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Abstract. Generalized number systems, particularly octonions with their algebraic
structure, have drawn much interest in mathematics, physics, and computer technol-
ogy. Therefore, in this paper, we introduce two new concepts, modified generalized
dual Fibonacci and modified generalized dual Lucas octonions, to expand the topic
of octonions. Additionally, we explore the well-known Catalan and Cassini identities,
shedding light on the characteristics of these new constructs. Also, we give generating
functions and the Binet formulas of the modified generalized dual Fibonacci and mod-
ified generalized dual Lucas octonions.
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1. Introduction

Two integer sequences that have great significance in the fields of number theory
and mathematics are the Fibonacci and Lucas numbers. The Fibonacci numbers,
the Lucas numbers and their generalizations play an important role in many areas
of science. The classical Fibonacci numbers are defined by the recurrence relation

(1.1) F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.

The Lucas numbers are defined by the recurrence relation

(1.2) L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2, n ≥ 2.
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In recent years, many researchers have studied the generalizations and applications
of the Fibonacci and Lucas numbers (see [23, 16, 15, 26, 9, 13, 7, 25]). For example,
in 2007, Falcon and Plaza [16] defined the k−Fibonacci sequence, {Fk,n}∞n=0. In
2012, Yazlik and Taskara [26] presented the generalized k−Horadam sequence. A
new generalization of the Fibonacci numbers, first referred to in the literature as
the bi-periodic Fibonacci sequence, was defined by Edson and Yayenie [9]. This
paper has been one of the most important studies in this area. Moreover, Yayenie
[13] presented another significant study which is the modified generalized Fibonacci
sequence as

(1.3) Q0 = 0, Q1 = 1, Qn =

{
aQn−1 + cQn−2, if n is even

bQn−1 + dQn−2, if n is odd
, n ≥ 2,

where a, b, c and d are real numbers. Later, Bilgici [7] introduced both the bi-
periodic Lucas numbers and the modified generalized Lucas numbers, wherein he
established the modified generalized Lucas sequence as

(1.4) U0 =
d+ 1

d
, U1 = a, Un =

{
bUn−1 + dUn−2, if n is even

aUn−1 + cUn−2, if n is odd
, n ≥ 2,

where a, b, c and d are real numbers. The generating functions of Qn and Un are
given by

(1.5) H(x) =

∞∑
n=0

Qnx
n =

x
(
1 + ax− cx2

)
1− (ab+ c+ d)x2 + cdx4

and

(1.6) U(x) =

∞∑
n=0

Unx
n =

1

d

(
d+ 1 + adx− (ab+ cd+ c)x2 + adx3

1− (ab+ c+ d)x2 + cdx4

)
,

respectively. Additionally, the following formulas provide the Binet formulas for the
sequences Qn and Un, respectively:

(1.7) Qn =
a1−ξ(n)

(ab)
⌊n

2 ⌋

(
α⌊n

2 ⌋ (α+ d− c)
n−⌊n

2 ⌋ − β⌊n
2 ⌋ (β + d− c)

n−⌊n
2 ⌋

α− β

)
and

Un =
aξ(n)

(ab)
⌊n−1

2 ⌋

(
(α+ d+ 1)α⌊n−1

2 ⌋ (α+ d− c)
⌊n

2 ⌋

α− β

− (β + d+ 1)β⌊n−1
2 ⌋ (β + d− c)

⌊n
2 ⌋

α− β

)
,(1.8)

where α =
ab+c−d+

√
(ab+c−d)2+4abd

2 and β =
ab+c−d−

√
(ab+c−d)2+4abd

2 are the roots
of the polynomial x2 − (ab+ c− d)x − abd = 0 and ξ(n) = n − 2⌊n

2 ⌋ is the parity
function.
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The dual numbers are a hypercomplex number system. Firstly, Clifford intro-
duced dual numbers in a work he published in 1871 [12]. Dual numbers can be
described as a mathematical extension of the real numbers, incorporating a new
element denoted as ε (epsilon), whose square is equal to zero. In other words, dual
numbers are of the form

(1.9) d = a+ εa∗,

where a, a∗ ∈ R and ε satisfies ε2 = 0. The set of dual numbers can be denoted
by D. For a, a∗, b, b∗ ∈ R, ε2 = 0 and b ̸= 0, the following arithmetic operations are
valid for dual numbers.

Addition: (a+ εa∗) + (b+ εb∗) = (a+ b) + ε(a∗ + b∗)

Subtraction: (a+ εa∗)− (b+ εb∗) = (a− b) + ε(a∗ − b∗)

Multiplication: (a+ εa∗)(b+ εb∗) = ab+ ε(ab∗ + a∗b)

Division: (a+εa∗)
(b+εb∗) = (a+εa∗)(b−εb∗)

(b+εb∗)(b−εb∗) = ab+ε(a∗b−ab∗)
b2

Dual numbers are highly beneficial in mathematics as they offer a useful algebraic
structure for computing derivatives. Furthermore, they find applications in various
fields such as computer graphics, robotics, and optimization.

Now let’s talk about the concept of quaternions, which is necessary to better
explain our work. The quaternions are used in mathematics, physics, computer
science and related areas. In 1843, the quaternions were first defined by William
Rowan Hamilton. Generally, a quaternion q is defined by the following formula

(1.10) q = q0 + iq1 + jq2 + kq3,

where q0, q1, q2 and q3 are real numbers and i, j, k are standard orthonormal basis
in R3. Additionally, the standard orthonormal basis i, j, k satisfy the following
multiplication rules as

(1.11) i2 = j2 = k2 = ijk = −1,

(1.12) ij = −ji = k, jk = −kj = i, ki = −ik = j.

Furthermore, the conjugate of the quaternion q̄ is defined by

(1.13) q = q0 − iq1 − jq2 − kq3.

In recent years, many studies about quaternions have been conducted. [17, 14, 4, 18,
1, 8, 3, 6, 5, 20]. In 1963, Horadam [1] presented the nth Fibonacci and Lucas quater-
nions as Qn and Pn, respectively. In 2015, Ramirez [8] examined the k−Fibonacci
and k−Lucas quaternions utilizing the characteristics of the k−Fibonacci and k−Lucas
numbers. Recently, Tan [5] introduced the biperiodic Fibonacci quaternion. Then,
Tan et al.[6] also presented the bi-periodic Lucas quaternion.
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The idea of quaternions, which are an extension of complex numbers, is extended
by dual quaternions. Dual quaternions, on the other hand, are pairs of quaternions
written as (q, q∗), where q is the real part (similar to a standard quaternion) and
q∗ is a dual part. The general form of a dual quaternion is:

(1.14) q̂ = q + εq∗

where ε is a dual unit and q and q∗ are quaternions. If Ai = qi + εq∗i and Ai ∈
D, i = 0, 1, 2, 3, then the dual quaternion q̂, can be denoted as;

(1.15) q̂ = A0e0 +A1e1 +A2e2 +A3e3.

As a result, eight real parameters are used to generate every dual quaternion q̂.
Here ei, i = 0, 1, 2, 3 are quaternion basis elements that obey the (1.11) and (1.12)
multiplication rules. More information on dual numbers and dual quaternions can
be found in [12] and [28]. In 2015, Nurkan and Güven [10] examined the dual
Fibonacci quaternions. They studied relations between the dual Fibonacci and the
dual Lucas quaternions and presented give the Binet and Cassini formulas for these
quaternions.

The octonions in Clifford algebra C are a normed division algebra with eight
dimensions. In 2015, Keçilioğlu ve Akkuş [11] presented Fibonaaci and Lucas octo-
nions. They are defined by the recurrence relations:

(1.16) Qn =

7∑
l=0

Fn+lel, n ≥ 0,

and

(1.17) Tn =

7∑
l=0

Ln+lel, n ≥ 0,

where Fn ve Ln are the nth classic Fibonacci and Lucas numbers, respectively.
Multiplication rules for the basis are listed in the following table [24]:

x 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

It has been many important studies in this area. In 2015, in her work on
dual Fibonacci octonions, Halici studied some basic algebraic properties of these
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octonions and presented Binet formulas and their generating functions [19]. İpek
and Çimen defined the (p, q)−Fibonacci octonions [2]. In 2017, Ünal et al. studied
some properties of dual Fibonacci and dual Lucas octonions [27].

Köme et. al. investigated modified generalized Fibonacci and Lucas quaternions
[21]. Also, they are presented the matrix representations of the modified generalized
Fibonacci and modified generalized Lucas quaternions. In 2020, Köme and Kirik
defined the modified generalized Fibonacci and modified generalized Lucas 2k−ions
[22]. In this paper Köme and Kirik defined of the modified generalized Fibonacci
2k−ions Θn and modified generalized Lucas 2k−ions σn respectively as follows:

(1.18) Θn =

N−1∑
l=0

Qn+lel,

and

(1.19) σn =

N−1∑
l=0

Un+lel,

where Qn is the nth modified generalized Fibonacci numbers that is defined in (1.3)
and Un is the modified generalized Lucas numbers that is defined in (1.4).

It is clear that the modified generalized Fibonacci and Lucas 2k−ions are the
generalization of the modified generalized Fibonacci and Lucas octonions (for N =
2k = 8). As a result of, the modified generalized Fibonacci and Lucas octonions are
defined as follows respectively;

Φn =

7∑
l=0

Qn+lel(1.20)

and

ϑn =

7∑
l=0

Un+lel(1.21)

where Qn is the nth modified generalized Fibonacci numbers that is defined in (1.3)
and Un is the modified generalized Lucas numbers that is defined in (1.4).

Generalized number systems have been the subject of the work of many math-
ematicians recently due to their applications in fields such as mathematics, physics
and computer science. Particularly, octonions have emerged as an intriguing alge-
braic structure, displaying intricate mathematical features. Built upon this foun-
dation, the aim of this article is to advance the field by developing the modified
generalized dual Fibonacci and modified generalized dual Lucas octonions, respec-
tively. We also aim to give the Catalan identity and Cassini identity, which sheds
light on the key properties of modified generalized dual Fibonacci and modified gen-
eralized dual Lucas octonions. In conclusion, we hope that our article summarizes
both the results of previous research and the introduction of the original results,
thereby enriching the discourse on octonion generalizations.
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2. Modified Generalized Dual Fibonacci Octonions

In this section, we present the definitions and theorems of the modified general-
ized dual Fibonacci octonions.

Definition 2.1. The modified generalized dual Fibonacci numbers Q̃n are

(2.1) Q̃n = Qn + εQn+1,

where Qn, Qn+1 are the nth and (n+1)th modified generalized Fibonacci numbers
in Eq.(1.3), respectively.

Definition 2.2. The modified generalized dual Fibonacci octonions Φ̃n are defined
by

(2.2) Φ̃n = Φn + εΦn+1.

Here Φn is the nth modified generalized Fibonacci octonions in Eq.(1.20). From
Definition (2.1), Eq.(2.2) can be denoted as;

Φ̃n =

7∑
l=0

Q̃n+lel.

In the following theorem we give the Binet formula of the modified generalized
dual Fibonacci octonion by the help of the Binet formula of Φn.

Theorem 2.1. The Binet formula for the modified generalized dual Fibonacci oc-
tonions Φ̃n is

Φ̃n =
1

(ab)
⌊n

2 ⌋

(
αξ(n)α

⌊n
2 ⌋ (α+ d− c)

n−⌊n
2 ⌋ − βξ(n)β

⌊n
2 ⌋ (β + d− c)

n−⌊n
2 ⌋

α− β

)

+ε
1

(ab)
⌊n+1

2 ⌋

(
αξ(n+1)α

⌊n+1
2 ⌋ (α+ d− c)

n+1−⌊n+1
2 ⌋

α− β

)

−ε
1

(ab)
⌊n+1

2 ⌋

(
βξ(n+1)β

⌊n+1
2 ⌋ (β + d− c)

n+1−⌊n+1
2 ⌋

α− β

)

where

αξ(n) =

7∑
l=0

aξ(l+1−ξ(n))

(ab)⌊
l+ξ(n)

2 ⌋
(α+ d− c)

⌊ l+1−ξ(n)
2 ⌋

α⌊ l+ξ(n)
2 ⌋el

and

βξ(n) =

7∑
l=0

aξ(l+1−ξ(n))

(ab)⌊
l+ξ(n)

2 ⌋
(β + d− c)

⌊ l+1−ξ(n)
2 ⌋

β⌊ l+ξ(n)
2 ⌋el.
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Proof. From the Eq.(2.2), we have

Φ̃n = Φn + εΦn+1.

If N = 8 in Binet formula given in Theorem 2.2. of the modified generalized
Fibonacci 2k−ions in [22], we can obtain Binet formula of the modified generalized
Fibonacci octonions. Thus, it can be easily seen that the following relations are
correct.

Φn =
1

(ab)
⌊n

2 ⌋

(
αξ(n)α

⌊n
2 ⌋ (α+ d− c)

n−⌊n
2 ⌋ − βξ(n)β

⌊n
2 ⌋ (β + d− c)

n−⌊n
2 ⌋

α− β

)

and

Φn+1 =
1

(ab)
⌊n+1

2 ⌋

(
αξ(n+1)α

⌊n+1
2 ⌋ (α+ d− c)

n+1−⌊n+1
2 ⌋

α− β

−
βξ(n+1)β

⌊n+1
2 ⌋ (β + d− c)

n+1−⌊n+1
2 ⌋

α− β

)
thereby showing that indeed Φ̃n holds. So, the Binet formula is obtained.

Now, we give the generating function of the modified generalized dual Fibonacci
octonions.

Theorem 2.2. The generating function for the modified generalized dual Fibonacci
octonions is

G(t) =
Φ0 + (Φ1 − bΦ0) t+ (a− b)R1(t) + (c− d)R2(t)

1− bt− dt2

+ϵ
Φ1 + (Φ2 − bΦ1) t+ (a− b)S1(t) + (c− d)S2(t)

1− bt− dt2
(2.3)

where

R1(t) = e0tf(t) + e1 (f(t)−Q1t) + e2

(
f(t)−Q1t

t

)
+ e3

(
f(t)−Q1t−Q3t

3

t2

)
+e4

(
f(t)−Q1t−Q3t

3

t3

)
+ e5

(
f(t)−Q1t−Q3t

3 −Q5t
5

t4

)
+e6

(
f(t)−Q1t−Q3t

3 −Q5t
5

t5

)
+e7

(
f(t)−Q1t−Q3t

3 −Q5t
5 −Q7t

7

t6

)
,
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R2(t) = e0t
2h(t) + e1th(t) + e2h(t) + e3

(
h(t)−Q2t

2

t

)
+ e4

(
h(t)−Q2t

2

t2

)
+e5

(
h(t)−Q2t

2 −Q4t
4

t3

)
+ e6

(
h(t)−Q2t

2 −Q4t
4

t4

)
+e7

(
h(t)−Q2t

2 −Q4t
4 −Q6t

6

t5

)
,

S1(t) = e0 (f(t)−Q1t) + e1

(
f(t)−Q1t

t

)
+ e2

(
f(t)−Q1t−Q3t

3

t2

)
+e3

(
f(t)−Q1t−Q3t

3

t3

)
+ e4

(
f(t)−Q1t−Q3t

3 −Q5t
5

t4

)
+e5

(
f(t)−Q1t−Q3t

3 −Q5t
5

t5

)
+ e6

(
f(t)−Q1t−Q3t

3 −Q5t
5 −Q7t

7

t6

)
+e7

(
f(t)−Q1t−Q3t

3 −Q5t
5 −Q7t

7

t7

)
,

S2(t) = e0th(t) + e1h(t) + e2

(
h(t)−Q2t

2

t

)
+ e3

(
h(t)−Q2t

2

t2

)
+e4

(
h(t)−Q2t

2 −Q4t
4

t3

)
+ e5

(
h(t)−Q2t

2 −Q4t
4

t4

)
+e6

(
h(t)−Q2t

2 −Q4t
4 −Q6t

6

t5

)
+ e7

(
h(t)−Q2t

2 −Q4t
4 −Q6t

6

t6

)
,

f(t) =
t− ct3

1− (ab+ d+ c) t2 + cdt4

and

h(t) =
at2

1− (ab+ d+ c) t2 + cdt4
.

Proof. The generating function of the modified generalized dual Fibonacci octonions
is G(t) =

∑∞
n=0 Φ̃nt

n and using the equations btG(t) and t2G(t).

G(t) = Φ̃0 + Φ̃1t+ ...+ Φ̃nt
n + ... = Φ̃0 + Φ̃1t+

∞∑
n=2

Φ̃nt
n

btG(t) = bΦ̃0t+ bΦ̃1t
2 + ...+ bΦ̃nt

n+1 + ... = bΦ̃0t+

∞∑
n=2

bΦ̃n−1t
n

dt2G(t) = dΦ̃0t
2 + dΦ̃1t

3 + ...+ dΦ̃nt
n+2 + ... =

∞∑
n=2

dΦ̃n−2t
n
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and take into account the equation Φ̃n = Φn + εΦn+1 in the above equations, we
get

G(t)− btG(t)− dt2G(t) = Φ0 + εΦ1 + (Φ1 + εΦ2)t− b(Φ0 + εΦ1)t

+

∞∑
n=2

(Φn − bΦn−1 − dΦn−2)t
n

+ε

∞∑
n=2

(Φn+1 − bΦn − dΦn−1)t
n

= Φ0 + (Φ1 − bΦ0)t+

∞∑
n=2

(Φn − bΦn−1 − dΦn−2)t
n

+ε(Φ1 + (Φ2 − bΦ1)t+

∞∑
n=2

(Φn+1 − bΦn − dΦn−1)t
n)

and if N = 8 in generating function given in Theorem 2.1. of the modified gener-
alized Fibonacci 2k−ions in [22], we can obtain generating function of the modified
generalized Fibonacci octonions. Thus, it can be easily seen that the following
relations are correct.

∞∑
n=2

(Φn − bΦn−1 − dΦn−2)t
n = (a− b)R1(t) + (c− d)R2(t),

∞∑
n=2

(Φn+1 − bΦn − dΦn−1)t
n = (a− b)S1(t) + (c− d)S2(t).

Finally, we can find the generating function of modified generalized dual Fibonacci
octonions.

Now, we give the Catalan’s identity. Furthermore, we derive the Cassini’s identity
which is the special case of the Catalan’s identity for r = 1.

Theorem 2.3. (Catalan’s identity) For n, r ∈ N0 and r ≤ n, we have the identity

Φ̃2(n+r)+ξ(i)Φ̃2(n−r)+ξ(i) − Φ̃2
2n+ξ(i)

=
(−c)ξ(i)

(ab)
2r

(α− β)
2 ×

[
αξ(i)βξ(i)

(
(ab)2r+ξ(i)(cd)n − (ab)2r+ξ(i)(cd)n

(
α+ d

β + d

)r
)

+βξ(i)αξ(i)

(
(ab)2r+ξ(i)(cd)n − (ab)2r+ξ(i)(cd)n

(
β + d

α+ d

)r
)]

+ ε
(−c)ξ(i)

(ab)
2r

(α− β)
2 ×

[
αξ(i)βξ(i+1)

(
(ab)2r+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)



400 S. Köme

−(ab)2r+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

(
α+ d

β + d

)r
)

+βξ(i+1)αξ(i)

(
(ab)2r+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

−(ab)2r+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

(
β + d

α+ d

)r
)

+αξ(i+1)βξ(i)

(
(ab)2r+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

−(ab)2r+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

(
α+ d

β + d

)r
)

+βξ(i)αξ(i+1)

(
(ab)2r+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

−(ab)2r+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

(
β + d

α+ d

)r
)]

,(2.4)

where αξ(i) and βξ(i) are defined in Theorem 2.1 and i ∈ {0, 1}.

Proof. From Equation (2.2) and Binet formula for the modified generalized dual
Fiboancci octonions in Theorem 2.1 the proof is clear.

Corollary 2.1. (Cassini’s identity) For n ∈ N0, we have the identity

Φ̃2(n+1)+ξ(i)Φ̃2(n−1)+ξ(i) − Φ̃2
2n+ξ(i)

=
(−c)ξ(i)

(ab)
2
(α− β)

2 ×

[
αξ(i)βξ(i)

(
(ab)2+ξ(i)(cd)n − (ab)2+ξ(i)(cd)n

(
α+ d

β + d

))

+βξ(i)αξ(i)

(
(ab)2+ξ(i)(cd)n − (ab)2+ξ(i)(cd)n

(
β + d

α+ d

))]

+ ε
(−c)ξ(i)

(ab)
2
(α− β)

2 ×

[
αξ(i)βξ(i+1)

(
(ab)2+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

−(ab)2+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

(
α+ d

β + d

))

+βξ(i+1)αξ(i)

(
(ab)2+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

−(ab)2+ξ(i)(cd)n(β + d− c)ξ(i+1)βξ(i)

(
β + d

α+ d

))
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+αξ(i+1)βξ(i)

(
(ab)2+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

−(ab)2+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

(
α+ d

β + d

))

+βξ(i)αξ(i+1)

(
(ab)2+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

−(ab)2+ξ(i)(cd)n(α+ d− c)ξ(i+1)αξ(i)

(
β + d

α+ d

))]
,(2.5)

where αξ(i) and βξ(i) are defined in Theorem 2.1 and i ∈ {0, 1}.

Theorem 2.4. Φ̃n be a modified generalized dual Fibonacci octonion, Φ̃n be con-
jugate of Φ̃n, Q̃n a modified generalized dual Fibonacci number. Then the following
equation can be given;

Φ̃n + Φ̃n = 2Q̃n.(2.6)

Proof. From Equation (2.2) and Equation (1.20), we get

Φ̃n + Φ̃n

= (Φn + εΦn+1) + (Φn + εΦn+1)

=
(
Q̃ne0 + Q̃n+1e1 + Q̃n+2e2 + Q̃n+3e3 + Q̃n+4e4 + Q̃n+5e5 + Q̃n+6e6 + Q̃n+7e7

)
+
(
Q̃ne0 − Q̃n+1e1 − Q̃n+2e2 − Q̃n+3e3 − Q̃n+4e4 − Q̃n+5e5 − Q̃n+6e6 − Q̃n+7e7

)
= 2Q̃n.

3. Modified Generalized Dual Lucas Octonions

In this section, we present the definitions and theorems of the modified general-
ized dual Lucas octonions.

Definition 3.1. The modified generalized dual numbers Lucas Ũn are

(3.1) Ũn = Un + εUn+1,

where Un, Un+1 are the nth and (n + 1)th modified generalized Lucas numbers in
Eq.(1.4), respectively.

Definition 3.2. The modified generalized dual Lucas octonions ϑ̃n are defined by

(3.2) ϑ̃n = ϑn + εϑn+1.
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Here ϑn is the nth modified generalized Lucas octonions in Eq.(1.21). From Defi-
nition (3.1), Eq.(3.2) can be denoted as;

ϑ̃n =

7∑
l=0

Ũn+lel.

In the following theorem we give the Binet formula of the modified generalized
dual Lucas octonion by the help of the Binet formula of ϑn.

Theorem 3.1. The Binet formula for the modified generalized dual Lucas octonion
ϑ̃n is

ϑ̃n =
1

(ab)
⌊n−1

2 ⌋

(
α∗
ξ(n)α

⌊n−1
2 ⌋ (α+ d− c)

⌊n
2 ⌋

(α+ d+ 1)

α− β

−
β∗
ξ(n)β

⌊n−1
2 ⌋ (β + d− c)

⌊n
2 ⌋

(β + d+ 1)

α− β

)

+ε
1

(ab)
⌊n

2 ⌋

(
α∗
ξ(n+1)α

⌊n
2 ⌋ (α+ d− c)

⌊n+1
2 ⌋

(α+ d+ 1)

α− β

−
β∗
ξ(n+1)β

⌊n
2 ⌋ (β + d− c)

⌊n+1
2 ⌋

(β + d+ 1)

α− β

)
where

α∗
ξ(n) =

7∑
l=0

aξ(l+ξ(n))

(ab)⌊
l+1−ξ(n)

2 ⌋
(α+ d− c)

⌊ l+ξ(n)
2 ⌋

α⌊ l+1−ξ(n)
2 ⌋el

and

β∗
ξ(n) =

7∑
l=0

aξ(l+ξ(n))

(ab)⌊
l+1−ξ(n)

2 ⌋
(β + d− c)

⌊ l+ξ(n)
2 ⌋

β⌊ l+1−ξ(n)
2 ⌋el.

Proof. Assume that for n,

ϑ̃n = ϑn + εϑn+1.

If N = 8 in Binet formula given in Theorem 3.2. of the modified generalized Lucas
2k−ions in [22], we can obtain Binet formula of the modified generalized Lucas
octonions. Thus, it can be easily seen that the following relations are correct.

ϑn =
1

(ab)
⌊n−1

2 ⌋

(
α∗
ξ(n)α

⌊n−1
2 ⌋ (α+ d− c)

⌊n
2 ⌋

(α+ d+ 1)

α− β

−
β∗
ξ(n)β

⌊n−1
2 ⌋ (β + d− c)

⌊n
2 ⌋

(β + d+ 1)

α− β

)
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and

ϑn+1 =
1

(ab)
⌊n

2 ⌋

(
α∗
ξ(n+1)α

⌊n
2 ⌋ (α+ d− c)

⌊n+1
2 ⌋

(α+ d+ 1)

α− β

−
β∗
ξ(n+1)β

⌊n
2 ⌋ (β + d− c)

⌊n+1
2 ⌋

(β + d+ 1)

α− β

)

thereby showing that indeed ϑ̃n holds. So, the Binet formula is obtained.

Now, we give the generating function of the modified generalized dual Lucas
octonions.

Theorem 3.2. The generating function for the modified generalized dual Lucas
octonions is

G(t) =
ϑ0 + (ϑ1 − aϑ0) t+ (b− a)R1(t) + (d− c)R2(t)

1− at− ct2

+ε
ϑ1 + (ϑ2 − aϑ1) t+ (b− a)S1(t) + (d− c)S2(t)

1− at− ct2
(3.3)

where

R1(t) = e0tf(t) + e1 (f(t)− U1t) + e2

(
f(t)− U1t

t

)
+ e3

(
f(t)− U1t− U3t

3

t2

)
+e4

(
f(t)− U1t− U3t

3

t3

)
+ e5

(
f(t)− U1t− U3t

3 − U5t
5

t4

)
+e6

(
f(t)− U1t− U3t

3 − U5t
5

t5

)
+ e7

(
f(t)− U1t− U3t

3 − U5t
5 − U7t

7

t6

)
,

R2(t) = e0t
2h(t) + e1t(h(t)− U0) + e2(h(t)− U0) + e3

(
h(t)− U0 − U2t

2

t

)
+e4

(
h(t)− U0 − U2t

2

t2

)
+ e5

(
h(t)− U0 − U2t

2 − U4t
4

t3

)
+e6

(
h(t)− U0 − U2t

2 − U4t
4

t4

)
+e7

(
h(t)− U0 − U2t

2 − U4t
4 − U6t

6

t5

)
,

S1(t) = e0 (f(t)− U1t) + e1

(
f(t)− U1t

t

)
+ e2

(
f(t)− U1t− U3t

3

t2

)
+e3

(
f(t)− U1t− U3t

3

t3

)
+ e4

(
f(t)− U1t− U3t

3 − U5t
5

t4

)
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+e5

(
f(t)− U1t− U3t

3 − U5t
5

t5

)
+ e6

(
f(t)− U1t− U3t

3 − U5t
5 − U7t

7

t6

)
+e7

(
f(t)− U1t− U3t

3 − U5t
5 − U7t

7

t7

)
,

S2(t) = e0t(h(t)− U0) + e1(h(t)− U0) + e2

(
h(t)− U0 − U2t

2

t

)
+e3

(
h(t)− U0 − U2t

2

t2

)
+ e4

(
h(t)− U0 − U2t

2 − U4t
4

t3

)
+e5

(
h(t)− U0 − U2t

2 − U4t
4

t4

)
+ e6

(
h(t)− U0 − U2t

2 − U4t
4 − U6t

6

t5

)
+e7

(
h(t)− U0 − U2t

2 − U4t
4 − U6t

6

t6

)
,

f(t) =
at+ at3

1− (ab+ d+ c) t2 + cdt4

and

h(t) =
U0 + U2t

2 − (ab+ d+ c)U0t
2

1− (ab+ d+ c) t2 + cdt4
.

Proof. The generating function of the modified generalized dual Lucas octonions is
G(t) =

∑∞
n=0 ϑ̃nt

n and using the equations btG(t) and t2G(t).

G(t) = ϑ̃0 + ϑ̃1t+ ...+ ϑ̃nt
n + ... = ϑ̃0 + ϑ̃1t+

∞∑
n=2

ϑ̃nt
n

atG(t) = aϑ̃0t+ aϑ̃1t
2 + ...+ aϑ̃nt

n+1 + ... = aϑ̃0t+

∞∑
n=2

aϑ̃n−1t
n

ct2G(t) = cϑ̃0t
2 + cϑ̃1t

3 + ...+ cϑ̃nt
n+2 + ... =

∞∑
n=2

cϑ̃n−2t
n

and take into account the equation ϑ̃n = ϑn+ εϑn+1 in the above equations, we get

G(t)− atG(t)− ct2G(t) = ϑ0 + εϑ1 + (ϑ1 + εϑ2)t− a(ϑ0 + εϑ1)t

+

∞∑
n=2

(ϑn − aϑn−1 − cϑn−2)t
n

+ε

∞∑
n=2

(ϑn+1 − aϑn − cϑn−1)t
n
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= ϑ0 + (ϑ1 − aϑ0)t+

∞∑
n=2

(ϑn − aϑn−1 − cϑn−2)t
n

+ε(ϑ1 + (ϑ2 − aϑ1)t+

∞∑
n=2

(ϑn+1 − aϑn − cϑn−1)t
n)

and if N = 8 in generating function given in Theorem 3.1. of the modified gen-
eralized Lucas 2k−ions in [22], we can obtain generating function of the modified
generalized Lucas octonions. Thus, it can be easily seen that the following relations
are correct.

∞∑
n=2

(ϑn − aϑn−1 − cϑn−2)t
n = (b− a)R1(t) + (d− c)R2(t),

∞∑
n=2

(ϑn+1 − aϑn − cϑn−1)t
n = (b− a)S1(t) + (d− c)S2(t).

Finally, we can find the generating function of modified generalized dual Lucas
octonions.

Now, we give the Catalan’s identity. Furthermore, we derive the Cassini’s iden-
tity which is the special case of the Catalan’s identity for r = 1.

Theorem 3.3. (Catalan’s identity) For n, r ∈ N0 and r ≤ n, we have the identity

ϑ̃2(n+r)+ξ(i)ϑ̃2(n−r)+ξ(i) − ϑ̃2
2n+ξ(i) =

(−c)ξ(i+1)(α+ d+ 1)(β + d+ 1)

(ab)
2r

(α− β)
2

×

[
α∗
ξ(i)β

∗
ξ(i)

(
(ab)2r+ξ(i+1)(cd)n−ξ(i+1) − (ab)2r+ξ(i+1)(cd)n−ξ(i+1)

(
α+ d

β + d

)r
)

+β∗
ξ(i)α

∗
ξ(i)

(
(ab)2r+ξ(i+1)(cd)n−ξ(i+1) − (ab)2r+ξ(i+1)(cd)n−ξ(i+1)

(
β + d

α+ d

)r
)]

+ε
(−c)ξ(i+1)(α+ d+ 1)(β + d+ 1)

(ab)
2r

(α− β)
2

×

[
α∗
ξ(i)β

∗
ξ(i+1)

(
(ab)2r(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)

−(ab)2r(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)
(
α+ d

β + d

)r
)

+β∗
ξ(i+1)α

∗
ξ(i)

(
(ab)2r(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)

−(ab)2r(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)
(
β + d

α+ d

)r
)
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+α∗
ξ(i+1)β

∗
ξ(i)

(
(ab)2r(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)

−(ab)2r(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)
(
α+ d

β + d

)r
)

+β∗
ξ(i)α

∗
ξ(i+1)

(
(ab)2r(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)

−(ab)2r(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)
(
β + d

α+ d

)r
)]

,

where α∗
ξ(i) and β∗

ξ(i) are defined in Theorem 3.1 and i ∈ {0, 1}.

Proof. From Equation (3.2) and Binet formula for the modified generalized dual
Lucas octonions in Theorem 3.1 the proof is clear.

Corollary 3.1. (Cassini’s identity) For n, r ∈ N0, we have the identity

ϑ̃2(n+1)+ξ(i)ϑ̃2(n−1)+ξ(i) − ϑ̃2
2n+ξ(i) =

(−c)ξ(i+1)(α+ d+ 1)(β + d+ 1)

(ab)
2
(α− β)

2

×

[
α∗
ξ(i)β

∗
ξ(i)

(
(ab)2+ξ(i+1)(cd)n−ξ(i+1) − (ab)2+ξ(i+1)(cd)n−ξ(i+1)

(
α+ d

β + d

))

+β∗
ξ(i)α

∗
ξ(i)

(
(ab)2+ξ(i+1)(cd)n−ξ(i+1) − (ab)2+ξ(i+1)(cd)n−ξ(i+1)

(
β + d

α+ d

))]

+ ε
(−c)ξ(i+1)(α+ d+ 1)(β + d+ 1)

(ab)
2
(α− β)

2

×

[
α∗
ξ(i)β

∗
ξ(i+1)

(
(ab)2(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)

−(ab)2(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)
(
α+ d

β + d

))

+β∗
ξ(i+1)α

∗
ξ(i)

(
(ab)2(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)

−(ab)2(cd)n−ξ(i+1)βξ(i+1)(α+ d− c)ξ(i)
(
β + d

α+ d

))

+α∗
ξ(i+1)β

∗
ξ(i)

(
(ab)2(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)

−(ab)2(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)
(
α+ d

β + d

))



On the Generalized Dual Fibonacci and Lucas Octonions 407

+β∗
ξ(i)α

∗
ξ(i+1)

(
(ab)2(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)

−(ab)2(cd)n−ξ(i+1)αξ(i+1)(β + d− c)ξ(i)
(
β + d

α+ d

))]
,

where α∗
ξ(i) and β∗

ξ(i) are defined in Theorem 3.1 and i ∈ {0, 1}.

Theorem 3.4. ϑ̃n be a modified generalized dual Lucas octonion, ϑ̃n be conjugate
of ϑ̃n, Ũn a modified generalized dual Lucas number. Then the following equation
can be given;

ϑ̃n + ϑ̃n = 2Ũn.

Proof. From Equation (3.1) and Equation (1.21), we get

ϑ̃n + ϑ̃n = (ϑn + εϑn+1) + (ϑn + εϑn+1)

=
(
Ũne0 + Ũn+1e1 + Ũn+2e2 + Ũn+3e3 + Ũn+4e4 + Ũn+5e5 + Ũn+6e6 + Ũn+7e7

)
+
(
Ũne0 − Ũn+1e1 − Ũn+2e2 − Ũn+3e3 − Ũn+4e4 − Ũn+5e5 − Ũn+6e6 − Ũn+7e7

)
= 2Ũn.

Theorem 3.5. Φ̃n be a modified generalized dual Fibonacci octonion and ϑ̃n be a
modified generalized dual Lucas octonion.Then the following equation can be given;

ϑ̃n = Φ̃n−1 + Φ̃n+1.

Proof. From Equation (2.2), Equation (3.1) and Theorem 20 in [7] , we get

Φ̃n−1 + Φ̃n+1

= (Φn−1 + εΦn) + (Φn+1 + εΦn+2)

= (Φn−1 +Φn+1) + ε (Φn +Φn+2)

=

(
7∑

l=0

Qn−1+lel +

7∑
l=0

Qn+1+lel

)
+ ε

(
7∑

l=0

Qn+lel +

7∑
l=0

Qn+2+lel

)

=

(
7∑

l=0

(Qn−1+l +Qn+1+l) el

)
+ ε

(
7∑

l=0

(Qn+l +Qn+2+l) el

)

=

(
(Qn−1 +Qn+1)e0 + (Qn +Qn+2)e1 + ...+ (Qn+6 +Qn+8)e7

)

+ε

(
(Qn +Qn+2)e0 + (Qn+1 +Qn+3)e1 + ...+ (Qn+7 +Qn+9)e7

)
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=
(
Une0 + Un+1e1 + Un+2e2 + ...+ Un+7e7

)
+ε
(
Un+1e0 + Un+2e1 + Un+3e2 + ...+ Un+8e7

)
= ϑn + εϑn+1

= ϑ̃n.

4. Conclusion

The importance of generalized number systems covering various fields such as
mathematics, physics and computer science has increased. For this reason, there
have been many studies on octonions recently [17, 8, 3, 5, 6, 4, 27, 2, 11]. In this
article, we first introduced the concepts of modified generalized dual Fibonacci and
modified generalized dual Lucas octonions. In this way, we offered a broader and
different perspective to the field of octonions. We then obtained the Catalan and
Cassini identities of these new octonions. In addition, we present the generator
functions and Binet formulas of modified generalized dual Fibonacci and modified
generalized dual Lucas octonions. The data obtained as a result of all these studies
we have done has the potential to help discover new connections that can lead to
important conclusions in the field of hypercomplex numbers and algebraic struc-
tures. In addition, this study contributes to the literature as it is a generalization
of many studies in the literature.
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