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Abstract. Process capability index is an important tool for assessing process perfor-
mance, used mostly in industrial areas. Many process capability indices have been
proposed in the literature. In this article, we consider different estimation methods to
estimate the generalized process capability index, Cpyk, introduced by Maiti et al. [32]
for the Lomax distribution. Maximum likelihood (ML), least squares (LS), weighted
least squares (WLS), Cramér-von Mises (CVM), Anderson Darling (AD), right-tail
Anderson Darling (RAD) and maximum product of spacings (MPS) methods are used
during the estimation process. Next, bootstrap confidence intervals, namely, standard
bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile (BCPB) are
considered to obtain 95% confidence intervals for the proposed estimators of Cpyk. The
performances of proposed estimators are compared via a Monte-Carlo simulation study
for different parameter settings. Furthermore, we perform a simulation study to com-
pare the coverage probabilities (CP) and average lengths (AL) of bootstrap confidence
intervals. Finally, two real data sets are analyzed for illustrative purposes.
Keywords: Process capability index, bootstrap confidence intervals, Lomax distribu-
tion, Estimation, Monte Carlo simulation.

1. Introduction

Assessing the process capability and performance is a very important topic in
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industrial areas. Process capability indices (PCIs) are widely used tools for mea-
suring the capability and performance of a process within specifications known as
lower specification limits (L), upper specification limits (U) and target value (T).
For this purpose, the first PCI was introduced by Juran et al. [24]. Assuming the
process distribution is normal with process mean µ and process standard deviation
σ, several PCIs are developed, such as Cp, Cpk, Cpmk and Cpm; see Kane [25],
Chan et al. [3], Pearn et al. [39]. Choi and Owen [7] compare these mentioned
PCIs. However, many industrial processes follow non-normal distributions. For
this reason, PCIs developed under normality assumption do not perform well, see
Gunter [18]. Therefore, the generalization of PCIs for non-normal processes was
suggested by Clements [9], Constable and Hobbs [10], Pearn et al. [40], Chen et al.
[5], Mukherjee and Singh [33]. Recently, Maiti et al. [32] have defined a new gen-
eralized process capability index (Cpyk) that can be used for normal, non-normal,
continuous and discrete quality characteristics. As stated in Maiti et al. [32], almost
all the popular indices are directly or indirectly related to Cpyk. Practitioners can
easily use this index, which is defined as:

Cpyk = min

{
F (U)− F (µe)

1
2 − α2

,
F (µe)− F (L)

1
2 − α1

}

= min

{
F (U − 1

2
1
2 − α2

,
1
2 − F (L)
1
2 − α1

}
.(1.1)

where F (.) and µe denote the cdf and median of the process distribution, re-

spectively. Here, F (µe) = F (L)+F (U)
2 , i.e., F (L) + F (U) = 1, The lower α1-th

and the upper α2-th percentage point of process distribution is determined as
α1 = P (X < LDL) and α2 = P (X > UDL), respectively. LDL and UDL de-
note the lower and upper desired limits, respectively.

Point estimation and construction of confidence intervals (CIs) for PCIs are two
common techniques used to assess process capability in the literature, see Chen et
al. [5]. Researchers have developed various point estimation methods for PCIs,
such as Pearn and Chen [38], Pearn et al. [41], Pearn and Chen [37]. Hsiang and
Taguchi [?] introduced the construction of confidence limits for PCIs. Then, several
authors have studied on construction of confidence intervals for non-normal process
distributions, see Peng [42, 43], Leiva et al. [29], Chou et al. [8], Franklin and
Wasserman [49], Kashif et al. [26], Kashif et al. [27], Weber et al. [50], Rao et al.
[50], Dey et al. [12], Dey and Saha [11].

For estimating the parameters of a process distribution, the most frequently used
estimation method is the well-known maximum likelihood (ML) methodology, see
Mukherjee and Singh [33], Maiti et al. [32], Rao et al. [45], Dey et al. [12], Saha et
al. [47]. However, ML methodology doesn’t perform well in some cases, especially
in the case of small samples and the presence of outliers. Therefore, researchers use
other estimation methods to estimate the parameters of process distributions and
propose PCIs by using estimated parameters, such as Dey and Saha [11], Saha et
al. [47], Nooghabi [35], Gedik Balay [16].
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In this paper, we propose Ĉpyk based on ML, least squares (LS), weighted least
squares (WLS), Anderson Darling (AD) and Right-tail Anderson-Darling (RAD),
Cramèr-von-Mises estimators (CVM) and maximum product of spacing (MPS) esti-
mators for parameters of Lomax distribution. Then we compare their performances
in terms of bias and mean squared error (MSE) criteria. Further, three bootstrap
confidence intervals (BCIs), namely standard bootstrap (SB), percentile bootstrap
(PB) and bias-corrected percentile bootstrap (BCPB) are considered for obtaining
CIs of Cpyk based on proposed estimators. We also compare coverage probabilities
(CP) and average lengths (AL) of them.

To the best of our knowledge, there is no study on Cpyk obtained using ML, LS,
WLS, AD, RAD, CVM and MPS estimators and three bootstrap CIs based on them,
when the process distribution is Lomax. The reason why we use Lomax distribution
as the process distribution is that it can be used quite widely applied in the variety
of contexts, see Giles et al. [17]. It was originally introduced by Lomax [28] for
modelling business failure data. However, Lomax distribution has also been studied
for reliability modelling and life testing, see Hassan and Al-Ghamdi [19], Hu and Gui
[23], Mahmoud et al. [31]. It has also been used in economics, actuarial science, bio-
science and engineering, see Holland et al. [21]. Bryson [2] suggested that Lomax
distribution is a very good alternative to exponential distribution when the data
exhibit heavy-tailed behaviour. As far as we know, although Lomax distribution
gains more attention from researchers, the PCI Cpyk has not been examined when
the underlying distribution is Lomax.

The probability density function (pdf) and the cdf of Lomax distribution are
defined as follows:

f(x) =
β

λ

(
1 +

x

λ

)−(β+1)

, x > 0, β > 0, λ > 0(1.2)

and

F (x) = 1−

(
1 +

x

λ

)−β

, x > 0, β > 0, λ > 0,(1.3)

respectively. The PCI Cpyk for Lomax distribution is

Cpyk = min


1
2 −

(
1 + U

λ

)−β

1
2 − α2

,

(
1 + L

λ

)−β

− 1
2

1
2 − α1


.(1.4)

The estimators of the parameters of Lomax distribution to be studied herein are
defined in the following sections.

It should be stated that, to the best of our knowledge, this is the first study
considering ML, LS, WLS, AD, RAD, CVM and MPS estimation of Cpyk for Lomax
distribution and three BCIs based on them.
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The rest of this paper is organized as follows: In Section 2., we develop estima-
tors of Cpyk for Lomax distribution using different estimation methods. In Section

3., BCIs (SB, PB and BCPB) are discussed for Ĉpyk. Monte Carlo simulation
study is performed to compare the performance of the proposed estimators of Cpyk

in terms of bias and MSE criteria in Section 4.. Further, we compare the perfor-
mances of BCIs based on Ĉpyk obtained using the mentioned estimation methods
via simulation study in Section 4.. In Section 5., we give two real data examples
for illustrative purposes. Finally, concluding remarks are given in Section 6..

2. Different estimation methods of the Cpyk

In this section, we describe seven different estimators, namely, ML, LS, WLS,
AD, RAD, CVM and MPS to obtain the estimators of parameters of Lomax distri-
bution and the corresponding estimator of Cpyk.

2.1. Maximum likelihood estimator

In this section, we consider the ML estimate of Cpyk. First, the ML estimates
of parameters of Lomax distribution are obtained. Let y1, y2, ..., yn be a random
sample from Lomax distribution with β and λ parameters. Then the log-likelihood
function is

lnL = nlog(β)− nlog(λ)− (1 + β)

n∑
i=1

log(1 + yi/λ).(2.1)

By taking derivatives of (2.1) with respect to the parameters of interest, the likeli-
hood equations are derived as

∂lnL

∂β
= (n/β)−

n∑
i=1

(1 + yi/λ),(2.2)

∂lnL

∂λ
= −(n/λ) + [(1 + β)/λ]

n∑
i=1

[yi/(λ+ yi)].(2.3)

The likelihood equations above do not have closed-form solutions, so we need to use
an iterative methods to get the ML estimates of β and λ. We use optim() function
in the R software to solve nonlinear functions.
The ML-based Cpyk is obtained by substituting the ML estimators of parameters

of Lomax distribution, β̂(1) and λ̂(1), in (1.4) as

Ĉ
(1)
pyk = min


1
2 −

(
1 + U

λ̂(1)

)−β̂(1)

1
2 − α2

,

(
1 + L

λ̂(1)

)β̂(1)

− 1
2

1
2 − α1


.(2.4)
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2.2. Least squares estimator

Let x(1) < x(2) < ... < x(n) be the order statistics of a random sample from
Lomax distribution. The LS estimators of the parameters β and λ are obtained by
minimizing the following function with respect to the parameters of interest, see
Swain et al. [48].

S =

n∑
i=1

(
F (x(i))−

i

n+ 1

)2

.(2.5)

Here F (.) is the cdf of Lomax given in (1.3). LS estimators of β and λ can be also
obtained by solving

∂S

∂β
=

n∑
i=1

(
F (x(i);β, λ)−

i

n+ 1

)
Λ1(x(i);β, λ) = 0,

∂S

∂λ
=

n∑
i=1

(
F (x(i);β, λ)−

i

n+ 1

)
Λ2(x(i);β, λ) = 0,(2.6)

where,

Λ1(x(i);β, λ) =

(
1 +

x

λ

)−β

ln

(
1 +

x

λ

)
(2.7)

and

Λ2(x(i);β, λ) = β

(
1 +

x

λ

)−β−1(
− x

λ2

)
.(2.8)

It is obvious that, since equations given in (2.6) include nonlinear functions, numer-
ical methods should be performed to obtain LS estimators of β and λ. Substituting
the LS estimators of β and λ, say β̂(2) and λ̂(2) in equation (1.4), we can get the
estimator of Cpyk as

Ĉ
(2)
pyk = min


1
2 −

(
1 + U

λ̂(2)

)−β̂(2)

1
2 − α2

,

(
1 + L

λ̂(2)

)β̂(2)

− 1
2

1
2 − α1


.(2.9)

2.3. Weighted least squares estimator

The WLS estimators of the parameters β and λ are obtained by minimizing the
following function:

Sw =

n∑
i=1

wi

(
F (x(i))−

i

n+ 1

)2

(2.10)
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where wi denotes the weight and is computed by

wi =
1

Var(F (X(i)))
=

(n+ 1)2(n+ 2)

i(n− i− 1)
, i = 1, 2, ..., n.

The WLS estimators of β and λ are obtained by solving the following nonlinear
equations:

∂Sw

∂β
=

n∑
i=1

wi

(
F (x(i);β, λ)−

i

n+ 1

)
Λ1(x(i);β, λ) = 0,

∂Sw

∂λ
=

n∑
i=1

wi

(
F (x(i);β, λ)−

i

n+ 1

)
Λ2(x(i);β, λ) = 0,(2.11)

respectively. Here Λ1 and Λ2 are given in (2.7) and (2.8), respectively. It is clear that
WLS estimators should also be obtained using numerical methods, since equations
given in (2.11) cannot be solved explicitly. Substituting the WLS estimators of β

and λ, say β̂(3) and λ̂(3) in equation (1.4), we can get the estimator of Cpyk as

Ĉ
(3)
pyk = min


1
2 −

(
1 + U

λ̂(3)

)−β̂(3)

1
2 − α2

,

(
1 + L

λ̂(3)

)β̂(3)

− 1
2

1
2 − α1


.(2.12)

2.4. Anderson-Darling estimators

The AD estimators β̂(4) and λ̂(4) of β and λ are obtained by minimizing the
following equation with respect to the parameters of interest, see Anderson and
Darling [1].

A = −n− 1

n

n∑
i=1

(2i− 1)

{
log

[
F (x(i))

(
1− F (x(j))

)]}
,(2.13)

where j = n− i+1. The AD estimators of β and λ are also obtained by solving the
following nonlinear equations

∂A

∂β
=

n∑
i=1

(2i− 1)

[
Λ1(x(i), β, λ)

F (x(i), β, λ)
−

Λ1(x(j), β, λ)

F (x(j), β, λ)

]
= 0,

∂A

∂λ
=

n∑
i=1

(2i− 1)

[
Λ2(x(i), β, λ)

F (x(i), β, λ)
−

Λ2(x(j), β, λ)

F (x(j), β, λ)

]
= 0,(2.14)

respectively. Here, Λ1 and Λ2 are given in (2.7) and (2.8). Nonlinear equations
given in (2.14) can be solved by using numerical methods. Substituting the AD
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estimators β̂(4) and λ̂(4) in equation (1.4), we can get the estimator of Cpyk as

Ĉ
(4)
pyk = min


1
2 −

(
1 + U

λ̂(4)

)−β̂(4)

1
2 − α2

,

(
1 + L

λ̂(4)

)β̂(4)

− 1
2

1
2 − α1


.(2.15)

2.5. Right-tail Anderson-Darling estimator

The RAD estimators β̂(5) and λ̂(5) of the parameters β and λ are obtained by
minimizing the following equation with respect to the parameters of interest.

R =
n

2
− 2

n∑
i=1

F (x(i))−
1

n

n∑
i=1

(2i− 1)log(1− F (x(j))).(2.16)

The RAD estimators of β and λ are also obtained by solving the following nonlinear
equations:

−2

n∑
i=1

Λ1(x(i), β, λ)

F (x(i), β, λ)
+

1

n

n∑
i=1

(2i− 1)
Λ1(x(i), β, λ)

1− F (x(i), β, λ)
= 0,

−2

n∑
i=1

Λ2(x(i), β, λ)

F (x(i), β, λ)
+

1

n

n∑
i=1

(2i− 1)
Λ2(x(i), β, λ)

1− F (x(i), β, λ)
= 0.(2.17)

where Λ1 and Λ2 are the same as given in (2.7) and (2.8), respectively. Substituting

the RAD estimators β̂(5) and λ̂(5) in equation (1.4), we can get the estimator of
Cpyk as

Ĉ
(5)
pyk = min


1
2 −

(
1 + U

λ̂(5)

)−β̂(5)

1
2 − α2

,

(
1 + L

λ̂(5)

)β̂(5)

− 1
2

1
2 − α1


.(2.18)

2.6. Cramér-von Mises estimators

CVM estimators of the parameters of Lomax distribution, β̂(6) and λ̂(6), are
obtained by minimizing the following equation with respect to the parameters β
and λ, respectively, see MacDonald [30].

CVM =
1

12n
+

n∑
i=1

(
F (x(i), β, λ)−

2i− 1

2n

)2

(2.19)
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To obtain the CVM estimators of the parameters, we can also solve the following
equations by using numerical methods.

∂CVM

∂β
=

n∑
i=1

(
F (x(i);β, λ)−

2i− 1

2n

)
Λ1(x(i);β, λ) = 0,

∂CVM

∂λ
=

n∑
i=1

(
F (x(i);β, λ)−

2i− 1

2n

)
Λ2(x(i);β, λ) = 0.(2.20)

Here, Λ1 and Λ2 are given in (2.7) and (2.8). Substituting the CVM estimators β̂(6)

and λ̂(6) in equation (1.4), we can get the estimator of Cpyk as

Ĉ
(6)
pyk = min


1
2 −

(
1 + U

λ̂(6)

)−β̂(6)

1
2 − α2

,

(
1 + L

λ̂(6)

)β̂(6)

− 1
2

1
2 − α1


.(2.21)

2.7. Maximum product of spacing estimator

The MPS estimation method is introduced by Cheng and Amin [4] and Ranneby
[44]. The MPS estimator is obtained by maximizing the geometric mean of spacing
defined as

Di(β, λ) = F (x(i);β, λ)− F (x(i−1);β, λ), i = 1, 2, ..., n+ 1,(2.22)

where F (x(0);β, λ) = 0 and F (x(n+1);β, λ)=1. Then, the MPS estimators of pa-

rameters β and λ, say β̂(7) and λ̂(7) are obtained by maximizing the following
function:

MPS =
1

n+ 1

n∑
i=1

logDi(β, λ).(2.23)

After taking partial derivatives of MPS function with respect to β and λ, following
nonlinear equations are obtained as

∂MPS

∂β
=

1

n+ 1

n∑
i=1

Λ1(x(i);β, λ)− Λ1(x(i);β, λ)

Di(β, λ)
= 0,

∂MPS

∂λ
=

1

n+ 1

n∑
i=1

Λ2(x(i);β, λ)− Λ2(x(i);β, λ)

Di(β, λ)
= 0,(2.24)

where Λ1 and Λ2 are defined in equations (2.7) and (2.8), respectively. Substituting
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the MPS estimators in (1.4), we can get the estimator of Cpyk as

Ĉ
(7)
pyk = min


1
2 −

(
1 + U

λ̂(7)

)−β̂(7)

1
2 − α2

,

(
1 + L

λ̂(7)

)β̂(7)

− 1
2

1
2 − α1


.(2.25)

3. Bootstrap confidence intervals

In this section, we discuss SB, PB and BCPB for constructing BCIs of Cpyk

based on proposed estimators. The bootstrap method is introduced by Efron [13].
BCIs have been widely used to obtain CIs for PCIs, for example Choi and Bai [6],
Franklin and Wasserman [49], Dey et al. [12], Park et al. [36].

Let x1, x2, ..., xm be a sample of size m taken from a process. The bootstrap
procedure can be defined as follows:

• A bootstrap sample, x∗
1, x

∗
2, ..., x

∗
n of size n is chosen from an original sample

with replacement.

• Calculate Ĉpyk from a new bootstrap sample, say Ĉ
∗(1)
pyk .

• Repeat this process B times and obtain Ĉ
∗(1)
pyk , Ĉ

∗(2)
pyk , ..., Ĉ

∗(B)
pyk .

It should be noted that a minimum B = 1000 bootstrap samples are needed for
obtaining reliable CI estimates, see Efron and Tibshirani [14].

3.1. Standard bootstrap (SB) confidence interval

Let Ĉ
∗(j)
pyk is the j-th bootstrap estimate of Cpyk. The sample mean and sample

standard deviation of {Ĉ∗(j)
pyk ; j = 1, 2, ..., B are computed as

¯̂
C∗

pyk =
1

B

B∑
j=1

Ĉ
∗(B)
pyk(3.1)

and

S∗ =

√√√√ 1

B − 1

B∑
i=1

(Ĉ
∗(j)
pyk

¯̂
C∗

pyk)
2,(3.2)

respectively. The 100(1− α)% CI for Cpyk is given by

(3.3)
[
¯̂
C∗

pyk − z(α/2)S
∗,

¯̂
C∗

pyk − z(α/2)S
∗
]
.

Here z(α/2) is the (1− α/2)th quantile of the standard normal distribution.
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3.2. Percentile bootstrap (PB) confidence intervals

Let B = 1000 Ĉpyk are ordered as Ĉ
∗(1)
pyk ≤ Ĉ

∗(2)
pyk ≤ ... ≤ Ĉ

∗(B)
pyk ≤. The α level

percentile bootstrap CI is given as[
Ĉ∗

pyk([1000α/2]), Ĉ
∗
pyk([1000(1− α/2)])

]
.(3.4)

3.3. Bias-corrected percentile bootstrap (BCPB) interval

Efron [13] introduced a BCPB method to overcome the potential bias of boot-
strap distribution stated by Franklin and Gary [15].

Let order {Ĉ∗(j)
pyk , j = 1, 2, ..., B in ascending order and compute the following prob-

abilities:

p0 =
1

B

B∑
j=1

I(Ĉ
∗(j)
pyk ≤ Ĉpyk), pl = Φ(2z0 − zα/2) and pu = Φ(2z0 + zα/2).

Here, I(.) is the indicator function and z0 = Φ−1(p0). The BCPB confidence interval
is [

Ĉ∗
pyk(1000pl), Ĉ

∗
pyk(1000pu)

]
.(3.5)

4. Simulation study

In this section, we carry out a Monte-Carlo simulation study to compare the
performance of estimators of Cpyk for Lomax distribution based on seven different
estimators (ML, LS, WLS, AD, RAD, CVM, MPS) of parameters of Lomax distri-
bution in terms of bias and mean squared error (MSE) criteria. We also perform a
simulation study to assess the performance of the proposed BCIs (SB, PB, BCPB)
of the Cpyk for Lomax distribution based on different methods of estimation with
respect to the estimated ALs and CPs.

We use various sample sizes as n = 20, 50, 200, 500 and parameter settings as
β = (0.5, 2) and λ = (0.1, 1, 3) during the simulation process. We set the lower and
upper specification limits as 0.2 and 10.2, respectively. We also consider α1 = 0.03
and α2 = 0.01 for illustration, similar to a number of studies in the literature.

The simulations are performed using programs written in the open source sta-
tistical package R. All computations are done based on [[100.000/n]] Monte Carlo
runs. Here [[.]] represents the greatest integer value function. We use B = 1000
replicates for bootstrap procedures.

Bias and MSE values are calculated by

Bias(Ĉpyk) = Ê(Ĉpyk − Cpyk),(4.1)

and

MSE(Ĉpyk) = Ê
{
(Ĉpyk − Cpyk)

2
}
.(4.2)
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Ê(.) denotes the means of the observed values.

In Table 6.1, we report bias and MSE values of Ĉpyk for Lomax distribution
obtained by using mentioned estimation methods. It is observed from Table 6.1
that when n = 20 and 50, the MPS estimators of Cpyk have the smallest bias.
However, the ML estimator of Cpyk for Lomax distribution has lower bias values
for n = 100, 200 and 500. As we expect, when the sample size increases, bias values
decrease and all the estimates have negligible bias.

In terms of the MSE criterion, the ML estimates of Cpyk are the most efficient
estimator with the lowest MSE values for n = 100, 200 and 500. It is followed by
the MPS method in most cases. Furthermore, the MPS estimators show the best
performance with the smallest MSE values, when n = 20 and 50 for all scenarios.
It should be noted that the CVM estimators of Cpyk for Lomax distribution show
the worst performance with the highest bias and MSE values in almost all cases.
Also it is clear from Table 6.1 that when the sample size increases, the MSE values
decreases.

Table 6.2 demonstrates the estimated CPs and ALs of bootstrap CIs of the Cpyk

for Lomax distribution using ML, LS, WLS, AD, RAD, CVM and MPS methods.
The simulation results show that the BCPB confidence intervals for the MPS es-
timator provides the highest CP and the smallest AL for n = 20 and 50 for all
selected parameter values. However, BCPB confidence intervals for th ML esti-
mators of Cpyk demonstrates the strongest performance in most of the cases for
n = 100, 200 and 500 in terms of both CP and AL criteria.

For n = 100 and 200, when β = 2 and α = 3, SB confidence intervals of the
ML estimates have the best performance with the highest CP and the smallest AL
among the others.

Overall, we suggest using the MPS method for estimating Cpyk for Lomax dis-
tribution when the sample size is less and equal to 50. However, the ML method is
more preferable for large values of the sample size.

We also may conclude that BCPB confidence intervals show overall better per-
formance in terms of both CP and AL in most cases. It is also observed from Table
6.2 that as the sample size increases, CPs increase and ALs decrease for all BCIs.

5. Real data analysis

In this section, two real data sets are considered for illustrative purposes. First,
we check whether the considered data set fits the Lomax distribution by using
well-known and widely used goodness of fit test Kolmogorov-Smirnov (KS) test for
each estimation method. According to KS statistics given in Table 6.3, we can
say that the Lomax distribution with all proposed estimators of β and λ provides
adequate fits to the data set I and data set II at the 5% level. These observations
are supported by Q-Q plots shown in Figure 5.1 and Figure 5.2 for data set I and
data set II, respectively.

We also consider four model selection criteria called log-likelihood (logL), Akaike
information criterion (AIC), Bayesian information criterion (BCI), the root mean
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Fig. 5.1: Lomax QQ plot for the data set I.

square error (RMSE) to determine the most efficient estimation method. The values
of estimators of the parameters β and α, estimators of Cpyk based on them, -logL,
AIC, BIC, RMSE and KS test statistic D values are reported in Table 6.3.

It is clear from Table 6.3, values of all criteria are similar for each estimation
method. However, the ML and MPS have similar fitting performance with the
smaller with smaller model selection criteria values for each data set.

Data set I: The first data set is considered in Hong et al. (2009), Wong (1998)
and Nigm and Hamdy (1987). The data set represents the length of time in years
for which a business operates until failure. The 10 observations are as follows:
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Fig. 5.2: Lomax QQ plot for the data set II.

1.01, 1.05, 1.08, 1.14, 1.28, 1.30, 1.33, 1.43, 1.59, 1.62. In the context of Cpyk, we take
L = 0.053 and U = 1.2 for data set I.

Data set II: Our second data set involves the first failure times (in months) of 20
electric carts used for international transportation and delivery in large manufac-
turing facility. Here we use L = 0.60 and U = 5. The data set given as follows is
reported by Zimmer et al. (1998) and Saha et al. (2019).

Table 6.3 shows that ML and MPS estimators of Cpyk are more or less the same
for both data set I and data set II. Further, the widths of BCIs (SB, PB, BCPB)
based on mentioned estimators are given in Table ??. According to Table ?? that
BCPB CIs based on MPS estimator of Cpyk is the narrowest among the others for
both data sets, and it is followed by the BCPB confidence interval based on ML
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estimator of Cpyk.

6. Conclusion

In this paper, we have considered the estimation of generalized process capability
Cpyk for Lomax distribution using different estimation methodologies, namely, ML,
LS, WLS, AD, RAD, CVM and MPS. We have compared the performance estimated
Cpyk based on these methods with different sample sizes and different parameter
values of Lomax distribution using Monte Carlo simulation study in terms of bias
and MSE criteria. Further, we have studied on three different BCIs called as SB,
PB and BCPB based on estimated Cpyk for Lomax distribution obtained by using
mentioned estimation methods. We also perform simulation study to compare the
performances of BCIs. According to the simulation study, as MPS estimator of
Cpyk shows the best performance for small sample sizes, the ML methodology is
preferable for large value of sample size among the other estimation methods in
terms of bias and MSE criteria.

The performance of BCIs for estimators of Cpyk based on all mentioned methods
are compared in terms of CP and AL through a simulation study. Simulation
results show that, BCPB confidence intervals achieve the best performance among
the other BCIs in terms of CP and AL in most cases. BCPB confidence intervals
based on MPS estimators of Cpyk show the strongest performance for small sample
sizes for all chosen unknown parameter values of Lomax distribution. It is also
concluded that BCPB confidence intervals based on the ML estimates of Cpyk have
better performance than the other BCIs in terms of large sample sizes in most
cases. Finally, two real life examples taken from literature are considered to support
simulation results.
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Table 6.1: Bias and 100xMSE values of Ĉpyk obtained by using different estimation
methods. Cpyk are given by (1.1).

n β λ Cpyk ML LS WLS AD RAD CVM MPS

20

0.5 0.1 0.1646
Bias -0.0183 -0.0072 -0.0042 -0.0082 -0.0181 -0.0165 0.0062
MSE 4.4427 3.8587 3.9194 4.0506 4.3697 4.3613 3.6925

0.5 1 0.4192
Bias -0.0053 0.0188 0.0147 0.0081 0.0112 -0.0079 0.0044
MSE 2.8895 2.9930 2.8810 2.7930 2.9349 3.3745 2.5882

0.5 3 0.0485
Bias 0.0066 0.0052 0.0050 0.0054 0.0051 0.0063 0.0048
MSE 3.8233 3.4345 3.4382 3.5365 3.8650 4.0088 3.0817

2 0.1 -0.8274
Bias 0.0121 -0.0394 -0.0287 -0.0174 -0.0108 -0.0202 -0.0105
MSE 1.4462 1.9400 1.6688 1.4884 1.4514 1.7037 1.3660

2 1 0.4137
Bias -0.0328 0.0323 0.0263 0.0254 0.0247 0.0371 0.0238
MSE 2.8228 3.1046 3.0444 3.0284 2.8773 3.0327 2.7930

2 3 0.8062
Bias 0.0217 0.0462 0.0383 0.0335 0.0254 0.0253 0.0205
MSE 1.0743 1.2442 1.0928 1.0347 0.8452 0.9915 1.0133

50

0.5 0.1 0.1646
Bias -0.0117 0.0068 0.0035 0.0030 -0.0029 0.0034 0.0025
MSE 1.6487 1.6311 1.6076 1.6015 1.7789 1.7138 1.4982

0.5 1 0.4192
Bias -0.0040 0.0043 0.0021 -0.0018 0.0021 -0.0069 0.0039
MSE 1.2015 1.3038 1.2354 1.2186 1.2388 1.3826 1.1441

0.5 3 0.0485
Bias 0.0054 0.0050 0.0049 0.0052 0.0045 0.0062 0.0047
MSE 1.5629 1.5196 1.5094 1.5280 1.6330 1.6184 1.4025

2 0.1 -0.8274
Bias 0.0077 -0.0095 -0.0094 -0.0064 -0.0063 0.0085 -0.0060
MSE 0.6740 0.8327 0.7108 0.6844 0.6724 0.8157 0.6507

2 1 0.4137
Bias -0.0121 0.0112 0.0108 0.0085 0.0083 0.0125 0.0077
MSE 1.2569 1.3449 1.3140 1.3120 1.2638 1.3308 1.2392

2 3 0.8062
Bias 0.0129 0.0141 0.0136 0.0134 0.0129 0.0217 0.0119
MSE 0.3200 0.4066 0.3735 0.3697 0.3367 0.3742 0.3081

100

0.5 0.1 0.1646
Bias -0.0096 0.0028 0.0026 0.0017 -0.0017 -0.0025 0.0024
MSE 0.7876 0.7770 0.7715 0.7712 0.8405 0.7969 0.7462

0.5 1 0.4192
Bias -0.0014 0.0034 0.0020 0.0015 0.0016 -0.0022 0.0032
MSE 0.5733 0.6606 0.6121 0.5962 0.6013 0.6792 0.5665

0.5 3 0.0485
Bias 0.0033 0.0047 0.0043 0.0042 0.0040 0.0054 0.0045
MSE 0.7704 0.7812 0.7670 0.7650 0.8190 0.8072 0.7238

2 0.1 -0.8274
Bias 0.0046 -0.0057 -0.0058 -0.0052 -0.0049 0.0050 -0.0047
MSE 0.2906 0.4398 0.3552 0.3202 0.3030 0.4429 0.3101

2 1 0.4137
Bias -0.0019 0.0046 0.0022 0.0036 0.0028 -0.0105 0.0021
MSE 0.6334 0.7061 0.6820 0.6751 0.6561 0.7045 0.6432

2 3 0.8062
Bias 0.0042 0.0054 0.0053 0.0049 0.0045 0.0089 0.0044
MSE 0.1626 0.2032 0.1871 0.1853 0.1741 0.1964 0.1784

200

0.5 0.1 0.1646
Bias -0.0087 -0.0025 -0.0017 -0.0016 -0.0015 -0.0022 -0.0020
MSE 0.4232 0.4261 0.4200 0.4199 0.4553 0.4322 0.4092

0.5 1 0.4192
Bias 0.0010 0.0031 0.0019 0.0012 0.0013 0.0021 0.0018
MSE 0.2763 0.3196 0.2937 0.2919 0.2934 0.3231 0.2771

0.5 3 0.0485
Bias 0.0026 0.0039 0.0034 0.0032 0.0029 0.0052 0.0036
MSE 0.3777 0.3879 0.3787 0.3786 0.4041 0.3943 0.3646

2 0.1 -0.8274
Bias 0.0028 -0.0037 -0.0039 -0.0032 -0.0032 0.0041 -0.0030
MSE 0.1361 0.2166 0.1647 0.1585 0.1498 0.2170 0.1451

2 1 0.4137
Bias -0.0013 0.0022 0.0018 0.0014 0.0019 -0.0092 0.0017
MSE 0.3093 0.3469 0.3319 0.3295 0.3196 0.3465 0.3124

2 3 0.8062
Bias 0.0018 0.0025 0.0023 0.0027 0.0022 0.0028 0.0025
MSE 0.0791 0.0972 0.0890 0.0885 0.0837 0.0954 0.0842

500

0.5 0.1 0.1646
Bias 0.0074 0.0018 0.0011 0.0011 0.0014 0.0011 0.0018
MSE 0.1588 0.1629 0.1594 0.1590 0.1719 0.1635 0.1568

0.5 1 0.4192
Bias -0.0005 0.0022 -0.0012 -0.0009 -0.0008 -0.0011 0.0013
MSE 0.1164 0.1374 0.1244 0.1239 0.1238 0.1383 0.1161

0.5 3 0.0485
Bias -0.0015 -0.0021 -0.0020 -0.0027 -0.0018 -0.0041 0.0017
MSE 0.1459 0.1527 0.1478 0.1475 0.1568 0.1537 0.1437

2 0.1 -0.8274
Bias 0.0012 -0.0017 -0.0018 -0.0019 -0.0019 0.0023 -0.0015
MSE 0.0584 0.0950 0.0705 0.0694 0.0647 0.0950 0.0604

2 1 0.4137
Bias 0.0009 0.0013 0.0016 0.0012 0.0012 0.0038 0.0011
MSE 0.1160 0.1317 0.1251 0.1247 0.1225 0.1314 0.1183

2 3 0.8062
Bias 0.0007 0.0020 0.0013 0.0015 0.0015 0.0013 0.0011
MSE 0.0292 0.0360 0.0328 0.0327 0.0314 0.0356 0.0306
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Table 6.2: Observed CP(AL) of 95% bootstrap confidence intervals of Ĉpyk obtained
by using different estimation methods. Cpyk are given by (1.1).

n β λ Cpyk ML LS WLS AD RAD CVM MPS

20

0.5 0.1 0.1646
SB 0.908(0.2782) 0.918(0.2728) 0.903(0.2735) 0.916(0.2721) 0.917(0.2756) 0.910(0.2772) 0.922(0.2659)
PB 0.915(0.2739) 0.914(0.2693) 0.908(0.2700) 0.921(0.2685) 0.917(0.2716) 0.920(0.2734) 0.928(0.2647)

BCPB 0.932(0.2946) 0.924(0.2698) 0.928(0.2675) 0.923(0.2687) 0.927(0.2650) 0.917(0.2740) 0.935(0.2635)

0.5 1 0.4192
SB 0.941(0.2678) 0.940(0.2797) 0.932(0.2777) 0.939(0.2765) 0.943(0.2735) 0.924(0.2920) 0.947(0.2673)
PB 0.940(0.6353) 0.939(0.6614) 0.941(0.6504) 0.938(0.6391) 0.942(0.6305) 0.928(0.7012) 0.946(0.6284)

BCPB 0.948(0.2682) 0.940(0.2826) 0.946(0.2812) 0.943(0.2737) 0.947(0.2712) 0.931(0.3010) 0.952(0.2663)

0.5 3 0.0485
SB 0.938(0.2808) 0.930(0.3066) 0.936(0.2975) 0.941(0.2912) 0.942(0.2898) 0.925(0.3322) 0.945(0.2736)
PB 0.936(0.2788) 0.937(0.2953) 0.939(0.2860) 0.935(0.2825) 0.938(0.2777) 0.928(0.3106) 0.941(0.2734)

BCPB 0.943(0.2795) 0.933(0.2935) 0.939(0.2917) 0.940(0.2899) 0.938(0.2785) 0.926(0.3010) 0.946(0.2709)

2 0.1 0.8274
SB 0.943(0.2808) 0.933(0.3366) 0.934(0.2975) 0.939(0.2912) 0.941(0.2898) 0.927(0.3322) 0.947(0.2836)
PB 0.939(0.2788) 0.928(0.2953) 0.931(0.2860) 0.933(0.2825) 0.936(0.2777) 0.925(0.3106) 0.943(0.2709)

BCPB 0.946(0.2795) 0.936(0.2935) 0.937(0.2917) 0.938(0.2899) 0.941(0.2785) 0.928(0.3010) 0.948(0.2709)

2 1 0.4137
SB 0.926(0.2665) 0.913(0.2757) 0.923(0.2687) 0.925(0.2663) 0.922(0.2649) 0.920(0.2663) 0.935(0.2642)
PB 0.941(0.2639) 0.924(0.2728) 0.925(0.2715) 0.926(0.2733) 0.933(0.2686) 0.917(0.2934) 0.946(0.2608)

BCPB 0.943(0.2664) 0.916(0.2742) 0.923(0.2689) 0.917(0.2749) 0.923(0.2641) 0.912(0.2951) 0.949(0.2612)

2 3 0.8062
SB 0.953(0.2087) 0.946(0.4210) 0.948(0.3897) 0.952(0.4208) 0.958(0.3783) 0.926(0.4028) 0.962(0.2060)
PB 0.954(0.3594) 0.923(0.3996) 0.943(0.3705) 0.927(0.3991) 0.926(0.3608) 0.919(0.3834) 0.957(0.3456)

BCPB 0.931(0.4151) 0.901(0.4379) 0.918(0.4056) 0.911(0.4029) 0.907(0.4428) 0.904(0.4251) 0.941(0.4027)

50

0.5 0.1 0.1646
SB 0.934(0.2562) 0.942(0.4942) 0.934(0.4971) 0.933(0.4924) 0.931(0.5110) 0.937(0.5092) 0.924(0.2490)
PB 0.923(0.2485) 0.931(0.2544) 0.923(0.2473) 0.927(0.2418) 0.923(0.2695) 0.922(0.2488) 0.930(0.2478)

BCPB 0.935(0.2860) 0.925(0.2503) 0.926(0.2470) 0.927(0.2417) 0.932(0.2406) 0.921(0.2698) 0.941(0.2313)

0.5 1 0.4192
SB 0.943(0.2537) 0.942(0.2726) 0.933(0.2694) 0.941(0.2553) 0.945(0.2517) 0.928(0.2828) 0.947(0.2517)
PB 0.942(0.4550) 0.941(0.5015) 0.943(0.4303) 0.940(0.4153) 0.944(0.4260) 0.932(0.4520) 0.949(0.4145)

BCPB 0.953(0.2671) 0.945(0.2785) 0.949(0.2743) 0.948(0.2729) 0.951(0.2706) 0.938(0.2945) 0.957(0.2652)

0.5 3 0.0485
SB 0.941(0.2741) 0.933(0.2991) 0.938(0.2846) 0.943(0.2888) 0.944(0.2854) 0.928(0.3304) 0.947(0.2706)
PB 0.943(0.2735) 0.940(0.2943) 0.942(0.2822) 0.940(0.2779) 0.942(0.2750) 0.933(0.3056) 0.947(0.2723)

BCPB 0.946(0.2764) 0.935(0.2876) 0.942(0.2831) 0.945(0.2812) 0.941(0.2721) 0.933(0.2983) 0.950(0.2682)

2 0.1 0.8274
SB 0.948(0.2783) 0.938(0.3310) 0.939(0.3041) 0.942(0.2905) 0.945(0.2887) 0.932(0.3311) 0.952(0.2705)
PB 0.958(0.2759) 0.933(0.2946) 0.935(0.2927) 0.943(0.2947) 0.941(0.2879) 0.929(0.3185) 0.948(0.2687)

BCPB 0.965(0.2775) 0.955(0.2791) 0.956(0.2762) 0.942(0.2691) 0.946(0.2690) 0.932(0.2937) 0.972(0.2682)

2 1 0.4137
SB 0.929(0.2461) 0.922(0.2480) 0.926(0.2465) 0.928(0.2641) 0.927(0.2632) 0.925(0.2476) 0.932(0.2409)
PB 0.945(0.2607) 0.928(0.2653) 0.930(0.2642) 0.927(0.2713) 0.939(0.2618) 0.925(0.2840) 0.948(0.2595)

BCPB 0.951(0.2627) 0.922(0.2711) 0.925(0.2611) 0.926(0.2713) 0.935(0.2641) 0.918(0.2903) 0.953(0.2615)

2 3 0.8062
SB 0.973(0.2069) 0.950(0.2497) 0.954(0.2305) 0.958(0.2403) 0.963(0.2246) 0.930(0.2429) 0.975(0.2055)
PB 0.956(0.2121) 0.944(0.2419) 0.948(0.2236) 0.939(0.2329) 0.943(0.2177) 0.927(0.2346) 0.960(0.2103)

BCPB 0.948(0.2256) 0.926(0.2557) 0.933(0.2358) 0.933(0.2293) 0.928(0.2467) 0.915(0.2493) 0.950(0.2243)

100

0.5 0.1 0.1646
SB 0.949(0.2359) 0.943(0.3567) 0.945(0.3559) 0.946(0.3523) 0.939(0.3652) 0.943(0.3617) 0.948(0.2412)
PB 0.953(0.2306) 0.932(0.2348) 0.926(0.2341) 0.931(0.2335) 0.927(0.2503) 0.932(0.2348) 0.933(0.2340)

BCPB 0.947(0.2198) 0.927(0.2492) 0.924(0.2343) 0.928(0.2380) 0.934(0.2340) 0.923(0.2472) 0.943(0.2281)

0.5 1 0.4192
SB 0.952(0.2473) 0.948(0.2532) 0.942(0.2598) 0.943(0.2515) 0.947(0.2506) 0.937(0.2657) 0.953(0.2492)
PB 0.955(0.3126) 0.943(0.3553) 0.947(0.3332) 0.943(0.2998) 0.948(0.3029) 0.938(0.3190) 0.950(0.2902)

BCPB 0.962(0.2593) 0.949(0.2717) 0.953(0.2741) 0.951(0.2699) 0.953(0.2633) 0.941(0.2895) 0.960(0.2602)

0.5 3 0.0485
SB 0.952(0.2551) 0.941(0.2865) 0.944(0.2814) 0.945(0.2765) 0.950(0.2753) 0.931(0.3244) 0.950(0.2602)
PB 0.951(0.2675) 0.942(0.2894) 0.945(0.2833) 0.947(0.2737) 0.948(0.2703) 0.940(0.3045) 0.949(0.2692)

BCPB 0.955(0.2646) 0.939(0.2801) 0.949(0.2778) 0.948(0.2785) 0.943(0.2711) 0.936(0.2960) 0.953(0.2672)

2 0.1 0.8274
SB 0.955(0.2660) 0.943(0.2839) 0.945(0.2950) 0.946(0.2822) 0.948(0.2757) 0.934(0.3125) 0.954(0.2695)
PB 0.965(0.2017) 0.938(0.2469) 0.943(0.2193) 0.946(0.2169) 0.948(0.2121) 0.933(0.2447) 0.955(0.2019)

BCPB 0.982(0.2017) 0.957(0.2480) 0.960(0.2405) 0.950(0.2175) 0.952(0.2127) 0.947(0.2562) 0.973(0.2092)

2 1 0.4137
SB 0.942(0.2260) 0.938(0.2366) 0.933(0.2311) 0.937(0.2328) 0.937(0.2306) 0.935(0.2368) 0.939(0.2305)
PB 0.950(0.2561) 0.932(0.2583) 0.934(0.2531) 0.938(0.2550) 0.941(0.2588) 0.928(0.2807) 0.949(0.2577)

BCPB 0.955(0.2509) 0.933(0.2701) 0.932(0.2554) 0.940(0.2673) 0.936(0.2607) 0.923(0.2811) 0.955(0.2611)

2 3 0.8062
SB 0.979(0.1539) 0.953(0.1708) 0.957(0.1614) 0.960(0.1650) 0.967(0.1573) 0.935(0.1687) 0.978(0.1544)
PB 0.962(0.1499) 0.944(0.1664) 0.951(0.1573) 0.946(0.1608) 0.952(0.1534) 0.948(0.1639) 0.961(0.1513)

BCPB 0.955(0.1540) 0.935(0.1711) 0.948(0.1616) 0.945(0.1574) 0.947(0.1661) 0.929(0.1695) 0.951(0.1585)
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Table 6.2 (continued)
n β λ Cpyk ML LS WLS AD RAD CVM MPS

200

0.5 0.1 0.1646
SB 0.948(0.2465) 0.943(0.2481) 0.936(0.2469) 0.938(0.2468) 0.938(0.2553) 0.942(0.2501) 0.945(0.2247)
PB 0.955(0.2513) 0.945(0.2325) 0.944(0.2228) 0.947(0.2251) 0.945(0.2236) 0.946(0.2256) 0.947(0.2255)

BCPB 0.948(0.2080) 0.930(0.2486) 0.923(0.2324) 0.934(0.2472) 0.935(0.2303) 0.931(0.2451) 0.945(0.2164)

0.5 1 0.4192
SB 0.956(0.2116) 0.951(0.2274) 0.948(0.2175) 0.945(0.2182) 0.951(0.2162) 0.943(0.2586) 0.955(0.2186)
PB 0.957(0.2069) 0.948(0.2225) 0.951(0.2127) 0.945(0.2113) 0.952(0.2123) 0.942(0.2242) 0.954(0.2015)

BCPB 0.967(0.2471) 0.951(0.2623) 0.959(0.2533) 0.957(0.2616) 0.960(0.2577) 0.946(0.2842) 0.962(0.2521)

0.5 3 0.0485
SB 0.954(0.2424) 0.947(0.2824) 0.948(0.2731) 0.949(0.2717) 0.952(0.2685) 0.936(0.3169) 0.952(0.2403)
PB 0.958(0.2532) 0.948(0.2805) 0.947(0.2747) 0.949(0.2671) 0.953(0.2633) 0.944(0.2919) 0.952(0.2465)

BCPB 0.959(0.2376) 0.942(0.2756) 0.951(0.2683) 0.951(0.2675) 0.952(0.2638) 0.938(0.2821) 0.955(0.2389)

2 0.1 0.8274
SB 0.963(0.1477) 0.946(0.1850) 0.951(0.1806) 0.952(0.1588) 0.959(0.1546) 0.945(0.1850) 0.959(0.1542)
PB 0.976(0.1447) 0.942(0.1806) 0.946(0.1568) 0.947(0.1551) 0.952(0.1513) 0.939(0.1803) 0.966(0.1498)

BCPB 0.985(0.1438) 0.960(0.1811) 0.963(0.1771) 0.954(0.1654) 0.958(0.1513) 0.950(0.1907) 0.975(0.1442)

2 1 0.4137
SB 0.948(0.2166) 0.939(0.2276) 0.936(0.2227) 0.940(0.2230) 0.941(0.2190) 0.939(0.2277) 0.945(0.2187)
PB 0.952(0.2117) 0.935(0.2220) 0.936(0.2177) 0.941(0.2180) 0.942(0.2139) 0.930(0.2221) 0.951(0.2118)

BCPB 0.959(0.2123) 0.937(0.2229) 0.938(0.2185) 0.946(0.2189) 0.936(0.2144) 0.932(0.2230) 0.956(0.2136)

2 3 0.8062
SB 0.981(0.1088) 0.957(0.1204) 0.963(0.1144) 0.961(0.1157) 0.971(0.1118) 0.939(0.1297) 0.980(0.1097)
PB 0.967(0.1062) 0.946(0.1176) 0.956(0.1116) 0.953(0.1128) 0.957(0.1092) 0.951(0.1167) 0.964(0.1085)

BCPB 0.963(0.1074) 0.938(0.1193) 0.950(0.1133) 0.947(0.1105) 0.956(0.1146) 0.934(0.1188) 0.942(0.1095)

500

0.5 0.1 0.1646
SB 0.975(0.1505) 0.953(0.1609) 0.947(0.1599) 0.955(0.1594) 0.957(0.1652) 0.962(0.1614) 0.965(0.1506)
PB 0.956(0.1561) 0.947(0.1574) 0.948(0.1567) 0.952(0.1556) 0.952(0.1615) 0.947(0.1579) 0.954(0.1568)

BCPB 0.953(0.1573) 0.942(0.1579) 0.940(0.1576) 0.944(0.1559) 0.946(0.1617) 0.937(0.2082) 0.951(0.1586)

0.5 1 0.4192
SB 0.963(0.1333) 0.955(0.1435) 0.953(0.1371) 0.952(0.1366) 0.958(0.1349) 0.951(0.1452) 0.961(0.1345)
PB 0.968(0.1305) 0.950(0.1403) 0.957(0.1342) 0.953(0.1336) 0.960(0.1338) 0.948(0.1407) 0.962(0.1303)

BCPB 0.971(0.1306) 0.955(0.1403) 0.962(0.1344) 0.964(0.1336) 0.964(0.1340) 0.952(0.1419) 0.966(0.1311)

0.5 3 0.0485
SB 0.968(0.1518) 0.950(0.1549) 0.952(0.1531) 0.953(0.1523) 0.958(0.1520) 0.947(0.1553) 0.966(0.1520)
PB 0.961(0.1465) 0.950(0.1515) 0.952(0.1511) 0.951(0.1496) 0.955(0.1490) 0.949(0.1520) 0.959(0.1485)

BCPB 0.968(0.1416) 0.944(0.1516) 0.955(0.1512) 0.957(0.1536) 0.960(0.1534) 0.941(0.1553) 0.962(0.1483)

2 0.1 0.8274
SB 0.971(0.0933) 0.949(0.1175) 0.962(0.1111) 0.954(0.1005) 0.964(0.0980) 0.948(0.1177) 0.968(0.0945)
PB 0.983(0.0913) 0.944(0.1149) 0.956(0.0989) 0.953(0.0984) 0.959(0.0957) 0.944(0.1150) 0.972(0.0976)

BCPB 0.988(0.0904) 0.964(0.1150) 0.967(0.0990) 0.959(0.1085) 0.961(0.0959) 0.956(0.1153) 0.977(0.0908)

2 1 0.4137
SB 0.955(0.1374) 0.952(0.1448) 0.952(0.1415) 0.948(0.1413) 0.953(0.1396) 0.947(0.1450) 0.951(0.1388)
PB 0.954(0.1344) 0.944(0.1415) 0.946(0.1386) 0.945(0.1379) 0.947(0.1364) 0.941(0.1416) 0.953(0.1355)

BCPB 0.963(0.1342) 0.941(0.1417) 0.944(0.1389) 0.951(0.1383) 0.942(0.1367) 0.938(0.1419) 0.960(0.1358)

2 3 0.8062
SB 0.989(0.0662) 0.964(0.0760) 0.975(0.0725) 0.972(0.0728) 0.976(0.0711) 0.956(0.0779) 0.985(0.0672)
PB 0.971(0.0677) 0.952(0.0742) 0.958(0.0710) 0.955(0.0711) 0.961(0.0696) 0.953(0.0741) 0.969(0.0693)

BCPB 0.966(0.0681) 0.940(0.0746) 0.957(0.0715) 0.954(0.0699) 0.960(0.0716) 0.945(0.0747) 0.961(0.0682)

Table 6.3: Estimates of the parameters and Cpyk, AIC, BIC,RMSE and KS statistic.

Method (β̂, λ̂) Ĉpyk −LogL AIC BIC RMSE KS

Data set I

ML (1.52, 0.60) 0.7087 18.6973 41.3946 41.9998 0.3819 0.2667
LS (1.55,0.53) 0.7087 20.4682 44.9363 45.5415 0.4198 0.2718

WLS (1.56,0.68) 0.6585 19.5702 43.1404 46.5299 0.3994 0.2791
AD (1.55,0.45) 0.7266 21.8383 47.6767 48.2818 0.4427 0.2748
RAD (1.51,0.55) 0.6788 19.9597 43.9194 44.5246 0.4076 0.2702
CVM (1.50,0.48) 0.7235 20.9624 45.9248 46.5299 0.4261 0.2726
MPS (1.51,0.58) 0.7094 18.3773 41.3546 41.3598 0.3857 0.2686

Data set II

ML (1.98,26.01) 0.4292 74.4338 154.5676 155.8591 0.0306 0.0751
LS (2.06,24.9) 0.3874 75.2334 154.9669 156.4583 0.0379 0.0825

WLS (2.1,24.68) 0.3725 75.1752 154.9504 156.3419 0.0376 0.0863
AD (2.13,25.27) 0.3766 75.1543 154.9985 156.3000 0.0368 0.0859
RAD (2.22,24.95) 0.3472 75.0649 154.9712 156.1212 0.0367 0.0794
CVM (2.45,22.88) 0.2420 75.1749 154.9734 156.3412 0.0781 0.1245
MPS (1.99,25.81) 0.4229 74.3996 154.4992 155.7906 0.0307 0.0714




