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Abstract. The present paper deals with the study of E-Bochner curvature tensor
on an almost C'(\) manifolds with the conditions B¢(¢, X).S = 0, B*(§, X).R = 0,
R.B%(§,X) = 0 and B°(¢, X).B° = 0, where R, S and B® denote Riemannian curva-
ture tensor, Ricci tensor and E-Bochner curvature tensor, respectively. Also, we study
&-E-Bochner flat C(\) manifolds.
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1. Introduction

In 1981, D. Janssens and L. Vanhecke [4] first introduced the idea of the C'(\)
manifold. An almost contact metric manifold M?"*1(¢, &, n,g) is said to be an
almost C'(\) manifold if the curvature tensor R of the manifold has the form [13]
(1.1)

R(X,Y)Z = R(6X,6Y)Z = Ng(Y, 2)X — g(X, Z)Y — X g(6Y, Z) + g(6 X, Z)6Y ],

for any vector fields X,Y,Z € TM and A is a real number.

D. Janssens and L. Vanhecke [4] also proved that if A =0, A =1 and A = —1 then
C(A) manifold becomes cosymplectic, Sasakian and Kenmotsu manifolds respec-
tively. In 2013, Ali Akbar and Avijit Sarkar[1] studied conharmonic and concircular
curvature tensors in an almost C(\) manifold. They proved that the concircular and
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conharmonic curvature tensors in C'(A) manifold vanish if either A = 0 or the mani-
fold is a special type of n-Einstein manifold. In 1949, S. Bochner [14] gave the idea of
the Bochner curvature tensor. D. E. Blair[5] explain the Bochner curvature tensor
geometrically in 1975, Matsumoto and Chuman [10] constructed a curvature tensor
from the Bochner curvature tensor with the help of Boothby-Wangs fibrations[18]
and called it C-Bochner curvature tensor. J. S. Kim, M. M. Tripathi and J.Choi
[9] studied the C-Bochner curvature tensor of a contact metric manifold in 2005.
C-Bochner curvature tensor was also studied by several authors, viz., [4, 7, 12, 17]
in different approaches. As an extension of C-Bochner curvature tensor, in 1991
Endo [8] defined the E-Bochner curvature tensor B°.

The E-Bochner curvature tensor B¢ is defined by [8]

(12) BY(X,Y)Z = B(X,Y)Z —y(X)B(&, Y)Z — (V) B(X,§)Z — n(Z) B(X, Y )£.
where B is the C-Bochner curvature tensor defined by [10]

(1.3)

B(X,Y)Z = R(X,Y)Z + m{S(X, 2)Y - S(Y, 2)X

+9(X, 2)QY —g(Y, 2)QX + S(6X, Z)¢Y
—5(9Y, 2)¢X + g(oX, Z)QoY — g(¢Y, Z)QoX
+25(0X,Y)oZ +29(0X,Y)Q0Z — S(X, Z)n(Y)§

+ S(Y, Z)n(X)¢ —n(X)n(Z2)QY + n(Y)n(Z)QX}

- Sy {9(0X. 2)0Y — gl0v. Z)ox
T—4
F29(0X,V)07} - 5o (X DY — g(¥, 2)X}

n m{g(X, ZnY)E - g(Y, Z)n(X)&

+n(X)n(Z)Y 0¥ n(Z)X |,

where 7 = 2?:7%)7 Q is Ricci operator i.e. g(QX,Y) = S(X,Y) for all X and Y and
r is a scalar curvature of the manifold.

We have gone through the developments in C'(A) manifold and then plan to study
the E-Bochner curvature tensor in almost C'(A) manifold. This paper is organized
as follows:

The first section of the paper is introductory, and we provided the basic defini-
tion; the second part of the paper is the preliminaries and we have written some
basic formula required for the calculation. In section 3 we studied E-Bochner pseu-
dosymmetric in almost C'(A) manifold and proved that the C(\) manifold will be
E-Bochner pseudosymmetric if in C'(A\) manifold either Lge = —\ or C'(\) manifold
is Kenmotsu manifold. In section 4, we have studied E-Bochner semi-symmetric and
proved that the C'(A) manifold is E-Bochner semi-symmetric if either C'(A) manifold
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is cosymplectic manifold or a Kenmotsu manifold. Besides this, in this section we
have proved that the E-Bochner curvature tensor satisfies B¢(¢, X).S = 0 if and
only if the C'(A) manifold is either cosymplectic or Ricci curvature tensor satisfies
S(X,U) = —2n\n(X)n(U). Also, we have proved the relation B¢(¢,X).B¢ = 0
hold if and only if the manifold is Kenmotsu manifold. Finally, in section 5 we have
discussed the £-E-Bochner flat curvature tensor on C(A) manifolds.

2. Preliminaries

A Riemannian manifold (M?"*1 g) of dimension (2n + 1) is said to be an almost
contact metric manifold [3] if there exists a tensor field ¢ of type (1, 1), a vector
field £ (called the structure vector field) and a 1-form n on M such that

(2.1) ¢*(X) = X +n(X)E,

(2.2) 9(0X, 9Y) = g(X,Y) = n(X)n(Y),

and

(2.3) n(§) =1,

for any vector fields X, Y on M . In an almost contact metric manifold, we have
(2.4) P& =0, nop=0.

Then such type of manifold is a called contact metric manifold if dn = ®, where
®(X,Y) = g(X, ¢Y), is called the fundamental 2-form of M (Z7+1),

A contact metric manifold is said to be K-contact manifold if and only if the co-
varient derivative of £ satisfies

(2.5) Vxé = X,

for any vector field X on M.
The almost contact metric structure of M is said to be normal if

for any vector fields X and Y, where [¢, ¢] denotes the Nijenhuis torsion of ¢.
A normal contact metric manifold is called a Sasakian manifold. An almost contact
metric manifold is Sasakian if and only if

(2.7) (Vxo)Y = g(X,Y)§ —n(Y)X,

for any vector fields X, Y.
An almost C(\) manifold satisfies the following relations [13]

(2.8) R(X,Y)§ = R(¢X,9Y)E = AMn(Y)X —n(X)Y},
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(2.9) R(X, )Y = Mg(X,Y)E —n(Y)X},
(2.10) R(&Y) Z = {n(2)Y —g(Y, Z)¢},
(2.11) R(X, )&= n(X)§ - X},
(2.12) R(&Y)E = MY —n(Y)E},
(2.13) S(X,Y)=Ag(X,Y) + Bn(X)n(Y),

where A = —A\(2n — 1) and B = —), since g(QX,Y) = S(X,Y), where Q is the
Ricci-operator.
From straight forward calculation of (2.13) we can write the following

(2.14) QX = AX + Bn(X)¢,
(2.15) S(X,8) = (A+ B)n(X),
(2.16) 5(§:€) =(A+ B),
and

(2.17) r=—4n?\.

With the help of equations (1.2)-(1.3) and (2.8)-(2.16), we have

(218) B6.Y)Z = n(2) 2L e - v,
(2.19) B Y)E = T ) X < n(x) Y]
(220) B(X.9Z =1(2) 7o px — n(x)el,
and

(2:21) BE(6.)¢ =0

This is required E-Bochner curvature tensor in C'(A) manifolds.
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3. E-Bochner Pseudosymmetric C(\) manifolds

Let (M, g) be a Riemannian manifold and let V be the Levi-Civita connection of
(M,g). A Riemannian manifold is called locally symmetric if VR = 0, where R is
the Riemannian curvature tensor of (M, g). The locally symmetric manifolds have
been studied by different differential geometers through different approaches and
they extent it e.x. semi-symmetric manifolds by Szabo [19], recurrent manifolds by
Walker [2], conformally recurrent manifolds by Adati and Miyazawa [15].
According to Z. L. Szab/0[19], if the manifold M satisfies the condition

(3.1) (R(X,Y).R) U, V)W =0, X,Y,UV,W € x(M)

then the manifold is called semi-symmetric manifold for all vector fields X and Y.
For a (0, k)- tensor field T on M, k£ > 1 and a symmetric (0, 2)-tensor field A on M
the (0, k+2)-tensor fields R.T and Q(A, T) are defined by

52) (RT)(X1, .. Xp; X,Y) = —T(R(X,Y) X1, Xa, oo X3)

and

53) QAT (X1, ... Xi: X,Y) = —T((X Ay V) X1, Xo, oo X))

where X A4 Y is the endomorphism given by
(3.4) (XAaY)Z=AY,2)X — A(X, 2)Y.

According to R. Deszcz [11] a Riemannian manifold is said to be pseudosymmetric
if
(3.5) R.R=LrQ(g,R),

holds on U, = {x € M|R - G #0 at x}, where G is (0, 4)-tensor defined by

G(X1, X2, X35, X4) = g((X1 A X2)X3,X4) and Lg is some smooth function on Ug.
A Riemannian manifold M is said to be E-Bochner pseudosymmetric if

(3.6) R.B° = Lg. Q(g, B°),

holds on the set Uge = {x € M : B® # 0 at z}, where Lpe is some function on Upe
and B¢ is the E-Bochner curvature tensor.

Let M?"*1 be E-Bochner pseudosymmetric C'(\) manifold and then from equa-
tion(3.6), we have

(3.7 (R(X,&).B)(U, V)W = Lp[((X N, €).B°)(U, V)W].
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Using equations (3.2) and (3.3) in equation (3.7), we get

R(X,€)B(U, V)W — B*(R(X, &)U, V)W

~ BY(U,R(X,6)V)W — B(U, V)R(X, )W
(3.8) = L {(X Ny OB(U,VIW = BE(X Ay U, V)W
— BE(U, (X Ay V)W — BE(U, V(X A, §)W}.
Again, using equations (2.9) and (3.4) in (3.8), we infer

V] 9(X. B (W VIW)E — (€. B* (U, VIW)X +n(U) B (X, V)W
—9(X,U)B(E V)W + (V) BE(U, X)W — g(X, V) B (U, )W
+(W)BE(U, V)X — g(X,W)B*(U, V)¢ }
= Ly {g(&, B(U,VIW)X = g(X, BE(U, V)W)§ — n(U) B (X, V)W
+ g(X, U)B(&, V)W —n(V)B*(U, X)W + (X, V)B*(U,&)W
— n(W)BE(U, V)X + (X, W)B*(U, V)¢ }.
The above expression can be written as

(Lpe + /\){9(5, BYU, VW)X — g(X, BY(U,V)W)¢§ — n(U) B (X, V)W
(3.10)  +g(X,U)B(E V)W —n(V)B(U, X)W + g(X, V)B*(U, )W

—n(W)B(U, V)X + (X, W)B*(U, V)¢ } =0,
which implies that either

(a) Lpe = —A

) {o(¢. B U, V)W) X

—9(X, BS(U,V)W)¢ —n(U)B*(X, V)W
+g(X,U)B*(&, V)W —n(V)B*(U, X)W + g(X,V)B*(U, )W
—n(

W)BE(U, V)X + (X, W)B*(U, V)f} —0.

(3.11)

Putting W = ¢ and using equations (1.3) and (2.18) in equation (3.11(b)), we have

20 +1)
3.12 B(X, VYW = X, VYU —g(X,U)V].
(312) (X V)W = S X VU (X, 0) V]
Now, contracting V in above equation, we get
2 1
(3.13) O+ D, o(x.0) =0,

(n+2)
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This implies that

(3.14) A=-1

using equations (3.14) in (2.18) in (3.12), we have

(3.15) B¢(X, V)W =0, B¢ V)W =

Therefore with the help of equations (3.11(b)) and (3.15) we conclude that:

Proposition 3.1. A C(\) manifold M*"*! (n > 1) is E-Bochner pseudosymmet-
ric if either Lge = —X or C'(\) manifold is a Kenmotsu manifold.

Now, since A is a real number and if C'(A) manifold be E-Bochner pseudosymmetric
then we have A = —1 or L. = —A\ holds on M?"*! which implies that Lg. = —\
will be a real number in both cases therefore we can state the following corollary.

Corollary 3.1. FEvery C(\) manifold is E-Bochner pseudosymmetric and has the
form R.B¢ = —\Q(g, B°).

Corollary 3.2. Every C(\) manifold is E-Bochner pseudosymmetric and has the
form R.B® = Q(g, B°).

4. E-Bochner semi-symmetric C'(\) manifolds
In an (2n+1)-dimensional alomost C'(A\) the E-Bochner semi-symmetric C(\) man-
ifold is defined by
(4.1) (R(X,Y).B)(U, V)W =
The above equation can be written as
R(X,Y)B¢(U, V)W — B*(R(X,Y)U, V)W
- B*(U,R(X,Y)V)W — B(U,V)R(X, Y)W = 0.

Putting Y = £ in above equation we get

(4.2)

g(X, BE(U, V)W)f - Xn(Be(Uv V)W)

—9(X,U)B*(&, V)W +q(U)B*(X, V)W
— g(X,V)BS(U,&)W + n(V)B(U, X)W
+n(

W)B(U, V)X — g(X, W)BE(U, V)g}

(4.3)

From (4.3), we have either A =0 or
|9(X. B (U, V)W) = Xn(B(U, V)W)

—g9(X,U)B(&, V)W +n(U)BY(X, V)W
- g(Xv V)BE(U, f)W + W(V)Be(UaX)W

+(W)BE(U, V)X — g(X, W)B*(U, V)f} —0,

(4.4)
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for A = 0 the manifold is a cosymplectic manifold.
Now putting W = U = £ and using equation (2.18) in above equation, we have

20\ +1)

(45) (n+2)

X))V — g(X,V)§=0.

again putting X = ¢X , V = ¢V and using equation (2.4), we have
2(A+1)
(n+2)
Since g(¢X, V)& # 0, in general therefore we obtain from (4.5) A = —1. Therefore

in this case manifold is a Kenmotsu manifold.
Thus we conclude

(4.6) 9(¢X, V)¢ = 0.

Proposition 4.1. If C(\) manifold M*" ! (n > 1) is an E-Bochner semi-symmetric
C(A) manifold then either C(\) manifold is a cosymplectic manifold or a Kenmotsu
manifold.

Now we propose

Theorem 4.1. In a C()\) manifold M*"*1 (n > 1), B¢(&,X).S = 0 if and only if
either C'(X) manifold is a Kenmotsu manifold or in C(\) manifold the Ricci tensor
satisfies S(X,U) = —2n\n(X)n(U).

Proof If C'()\) manifold satisfying B¢(¢, X).S = 0.
Then from equation (3.2), we have

(4.7) S(B(&, X)U, &) + S(U, B*(¢, X)¢) = 0,
From equation (2.12), we have

(48) S(Bp(§7X)Ua§) = _2n/\77(Be(faX)U)
Now with the help of equations (2.18) and (4.8), we have
(4.9) S(B(&, X)U,€) = 0.

Again in view of the equation (2.18), we have

2\ +1)
(n+2)
By using expressions (4.10) and (4.9) in (4.7), we infer

2\ + 1)
(n+2)

(4.10) S(B(E, X)E,U) = - (S(X,U) + 2nAn(X)n(U)).

(4.11) (S(X,U) + 2n\p(X)n(U)) = 0,

which implies that A = —1 or
(4.12) S(X,U) = =2n (X )n(U).
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Conversely if the manifold satisfies the relation (4.12), then in view of equation
(2.18), we have

Be(f,X).S = _S(Be(g,X)U’ g) - S(U7 Be(f,X)f)

~ 200+
(4.13) = oy (SLO)+ 200X )n(U)

=0.

Again, if the manifold is Kenmotsu then we easily obtain from (2.18) that B¢(¢, X).S =
0.
As a particular case of theorem 4.1 we can state the following corollary :

Corollary 4.1. A C()\) manifold M?"*1 (n > 1) satisfies B¢(£,X).S = 0 is a
special type of n-Einstein manifold.

Now we take B(&,U).R = 0.
Then from equation (3.2), we have
B, U)R(X,Y)Z - R(B*(§,U)X,Y)Z

(4.14) — R(X,B(£,U)Y)Z — R(X,Y)B*(£,U)Z = 0,

which in view of the equation (2.18), we have

2((3:21)) {n(U)n(R(X Y)Z2)¢ —n(R(X,Y)Z)U)
(4.15) —n(XnU)R(E,Y)Z +n(X)R(U,Y)Z

—nUn(Y)R(X,)Z +n(Y)R(X,U)Z

—n(U)n(Z)R(X,Y) +n(Z)R(X, Y)U} —0,

From (4.15) we have either A = —1, or

{nOmRXY)2)¢ = n(R(X,Y)2)U)

o — )X )OVREY)Z + n(X)RW,Y)Z
' —nU)n(Y)R(X,§)Z +n(Y)R(X,U)Z
—n(UMZ)R(X.Y)E +n(Z)ROXLYIU | = 0.
For A = —1, the manifold is Kenmotsu
Putting X = Z = ¢ in (4.16) and using (2.10) in the above equation, we infer
(4.17) R(¢U, 9Y)§ = Ajg(Y,U)€ — n(U)n(Y)].

Thus, we conclude

Proposition 4.2. In C()\) manifold M*"*! (n > 1) if B¢(§,U).R = 0 then the
manifold is either a Kenmotsu manifold or R(¢U, ¢Y )¢ = Ng(Y,U)E — n(U)n(Y)].
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Now we propose

Theorem 4.2. In C()\) manifold M*"*1 (n > 1), B¢(¢, X).B¢ =0, if and only if
the manifold is Kenmotsu manifold.

Proof If C(\) manifold satisfying B¢(£, X).B¢ = 0. Then from equation (3.2), we
have
BE(&, X)B*(U, V)W — B*(B*(§, X)U, V)W

(4.18) — B*(U, BS(¢, X)V)W — B*(U, V)B*(£, X)W = 0,

which in view of the equation (2.18), we get
2\ +1)
(n+2)
—n(U)n(X)B(&, V)W +n(U)B*(X, V)W
—n(X)n(V)B(U, )W +n(V)B*(U, X)W

= (W)(X)BEU, V)E + (W) B, V)X } = 0.

{n(BUVIWn(X)e = n(B(U,VIW)X

(4.19)

By using U = £ in above equation, we infer

2(0+1)
(n+2)

20\ + 1)

(4.20) )

{(B=C, V)W + () (V)X +7(0V) | =0,

which implies that either A = —1 or

20+1)

(4.21) BEXVIW =

nW)n(V) X —n(X) V],

contracting V in above equation, we have

2(A+1)

(4.22) )

This implies that A = —1, for A = —1, the manifold is Kenmotsu. Conversely, in
the case if the manifold is Kenmotsu then from (2.18) we obtain B¢(¢,X).B¢ =0
holds if and only if the manifold is Kenmotsu.

5. ¢&-E- Bochner flat curvature tensor on C()\) manifolds

A contact metric manifold is said to be £-conformally flat contact metric manifold
if the conformal curvature tensor of the manifold satisfies

(5.1) C(X,Y)E =0,

for any vector fields X and Y.
This idea was introduced by Zhen, Cabrerizo, M. Fernandez and Fernandez [6] in
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1997. In 2012 U.C.De , Ahmet Yildiz, Mine Turan and Bilal E. Acet [16] defined
&-concircularly flat manifold if the concircular curvature tensor C (X,Y)¢ =0 holds
on M.

Now, we define &~ E-Bochner flat C(\) manifold.

Definition 5.1. A C(\) manifolds is said to be & E-Bochner flat C'(A) manifold
if the E-Bochner curvature tensor B¢ of type (1, 3) of C'(A) manifold satisfies
(5.2) B*(X,Y)¢ =0,

for any vector fields X and Y.
Putting Z = £ in equation (1.2), we have

(5.3) B(X,Y)§ = —n(X)B(&,Y)E —n(Y)B(X, §)E.
Now from equations (1.3), (2.18) and (5.3), we get

2(A+1) B
(5.4) W[U(Y)X —n(X)Y]=0
putting Y = £ in above equation we have
(5.5) PAL D (x —y(x)9) = 0.

n+2

Now taking inner product with a vector field V, we have

(5:6) 20D g0, v) = (v =0
Replacing X by QX in above equation, we get
5.7 AL (g(@x.v) ~ n@x)n(v)) =0,

n—+2
since S(X,Y)=g(QX, Y), then from above equation we have

O (500, v) @) =0

Now with the help of equation (2.11) and (4.8), we have

(5.8)

(5.9) Zsj\ijzl)(S(X, V) 4 2nAn(X)n(V))) = 0.
this implies that either

(5.10) A=-—1,

or

(5.11) S(X,V) = =2nAn(X)n(V).

Theorem 5.1. In a &-E-Bochner flat C(\) manifold either A = —1 or C'(\) man-
ifold is a special type of n-FEinstein manifold.
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