FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 38, No 1 (2023), 25 - 33

https://doi.org/10.22190/FUMI220404002S

Original Scientific Paper

CONVOLUTION PROPERTIES FOR CERTAIN SUBCLASSES OF MEROMORPHIC P-VALENT FUNCTIONS BY MEANS OF CASSINIAN OVALS

Amit Soni¹, Prem Pratap Vyas² and Shashi Kant²

 $^{\rm 1}$ Department of Mathematics, Government Engineering College, Bikaner-334003, INDIA

Abstract. In the present paper we introduce two new sub-categories $\mathscr{MS}_{q,\eta}^*(p,s;d)$ and $\mathscr{MK}_{q,\eta}(p,s;d)$ for a variety of meromorphic operations using a q-derivative operator defined on a perforated unit disk. We use Cassinian Oval $\sqrt{1+dz}$ with $d\in(0,1]$ as a subordinant function. We also find the necessary and sufficient conditions for the activities of these clauses.

Key words: Meromorphic p-Valent functions, Hadamard product (or convolution), Subordination between analytic functions, Q-derivative operator, Cassinian ovals.

1. Introduction

In the present scenario, the concept of q-calculus has spawned a surprising effort by researchers for its use in many branches of mathematics and physics. Q-calculus is standard Calculus without limit point view. Jackson [5, 6, 7] introduced and studied the q-derivative and q-integral. Using q-calculus classes for various tasks in Geometric Function Theory is presented and investigated with different views and opinions (see [1], [8], [13], [15], [16], [19] and references therein). The purpose of this paper is to introduce and read two new sections of p-valent meromorphic activities using q derivative operators in accordance with the principle of subordinations.

Received April 04, 2022. accepted November 22, 2022.

Communicated by Dijana Mosić

Corresponding Author: Prem Pratap Vyas, Department of Mathematics, Government Dungar College, Bikaner-334001, India | E-mail: prempratapvyas@gmail.com

2010 Mathematics Subject Classification. Primary xxxxx; Secondary xxxxx, xxxxx

 $^{^{2}}$ Department of Mathematics, Government Dungar College, Bikaner-334001, India

^{© 2023} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Let Σ_p denote the class of meromorphic functions of the form

(1.1)
$$h(z) = z^{-p} + \sum_{n>1} b_n z^{n-p} \qquad (p \in \mathbb{N}),$$

which are analytic and p-valent in the punctured unit disc $\mathbb{U}^* = \mathbb{U} \setminus \{0\}$, where $\mathbb{U} = \{z : z \in \mathbb{C}, |z| < 1\}$. Given two functions f and $g \in \Sigma_p$, we say that f is subordinated to g in \mathbb{U} and write $f(z) \prec g(z)$, if there exists a Schwarz function ω , analytic in \mathbb{U} , with $\omega(0) = 0, |\omega(z)| < |z|, z \in \mathbb{U}$, such that $f(z) = g(\omega(z))$ in \mathbb{U} . In particular, if g(z) is univalent in \mathbb{U} , we have the following equivalence: $f(z) \prec g(z), z \in \mathbb{U} \iff f(0) = g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

For 0 < q < 1, the q-derivative of a function h is defined by (see [4, 5, 6, 7])

(1.2)
$$\mathscr{D}_q h(z) = \frac{h(qz) - h(z)}{(q-1)z} \qquad (z \in \mathbb{U}),$$

provided that h'(0) exists.

From (1.2), it can be easily obtain that

$$\mathscr{D}_q h(z) = \frac{-[p]_q}{q^p z^{p+1}} + \sum_{n=1}^{\infty} [n-p]_q b_n z^{n-p-1},$$

where

$$[n]_q = \frac{1 - q^n}{1 - q}.$$

As q $\to 1^-$, $[n]_q \to n$ and $\lim_{q \to 1^-} \mathscr{D}_q h(z) = h^{'}(z)$. Also, we have

$$[n+p]_q = [n]_q + q^n [p]_q = q^p [n]_q + [p]_q,$$

$$[n-p]_q = q^{-p} [n]_q - q^{-p} [p]_q,$$

$$[0]_q = 0, [1]_q = 1.$$

For $h \in \Sigma_p$ given by (1.1) and $g \in \Sigma_p$ given by

$$g(z) = z^{-p} + \sum_{n>1} a_n z^{n-p} \qquad (p \in \mathbb{N}),$$

the Hadamard product (or convolution) of h and g is defined by

$$(h*g)(z) = z^{-p} + \sum_{n \ge 1} b_n a_n z^{n-p} = (g*h)(z).$$

Highly encouraged by the work of Aouf [11], Seoudy et al. [12], Srivastava et al. [17], we define the following two subclasses for Σ_p using the q-derivative operator \mathcal{D}_q and the principle of subordination between analytical functions:

Convolution Properties for Certain Subclasses of Meromorphic p-Valent Functions ... 27

Definition 1.1. Let 0 < q < 1, $d \in (0,1]$ and $s \in \mathbb{C} \setminus \{0\}$. A function h belonging to Σ_p is said to be in the class $\mathscr{MS}_{q,\eta}^*(p,s;d)$ if it satisfies

$$(1.3) 1 - \frac{1}{s} \left[\frac{z \mathcal{D}_q h(z)}{(1 - \frac{\eta}{q^p})h(z) - \frac{\eta}{|p|_q} z \mathcal{D}_q h(z)} + \frac{[p]_q}{q^p} \right] \prec \sqrt{1 + dz}.$$

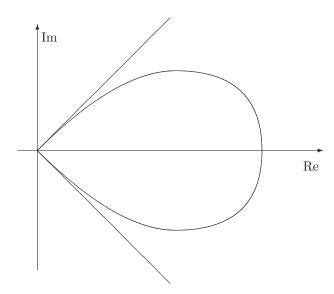
Definition 1.2. Let 0 < q < 1, $d \in (0,1]$ and $s \in \mathbb{C} \setminus \{0\}$. A function h belonging to Σ_p is said to be in the class $\mathscr{MK}_{q,\eta}(p,s;d)$ if it satisfies

$$(1.4) 1 - \frac{1}{s} \left[\frac{z \mathscr{D}_q(z \mathscr{D}_q h(z))}{(1 - \frac{\eta}{q^p})(z \mathscr{D}_q h(z)) - \frac{\eta}{[p]_q} z \mathscr{D}_q(z \mathscr{D}_q h(z))} + \frac{[p]_q}{q^p} \right] \prec \sqrt{1 + dz}.$$

We also verify from both above definitions that

$$(1.5) h \in \mathscr{MK}_{q,\eta}(p,s;d) \Leftrightarrow -\frac{q^p}{[p]_q} z \mathscr{D}_q h \in \mathscr{MS}_{q,\eta}^*(p,s;d).$$

Notice that for $d \in (0,1)$ the set $q_d(\mathbb{U}) = \{\omega \in \mathbb{C} : \text{Re}(\omega) > 0 \cap |\omega^2 - 1| < d\}$ is the interior of the right half of the Cassini's curve $|\omega^2 - 1| = d$ and in the special case d = 1 this curve is the Bernoulli's lemniscate; see [10], pp. 231-235.



The image of the unit circle under the function $\sqrt{1+z}$

The function $\omega(z) = \sqrt{1+z}$ maps \mathbb{U} onto a set bounded by Bernoulli lemniscate, and the class of functions $h \in \sum_{p}$ of holomorphic functions such that $zh'(z)/h(z) \prec$

 $\sqrt{1+z}$ was considered in [14], while the class $zh'(z)/h(z) \prec \sqrt{1+dz}$ was considered in [2]. For detailed study about Cassinian ovals and related topics one can refer [2, 3, 9, 18].

In the present investigations, we derive the necessary and sufficient condition for functions belonging to the subclasses $\mathscr{MS}_{q,\eta}^*(p,s;d)$ and $\mathscr{MK}_{q,\eta}(p,s;d)$.

2. Main Results

Unless otherwise mentioned, we assume throughout this section that 0 < q < 1, $0 \le \eta < 1$, $d \in (0,1)$, $s \in \mathbb{C} \setminus \{0\}$ and $\theta \in [0,2\pi)$.

Theorem 2.1. If $h \in \Sigma_p$, then $h \in \mathscr{MS}_{q,\eta}^*(p,s;d)$ if and only if

(2.1)
$$z^p \left[h(z) * \frac{1 + \left\{ \left(1 - \frac{\eta}{q^p} \right) M(\theta) - \left(q + \frac{\eta}{q^p [p]_q} \right) \right\} z}{z^p (1 - z) (1 - qz)} \right] \neq 0 \qquad (z \in \mathbb{U}^*),$$

where

(2.2)
$$M(\theta) = \frac{e^{-i\theta}(1 + \sqrt{1 + de^{i\theta}})}{dsq^s}.$$

Proof. It is easy to verify that for any function $h \in \Sigma_p$

(2.3)
$$h(z) * \frac{1}{z^p(1-z)} = h(z)$$

and

(2.4)
$$h(z) * \frac{1 - \left(q + \frac{1}{[p]_q}\right)z}{z^p(1-z)(1-qz)} = -\frac{q^p}{[p]_q}z\mathscr{D}_q h(z).$$

First, if $h \in \mathscr{MS}_{q,\eta}^*(p,s;d)$, in order to prove that (2.1) holds we will write (1.3) by using the definition of the subordination, that is

$$-\frac{q^p}{[p]_q}\frac{z\mathscr{D}_qh(z)}{(1-\frac{\eta}{q^p})h(z)-\frac{\eta}{[p]_q}z\mathscr{D}_qh(z)}=1-s\frac{q^p}{[p]_q}\left(1-\sqrt{1+d\omega(z)}\right) \qquad \qquad (z\in\mathbb{U}^*),$$

where ω is a schwarz function, hence

(2.5)

$$z^{p} \left[-q^{p} z \mathscr{D}_{q} h(z) - \left\{ [p]_{q} + sq^{p} \left(\sqrt{1 + de^{i\theta}} - 1 \right) \right\} \left(\left(1 - \frac{\eta}{q^{p}} \right) h(z) - \frac{\eta}{[p]_{q}} z \mathscr{D}_{q} h(z) \right) \right] \neq 0.$$

Now from (2.3) and (2.4), we may write (2.5) as

$$z^{p} \left[\left(h(z) * \frac{\left\{ 1 - \left(q + \frac{1}{[p]_{q}} \right) z \right\} [p]_{q}}{z^{p} (1 - z) (1 - qz)} \right) \right]$$

Convolution Properties for Certain Subclasses of Meromorphic p-Valent Functions ... 29

$$-\Big\{[p]_q + sq^p(\sqrt{1 + de^{i\theta}} - 1)\Big\}\Big\{\left(1 - \frac{\eta}{q^p}\right)\left(h(z) * \frac{1}{z^p(1-z)}\right) + \frac{\eta}{q^p}\left(h(z) * \frac{\left\{1 - \left(q + \frac{1}{[p]_q}\right)z\right\}}{z^p(1-z)(1-qz)}\right)\Big\}\Big] \neq 0 \quad (z \in \mathbb{U}^*),$$

which is equivalent to

$$z^{p}\left[h(z)*\frac{1+\left\{\left(1-\frac{\eta}{q^{p}}\right)\frac{e^{-i\theta}\left(\sqrt{1+de^{i\theta}}+1\right)}{dsq^{p}}-\left(q+\frac{\eta e^{-i\theta}\left(\sqrt{1+de^{i\theta}}+1\right)}{dq^{p}[p]q}\right)\right\}z}{z^{p}(1-z)(1-qz)}\left[-sq^{p}\left(\sqrt{1+de^{i\theta}}-1\right)\right]\right]\neq0$$

or

$$z^{p}\left[h(z)*\frac{1+\left\{\left(1-\frac{\eta}{q^{p}}\right)\frac{e^{-i\theta}\left(\sqrt{1+de^{i\theta}}+1\right)}{dsq^{p}}-\left(q+\frac{\eta e^{-i\theta}\left(\sqrt{1+de^{i\theta}}+1\right)}{dq^{p}[p]_{q}}\right)\right\}z}{z^{p}(1-z)(1-qz)}\right]\neq0\,(z\in\mathbb{U}^{*}),$$

which leads to (2.1), which proves the necessary part of Theorem 2.1.

Reversely, suppose that $h \in \Sigma_p$ satisfy the condition (2.1). Since it was shown in the first part of the proof that assumption (2.1) is equivalent to (2.5), we obtain that

$$(2.6) - \frac{q^p}{[p]_q} \frac{z \mathcal{D}_q h(z)}{(1 - \frac{\eta}{q^p}) h(z) - \frac{\eta}{[p]_q} z \mathcal{D}_q h(z)} \neq 1 + \frac{sq^p}{[p]_q} \left(\sqrt{1 + de^{i\theta}} - 1\right) \qquad (z \in \mathbb{U}^*)$$

and let us assume that

$$\varphi(z) = -\frac{q^p}{[p]_q} \frac{z \mathscr{D}_q h(z)}{(1-\frac{\eta}{q^p})h(z) - \frac{\eta}{[p]_q} z \mathscr{D}_q h(z)} \ \text{ and } \ \psi(z) = 1 + \frac{sq^p}{[p]_q} \left(\sqrt{1+de^{i\theta}} - 1\right).$$

The relation (2.6) means that

$$\varphi(\mathbb{U}^*) \cap \psi(\partial \mathbb{U}^*) = \phi.$$

Thus, the simply connected domain is included in a connected component of $\mathbb{C}\setminus\psi(\partial\mathbb{U}^*)$. Therefore, using the fact that $\varphi(0)=\psi(0)$ and the univalence of the function ψ , it follows that $\varphi(z)\prec\psi(z)$, which implies that $f\in\mathscr{MS}_{q,\eta}^*(p,s;d)$. Thus, the proof of Theorem 2.1 is completed. \square

Theorem 2.2. If $f \in \Sigma_p$, then $f \in \mathcal{MH}_{q,\eta}(p,s;d)$ if and only if (2.7)

$$z^{p} \left[h(z) * \frac{1 - \left[\left\{ (q + \frac{\eta}{q^{p}[p]q}) - (1 - \frac{\eta}{q^{p}})M(\theta) \right\} \left(1 - \frac{1}{[p]q} \right) + \frac{1 + q}{[p]q} + q^{2} \right] z - \left\{ (1 - \frac{\eta}{q^{p}})M(\theta) - (q + \frac{\eta}{q^{p}[p]q}) \right\} (q + \frac{1}{[p]q})qz^{2}}{z^{p}(1 - z)(1 - qz)(1 - q^{2}z)} \right] \neq 0$$

where $z \in \mathbb{U}^*$ and $M(\theta)$ is given by (2.2).

Proof. From (1.5) it follows that $h \in \mathscr{MK}_{q,\eta}(p,s;d)$ if and only if $-\frac{q^p}{[p]_q}z\mathscr{D}_qh \in \mathscr{MS}_{q,\eta}^*(p,s;d)$. Then from Theorem 2.1, the function $-\frac{q^p}{[p]_q}z\mathscr{D}_qh \in \mathscr{MS}_{q,\eta}^*(p,s;d)$ if and only if

(2.8)
$$z^{p} \left[-\frac{q^{p}}{[p]_{q}} z \mathscr{D}_{q} h(z) * g(z) \right] \neq 0, \qquad (z \in \mathbb{U}^{*}),$$

where

$$g(z) = \frac{1 + \left\{ \left(1 - \frac{\eta}{q^p}\right) M(\theta) - \left(q + \frac{\eta}{q^p[p]_q}\right) \right\} z}{z^p (1 - z) (1 - qz)}.$$

On a basic computation we note that

$$\mathscr{D}_q g(z) = \frac{g(qz) - g(z)}{(q-1)z} =$$

$$\begin{split} \mathscr{D}_q g(z) &= \frac{g(qz) - g(z)}{(q-1)z} = \\ &= \frac{-[p]_q + [1+q+[p]_q q^2 + \{(q+\frac{\eta}{q^p[p]_q}) - (1-\frac{\eta}{q^p})M(\theta)\}([p]_q-1)]z + \{(1-\frac{\eta}{q^p})M(\theta) - (q+\frac{\eta}{q^p[p]_q})\}(q+q^2[p]_q)z^2}{q^p z^{p+1}(1-z)(1-qz)(1-q^2z)} \end{split}$$
 and therefore

$$-\frac{q^p}{[p]_q}z\mathscr{D}_qg(z) =$$

$$=\frac{1-\Big[\big\{(q+\frac{\eta}{q^p[p]_q})-(1-\frac{\eta}{q^p})M(\theta)\big\}\big(1-\frac{1}{[p]_q}\big)+\frac{1+q}{[p]_q}+q^2\Big]z-\big\{(1-\frac{\eta}{q^p})M(\theta)-(q+\frac{\eta}{q^p[p]_q})\big\}(q+\frac{1}{[p]_q})qz^2}{z^p(1-z)(1-qz)(1-q^2z)}$$

Using the above relation and the identi

$$\left(-\frac{q^p}{[p]_q}z\mathscr{D}_qh(z)\right)*g(z)=h(z)*\left(-\frac{q^p}{[p]_q}z\mathscr{D}_qg(z)\right),$$

it is simple to check that (2.8) is identical to (2.7). Thus, the proof of Theorem 2.2 is completed. \Box

Theorem 2.3. A necessary and sufficient condition for the function h defined by (1.1) to be in the class $\mathscr{MS}_{q,\eta}^*(p,s;d)$ is that (2.9)

$$1 + \sum_{n \ge 1} \frac{\left(1 - \frac{\eta}{q^p}\right)e^{-i\theta}\left(\sqrt{1 + de^{i\theta}} + 1\right)[n]_q + \left(1 - \frac{\eta[n]_q}{q^p[p]_q}\right)dsq^p}{dsq^p} b_n z^n \ne 0 \quad (z \in \mathbb{U}^*).$$

Proof. From Theorem 2.1, we find that $f \in \mathscr{MS}_{q,\eta}^*(p,s;d)$ if and only if (2.1) holds.

$$\frac{1}{z^p(1-z)(1-qz)} = \frac{1}{z^p} + (1+q)z^{1-p} + (1+q+q^2)z^{2-p} + (1+q+q^2+q^3)z^{3-p} + \cdots, \quad (z \in \mathbb{U}^*),$$

$$\frac{1 + \left\{ \left(1 - \frac{\eta}{q^p}\right) M(\theta) - \left(q + \frac{\eta}{q^p[p]_q}\right) \right\} z}{z^p (1 - z) (1 - qz)} = \frac{1}{z^p} + \sum_{n \ge 1} \left(1 + \left\{ \left(1 - \frac{\eta}{q^p}\right) M(\theta) - \frac{\eta}{q^p[p]_q} \right\} [n]_q \right) z^{n-p},$$

where $M(\theta)$ is given by (2.2).

Now a simple computation shows that (2.1) is identical to (2.9). Thus, the proof of Theorem 2.3 is completed. \square

Theorem 2.4. A necessary and sufficient condition for the function h defined by (1.1) to be in the class $\mathscr{MK}_{q,\eta}(p,s;d)$ is that

$$1 + \sum_{n \ge 1} \frac{\left(1 - \frac{\eta}{q^p}\right) e^{-i\theta} \left(\sqrt{1 + de^{i\theta}} + 1\right) [n]_q + \left(1 - \frac{\eta[n]_q}{q^p[p]_q}\right) dsq^p}{dsq^p} \left(1 - \frac{[n]_q}{[p]_q}\right) b_n z^n \ne 0 \quad (z \in \mathbb{U}^*).$$

Convolution Properties for Certain Subclasses of Meromorphic p-Valent Functions ... 31

Proof. From Theorem 2.2, we find that $h \in \mathcal{MK}_{q,\eta}(p,s;d)$ if and only if (2.7) holds.

Since

$$\begin{split} \frac{1}{z^p(1-z)(1-qz)(1-q^2z)} &= \frac{1}{z^p} + (1+q+q^2)z^{1-p} + (1+q+2q^2+q^3+q^4)z^{2-p} \\ &\quad + (1+q+2q^2+2q^3+2q^4+q^5+q^6)z^{3-p} + \cdots, \quad (z \in \mathbb{U}^*), \end{split}$$

hence

$$\begin{split} &\frac{1 - \left[\left\{ \left(q + \frac{\eta}{q^p[p]q}\right) - \left(1 - \frac{\eta}{q^p}\right) M(\theta) \right\} \left(1 - \frac{1}{[p]q}\right) + \frac{1 + q}{[p]q} + q^2 \right] z - \left\{ \left(1 - \frac{\eta}{q^p}\right) M(\theta) - \left(q + \frac{\eta}{q^p[p]q}\right) \right\} \left(q + \frac{1}{[p]q}\right) q z^2}{z^p (1 - z) (1 - qz) (1 - q^2 z)} \\ &= \frac{1}{z^p} + \sum_{n=1}^{\infty} \left(1 + \left\{ \left(1 - \frac{\eta}{q^p}\right) M(\theta) - \frac{\eta}{q^p[p]q} \right\} [n]_q \right) \left(1 - \frac{[n]q}{[p]q}\right) z^{n-p} \quad (z \in \mathbb{U}^*), \end{split}$$

where $M(\theta)$ is given by (2.2).

Now a simple computation shows that (2.7) is identical to (2.10). Thus, the proof of Theorem 2.4 is completed. \square

Theorem 2.5. If $h \in \Sigma_p$ satisfies the inequality

$$(2.11) \qquad \sum_{n=1}^{\infty} \left[\left| 1 - \frac{\eta}{q^p} \right| \left(\left| \sqrt{1 + de^{i\theta}} + 1 \right| \right) [n]_q + \left| s \left(1 - \frac{\eta[n]_q}{q^p[p]_q} \right) \left| dq^p \right| \right] |s_n| < d|s|q^p$$

then $h \in \mathscr{MS}_{q,\eta}^*(p,s;d)$.

Proof. Since

$$\left| 1 + \sum_{n \ge 1} \frac{\left(1 - \frac{\eta}{q^p} \right) e^{-i\theta} \left(\sqrt{1 + de^{i\theta}} + 1 \right) [n]_q + \left(1 - \frac{\eta[n]_q}{q^p[p]_q} \right) dsq^p}{dsq^p} s_n z^n \right|$$

$$\ge 1 - \left| \sum_{n \ge 1} \frac{\left(1 - \frac{\eta}{q^p} \right) e^{-i\theta} \left(\sqrt{1 + de^{i\theta}} + 1 \right) [n]_q + \left(1 - \frac{\eta[n]_q}{q^p[p]_q} \right) dsq^p}{dsq^p} s_n z^n \right|$$

$$\ge 1 - \sum_{n \ge 1} \frac{\left| 1 - \frac{\eta}{q^p} \right| \left(\left| \sqrt{1 + de^{i\theta}} + 1 \right| \right) [n]_q + \left| s \left(1 - \frac{\eta[n]_q}{q^p[p]_q} \right) \right| dq^p}{d|s|q^p} |s_n| > 0.$$

Thus, the inequality (2.11) holds and our result follows from Theorem 2.3. \square

Using similar arguments to those in the proof of Theorem 2.5, we may also prove the next result.

Theorem 2.6. If $h \in \Sigma_p$ satisfies the inequality

$$\sum_{n\geq 1} \left[\left| 1 - \frac{\eta}{q^p} \right| \left(\left| \sqrt{1 + de^{i\theta}} + 1 \right| \right) [n]_q + \left| s \left(1 - \frac{\eta[n]_q}{q^p[p]_q} \right) \right| dq^p \right] \left(1 - \frac{[n]_q}{[p]_q} \right) |s_n| < d|s|q^p$$

then $f \in \mathcal{MK}_{q,\eta}(p,s;d)$

Acknowledgement

We would like to thank the editor and the referees for their constructive criticism that helped improving this paper substantially.

REFERENCES

- 1. S. AGRAWAL and S.K. SAHOO: A generalization of starlike functions of order α . Hokkaido Math. J. **46** (2017), 15-27.
- 2. M.K. Aouf, J. Dziok and J. Sokol: On a subclass of strongly starlike functions. Appl. Math. Letters. **24** (2011), 27-32.
- 3. N.E. Cho, V. Kumar, O.S. Kwon and Y.J. Sim: Coefficient bounds for certain subclasses of starlike functions. J. Inequal. Appl. 276 (2019) 13 pages. doi.org/10.1186/s13660-019-2231-3.
- 4. G. Gasper and M. Rahman: *Basic Hypergeometric Series*. Cambridge University Press, Cambridge, 1990.
- 5. F.H. Jackson: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. **46(2)** (1909), 253-281.
- F.H. JACKSON: On q-definite integrals. Quart. J. Pure Appl. Math. 41 (1910), 193-203.
- 7. F.H. JACKSON: q-difference equations. Amer. J. Math. 32 (1910), 305-314.
- 8. S.D. Purohit and R.K. Raina: Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 109(1) (2011), 55-70.
- 9. R. Kargar and L. Trojnar-Spelina: Some applications of differential subordination for certain starlike functions. arXiv.org, math, arXiv:1807.03328.
- 10. E. NICZYPOROWICZ: Krzywe plaskie. PWN, Warszawa, 1991.
- 11. T.M. Seoudy: Classes of analytic functions associated with certain integral operator. Electron. J. Math. Anal. Appl. 4(2) (2016), 254-258.
- 12. T.M. Seoudy and M.K. Aouf: Convolution properties for certain classes of analytic functions defined by q-derivative operator. Abstr. Appl. Anal. (2014), 7 pages, Article ID 846719.
- 13. H. Shamsan and S. Latha: On generalized bounded mocanu variation related to q-derivative and conic regions. Annals of Pure and Applied Mathematics. 17(1) (2018), 67-83.
- 14. J. SOKOL: Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J.. 49 (2009), 349-353.
- 15. H.M. SRIVASTAVA: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 44(1) (2020), 327-344.
- 16. H.M. SRIVASTAVA and D. BANSAL: Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 1 (2017), 61-69.
- 17. R. Srivastava and H.M. Zayed: Subclasses of analytic functions of complex order defined by q-derivative operator. Stud. Univ. Babeş-Bolyai Math. **64(1)** (2019), 71-80.

- 18. Y. Yunus, A.B. Akbarally and S.A. Halim: On a subclass of starlike functions associated with generalized cardioid. Int. J. Appl. Math. **33(5)** (2020), 765-782.
- H.M. ZAYED and M.K. AOUF: Subclasses of analytic functions of complex order associated with q-Mittag Leffler function. J. Egyptian Math. Soc.. 26(2) (2018), 278-286