2 = −1

ρ
, λT3 =

W
1− ρW .(3.13)
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30. İ. Kişi, G. Öztürk and K. Arslan: A new type of canal surface in Euclidean
4-space E4, Sakarya University Journal of Science 23(5) (2019), 801-809.

31. S.N. Krivoshapko and C.A.B. Hyeng: Classification of Cyclic Surfaces and
Geometrical Research of Canal Surfaces. International Journal of Research and
Reviews in Applied Sciences 12(3) (2012), 360-374.

32. J.M. Lee: Riemannian Manifolds-An Introduction to Curvature. Springer-Verlag
New York, Inc, 1997.

33. T. Maekawa, N.M. Patrikalakis, T. Sakkalis & G. Yu: Analysis and Appli-
cations of Pipe Surfaces. Compt. Aided Geom. Design 15(5) (1998), 437-458.
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