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Ser. Math. Inform. Vol. 38, No 2 (2023), 379–405

https://doi.org/10.22190/FUMI220603026H

Original Scientific Paper

APPROXIMATING COMMON ELEMENTS OF FIXED POINTS
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OF GENERALIZED MIXED EQUILIBRIUM PROBLEMS
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Abstract. In this paper, we introduce a hybrid iterative method for approximating
common elements of common fixed points of a finite family of Bregman totally quasi-
asymptotically nonexpansive mappings and solutions of a finite system of generalized
mixed equilibrium problems. After that, a strong convergence result for the proposed
iterative method is established and proved in reflexive Banach spaces. By this result,
we get some convergence results for generalized mixed equilibrium problems in reflexive
Banach spaces. Furthermore, we give a numerical example to illustrate the obtained
results.
Keywords: Bregman totally quasi-asymptotically nonexpansive mapping, hybrid iter-
ative method, generalized mixed equilibrium problem, reflexive Banach space.

1. Introduction

Let W be a real reflexive Banach space, U be a nonempty, closed and convex
subset of W , W ∗ be the dual space of W . We denote the value of the function of
u∗ ∈ W ∗ at x ∈ W by ⟨u∗, x⟩. Let F : U × U −→ R be a function, A : U −→ R be
a real valued function and B : U −→ W ∗ be a nonlinear mapping. The generalized

Received June 03, 2022, accepted: May 08, 2023
Communicated by Dijana Mosić
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mixed equilibrium problem (GMEP ) was introduced by Peng and Yao [24] which
is to find u ∈ U such that

F (u, v) + ⟨B(u), v − u⟩+A(v)−A(u) ≥ 0,∀v ∈ U.

The set of solutions of (GMEP ) is denoted by

GMEP (F,A,B) =
{
u ∈ U : F (u, v) + ⟨B(u), v − u⟩+A(v)−A(u) ≥ 0,∀v ∈ U

}
.

In particular, if B ≡ 0, (GMEP ) is reduced to the mixed equilibrium problem
(MEP ) which is to find u ∈ U such that

F (u, v) +A(v) ⩾ A(u),∀v ∈ U.

If A ≡ 0, (GMEP ) is reduced to the generalized equilibrium problem (GEP ) which
is to find u ∈ U such that

F (u, v) + ⟨B(u), v − u⟩ ⩾ 0,∀v ∈ U.

If f ≡ 0, (GMEP ) is reduced to the mixed variational inequality (MV I) of Browder
type which is to find u ∈ U such that

⟨B(u), v − u⟩+A(v) ⩾ A(u),∀v ∈ U.

If A ≡ 0 and B ≡ 0 (GMEP ) is reduced to the equilibrium problem (EP ) which is
to find u ∈ U such that

F (u, v) ⩾ 0,∀v ∈ U.

The set of solutions of (EP ) is denoted by EP (F ) =
{
u ∈ U : F (u, v) ⩾ 0,∀v ∈ U

}
.

In this paper, we consider the following problem:

(1.1) Find u ∈
(⋂

i∈I

F (Hi)
)⋂( ⋂

k∈K

GMEP (Fk, Ak, Bk)
)
,

where I := {1, 2, . . . , N} and K := {1, 2, . . . ,M} for some M,N ∈ N, and for each
i ∈ I, F (Hi) = {u ∈ U : Hi(u) = u} is the set of fixed points of the mapping
Hi : U −→ U , and for each k ∈ K,

GMEP (Fk, Ak, Bk)

= {u ∈ U : Fk(u, v) + ⟨Bk(u), v − u⟩+Ak(v)−Ak(u) ≥ 0,∀v ∈ U}.

In the case I = {1} and K = {1}, the problem (1.1) becomes the following
problem:

(1.2) Find u ∈ F (H) ∩ GMEP (F,A,B).

In recent times, some authors have tried to propose certain iterative methods for
approximating the solutions of the problem (1.1) and the problem (1.2). Recently,
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by using the Bregman distance and the Bregman projection, Darvish [12, 13, 14]
introduced some iterative methods for solving the problem (1.1) where Hi are map-
pings with respect to the Bregman distance in reflexive Banach spaces. After that,
some authors extended and improved the existing convergence results to solutions
of the above problems from Hilbert spaces to reflexive Banach spaces [22, 23, 39].
In 2017, by basing on a parallel iterative method which is proposed by Anh and
Chung [2], Tuyen [36] introduced some parallel iterative methods for a finite family
of Bregman strongly nonexpansive mappings in reflexive Banach spaces. Similarly,
Tuyen [35] introduced some parallel iterative methods for solving a system of gen-
eralized mixed equilibrium problems. One of iterative processes in [35] is defined by

(1.3)



u1 ∈ W,U1 = W

z
(k)
n = ResFk,Ak,Bk

(un)

kn = argmax{Dg(z
(k)
n , un) : k ∈ I}

Un+1 =
{
u ∈ Un : Dg(u, z

(kn)
n ) ≤ Dg(u, un)

}
un+1 = P g

Un+1
(u1) for all n ≥ 2.

Furthermore, there were many methods for constructing new iterative processes
which generalize some previous ones. In 2008, Mainge [19] proposed the inertial
Mann iteration by combining the Mann iterative process and the inertial extrapo-
lation as follows. {

vn = un + ηn(un − un−1)

un+1 = (1− an)vn + anTvn.

After that, some iterative process es with the inertial extrapolation were introduced
[15, 26]. In 2018, Chidume et al. [11] introduced an inertial algorithm for approx-
imating a common fixed point for a countable family of relatively nonexpansive
mappings in uniformly convex and uniformly smooth Banach spaces as follows.

u1, u2 ∈ W,U1 = U2 = W

wn = un + ηn(un − un−1)

vn = J−1
(
(1− µ)Jwn + µJTwn

)
Un+1 =

{
u ∈ Un : ϕ(u, vn) ≤ ϕ(u,wn)

}
un+1 = P g

Un+1
(u1) for all n ≥ 2.

Motivated by the above mentioned works, we introduce a new inertial itera-
tive method for solving the problem (1.1) where Hi is a Bregman totally quasi-
asymptotically nonexpansive mapping for each i ∈ I. After that, we prove a strong
convergence theorem for the proposed iteration in reflexive Banach spaces. In ad-
dition, we give a numerical example to illustrate the obtained results.

2. Preliminaries

Let W be a real reflexive Banach space, U be a nonempty, closed and convex
subset of W , W ∗ be the dual space of W . Let g : W −→ (−∞,+∞] be a proper,
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lower semi-continuous and convex function. We denote by

domg = {u ∈ W : g(u) < +∞}

the domain of g. For any u ∈ int(domg) and v ∈ W , we denote by g′(u, v) the
right-hand derivative of g at u in the direction v, that is

(2.1) g′(u, v) = lim
λ↓0

g(u+ λv)− g(u)

λ
.

The function g is said to be Gâteaux differentiable at u if the limit (2.1) exists
for any v. In this case, the gradient of g at u is the function ∇g(u), which is
defined by ⟨∇g(u), v⟩ = g′(u, v) for all v ∈ W . The function g is said to be Gâteaux
differentiable on int(domg) if it is Gâteaux differentiable at each u ∈ int(domg).
The function g is said to be Fréchet differentiable at u if the limt (2.1) is attained
uniformly in ∥v∥ = 1. The function g is said to be uniformly Fréchet differentiable
on a subset U of W if the limit (2.1) is attained uniformly for u ∈ U and ∥v∥ = 1.

Remark 2.1. ([1], Theorem 1) Let W be a real reflexive Banach and g : W −→
(−∞,+∞] be uniformly Fréchet differentiable on W . Then g is uniformly continuous
on W .

Definition 2.1. ([18], p.509) Let W be a Banach space. The function g : W −→
(−∞,+∞] is said to be bounded on bounded subsets of W if for any bounded subset
U of W , then g(U) is a bounded set.

By combining [7, Proposition 1.1.10] and [7, Proposition 1.1.11], we get the
following result.

Proposition 2.1. ([7], Proposition 1.1.10 and Proposition 1.1.11) Let g : W −→ R
be a Gâteaux differentiable and lower semi-continuous convex function. Then g is
bounded on bounded sets if and only if ∇g is bounded on bounded sets.

Proposition 2.2. ([32], Proposition 1) Let W be a real reflexive Banach space,
and g : W −→ (−∞,+∞] be uniformly Fréchet differentiable and bounded on
bounded subsets of W . Then ∇g is uniformly continuous on bounded subsets of
W from the strong topology of W to the strong topology of W ∗.

Let u ∈ int(domg), the subdifferential g at u ∈ W is defined by

∂g(u) = {u∗ ∈ W ∗ : g(u) + ⟨u∗, v − u⟩ ≤ g(v) for all v ∈ W},

and the Fenchel conjugate of g is the function g∗ : W ∗ −→ (−∞,+∞] defined by

g∗(u∗) = sup{⟨u∗, u⟩ − g(u) : u ∈ W}
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for all u∗ ∈ W ∗. Note that if g : W −→ (−∞,+∞] is a proper, lower semi-
continuous function, then g∗ : W ∗ −→ (−∞,+∞] is a proper weak∗ lower semi-
continuous and convex function, then g∗ : W ∗ −→ (−∞,+∞] is a proper weak∗

lower semi-continuous and convex function. In addition, g(u)+ g∗(u∗) ≤ ⟨u∗, u⟩ for
all (u, u∗) ∈ W × W ∗. Furthermore, it follows from [18] that (u, u∗) ∈ ∂g if and
only if g(u) + g∗(u∗) = ⟨u∗, u⟩.

Next, we recall some basic notions and results concerning a Legendre function
function for our main results. More information on Legendre functions can be found
in the references, for example [28].

Definition 2.2. ([10], Definition 2.2) Let W be a real reflexive Banach and g :
W −→ (−∞,+∞] be a function. Then g is said to be Legendre if the following two
conditions are satisfied.

(1) Int(domg) ̸= Ø, g is Gâteaux differentiable on int(domg) and dom(∇g) =
int(domg).

(2) Int(domg∗) ̸= Ø, g∗ is Gâteaux differentiable on int(domg∗) and dom(∇g∗) =
int(domg∗).

Remark 2.2. ([4]) Let W be a real reflexive Banach space and g : W −→ (−∞,+∞] be
a Legendre function. Then

(1) g is a Legendre function if and only if g∗ is a Legendre function.

(2) (∂f)−1 = ∂g∗.

(3) ∇g = (∇g∗)−1, ran(∇g) = dom(∇g∗) = int(domg∗) and ran(∇g∗) = dom(∇g) =
int(domg), where ran(∇g) denotes the range of ∇g.

(4) g and g∗ are strictly convex on the interior of their respective domains.

Definition 2.3. ([9], p.324) Let W be a real reflexive Banach space, g : W −→
(−∞,+∞] be a Gâteaux differentiable function. Then the function Dg : domg ×
int(domg) −→ [0,+∞), defined by

Dg(u, v) = g(u)− g(v)− ⟨∇g(v), u− v⟩

is said to be the Bregman distance with respect to g.

Notice that the Bregman distance is not a distance in the usual sense of the
term. In general, Dg(u, u) = 0, but Dg(u, v) = 0 may not imply u = v; Dg is
not symmetric and does not satisfy the triangle inequality. By the definition of
the Bregman distance, the Bregman distance has the following properties. Note
that more information on Bregman functions and distances can be found in the
references, for example [29].

(1) For any u, v ∈ int(domg), we have

Dg(u, v) +Dg(v, u) = ⟨∇g(u)−∇g(v), u− v⟩.
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(2) For any u ∈ domg and v, w ∈ int(domg), we have

Dg(u, v) +Dg(v, w)−Dg(u,w) = ⟨∇g(w)−∇g(v), u− v.⟩.

(3) For any u,w ∈ domg and v, z ∈ int(domg), we have

Dg(u, v)−Dg(u, z)−Dg(w, v) +Dg(w, z) = ⟨∇g(z)−∇g(v), u− w⟩.

Let g : W −→ R be a Gâteaux differentiable function. Consider Vg : W×W ∗ −→
[0,+∞] defined by

Vg(u, u
∗) = g(u)− ⟨u∗, u⟩+ g∗(u∗)

for all u ∈ W and u∗ ∈ W ∗. The following result presents some properties of the
function Vg.

Remark 2.3. Let W be a real reflexive Banach space, g : W −→ R be a Gâteaux
differentiable function. Then

(1) ([18], Lemma 3.2) Vg is nonnegative and Vg(u, u
∗) = Dg(u,∇g∗(u∗)) for all u ∈ W

and u∗ ∈ W ∗.

(2) ([18], Lemma 3.3) For any u ∈ W and u∗, v∗ ∈ W ∗, we have

Vg(u, u
∗) + ⟨∇g∗(u∗)− u, v∗⟩ ≤ Vg(u, u

∗ + v∗).

(3) ([17], p.7) Vg is convex in the second variable. Therefore, for all u ∈ W , we have

Dg

(
u,∇g∗

( m∑
n=1

λn∇g(un)
))

≤
m∑

n=1

λnDg(u, un),

where {un}mn=1 ⊂ W and {λn}mn=1 ⊂ [0, 1] with
m∑

n=1

λn = 1.

Definition 2.4. ([7], p.69) Let W be a real reflexive Banach space, g : W −→
(−∞,+∞] is a convex and Gâteaux differentiable function, and U be a nonempty,
closed and convex subset of int(domg). The Bregman projection of u ∈ int(domg)
onto U is the unique vector P g

U (u) ∈ U such that

Dg

(
P g
U (u), u

)
= inf

{
Dg(v, u) : v ∈ U

}
.

Remark 2.4. ([23], Remark 2.2) Let W be a smooth, strictly convex Banach space and
g(u) = ∥u∥2 for all u ∈ W . Then ∇g(u) = 2Ju for all u ∈ W and J is the normalized
duality mapping which is defined by J(u) = {u∗ ∈ W ∗ : ⟨u, u∗⟩ = ∥u∥2 = ∥u∥∗} for all
u ∈ W . Therefore, Bregman distance Dg(u, v) is reduced to ϕ(u, v), where ϕ(u, v) is a
Lyapunov function which is defined by ϕ(u, v) = ∥u∥2−2⟨u, Jv⟩+∥v∥2. Thus, the Bregman
projection P g

U (u) is reduced to the generalized projection ΠU (u) in smooth Banach which
is defined by

ϕ
(
ΠU (u), u

)
= min

{
ϕ(v, u) : v ∈ U}.

If W is a Hilbert space and g(u) = ∥u∥2 for all u ∈ W , then Dg(u, v) = ∥u − v∥2 for
all u, v ∈ W , and J is the identity mapping. Therefore, the Bregman projection P g

U (u) is
reduced to the metric projection from W onto U .
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Next, we recall some basic notions and results concerning a totally convex func-
tion for our main results. More information on totally convex functions can be
found in the references, for example [6].

Definition 2.5. ([33], p.1) Let W be a real reflexive Banach space, g : W −→
(−∞,+∞] be a convex and Gâteaux differentiable function. Then

(1) g is said to be totally convex at u ∈ int(domg) if any t > 0, we have

vg(u, t) := inf
{
Dg(v, u) : v ∈ domg, ∥v − u∥ = t

}
> 0.

(2) g is said to be totally convex if g is totally convex at every point u ∈ int(domg).

(3) g is said to be totally convex on bounded subsets of W if any nonempty bounded
subset B of W and t > 0, we have

vg(B, t) := inf
{
vg(u, t) : u ∈ B ∩ domg

}
> 0.

Proposition 2.3. ([33], Proposition 2.2) Let W be a real reflexive Banach space,
g : W −→ (−∞,+∞] be a convex and Gâteaux differentiable function. Then g
is totally convex at u ∈ int(domg) if and only if any {vn} ⊂ domg such that
lim

n→∞
Dg(vn, u) = 0, we have lim

n→∞
∥vn − u∥ = 0.

Proposition 2.4. ([7], Lemma 2.1.2) Let W be a real reflexive Banach space,
g : W −→ (−∞,+∞] be a convex and Gâteaux differentiable function. Then g is
totally convex on bounded subsets of W if and only if any sequence {un} ⊂ int(domg)
and {vn} ⊂ domg such that {un} is bounded and lim

n→∞
Dg(vn, un) = 0, we have

lim
n→∞

∥vn − un∥ = 0.

Proposition 2.5. ([31], Lemma 1) Let W be a real Banach space, g : W −→
(−∞,+∞] be Gâteaux differentiable and totally convex, u0 ∈ int(domg) and the
sequence {un} ⊂ domg satisfying {Dg(un, u0)} is bounded. Then the sequence {un}
is bounded.

Proposition 2.6. ([34], Proposition 2.3) Let W be a real Banach space, g : W −→ R
be Legendre such that ∇g∗ is bounded on bounded subsets of int(domg∗), u0 ∈ W
and {un} ⊂ W satisfying {Dg(u0, un)} is bounded. Then the sequence {un} is
bounded.

Proposition 2.7. ([8], Corollary 4.4) Let W be a real reflexive Banach space,
g : W −→ (−∞,+∞] be Gâteaux differentiable and totally convex on int(domg), U
be a nonempty, closed and convex subset of int(domg) and u ∈ int(domg). Then
the following statements are equivalent.

(1) w = P g
U (u).
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(2) w is the unique vector such that ⟨∇g(u)−∇g(w), w − v⟩ ≥ 0 for all v ∈ U .

(3) w is the unique vector such that Dg(v, w) +Dg(w, u) ≤ Dg(v, u) for all v ∈ U .

Definition 2.6. ([37], p.203, p.207, p.221) Let W be a Banach space and denote
by S1 = {u ∈ W : ∥u∥ < 1} and Bε = {u ∈ W : ∥u∥ ≤ r} for some r > 0. Then

(1) g : W −→ R is said to be uniformly convex on bounded subsets of W if ρε(t) > 0
for all t, ε > 0, where the function ρε : [0,+∞) −→ [0,+∞) is defined by

ρε(t) = inf
u,v∈Bε,∥u−v∥=t,η∈(0,1)

ηg(u) + (1− η)g(v)− g(ηu+ (1− η)v)

η(1− η)
.

(2) g : W −→ R is said to be uniformly smooth on bounded subsets of W if

lim
t→0

σε(t)
t = 0 for all ε > 0, where the function σε : [0,+∞) −→ [0,+∞) is

defined by

σε(t) = sup
u∈Bε,v∈S1,η∈(0,1)

ηg(u+ (1− η)tv) + (1− η)g(u− ηtv)− g(u)

η(1− η)
.

Note that if g is uniformly convex, then the function ρε is nondecreasing map-
ping. Furthermore, ρε(t) = 0 if and only if t = 0 (see [37, page 203]).

Remark 2.5. ([21], p.6) The function g is totally convex on bounded subsets of W if
and only if g is uniformly convex on bounded subsets of W .

Definition 2.7. ([16], Definition 1.3.7) Let W be a Banach space and g : W −→
(−∞,+∞] be a function. Then

(1) g is said to be coercive if lim
∥u∥→+∞

g(u) = +∞.

(2) g is said to be strongly coercive if lim
∥u∥→+∞

g(u)

∥u∥
= +∞.

Proposition 2.8. ([37], Proposition 3.6.3) Let W be a real reflexive Banach space
and g : W −→ R be a convex function which is strongly coercive. Then the following
statements are equivalent.

(1) g is bounded on bounded subsets of W and uniformly smooth on bounded subsets
of W .

(2) g is Fréchet differentiable and ∇g is uniformly continuous on bounded subsets
of W .

(3) Dom(g∗) = W ∗, g∗ is strongly coercive and uniformly convex on bounded subsets
of W ∗.
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Proposition 2.9. ([37], Proposition 3.6.4) Let W be a real reflexive Banach space
and g : W −→ R be a convex function which is bounded on bounded subsets of W .
Then the following statements are equivalent.

(1) g is strongly coercive and uniformly convex on bounded subsets of W .

(2) Dom(g∗) = W ∗, g∗ is bounded on bounded subsets of W ∗ and uniformly smooth
on bounded subsets of W ∗.

(3) Dom(g∗) = W ∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly continuous
on bounded subsets of W ∗.

Lemma 2.1. ([21], Lemma 2.2) Let W be a Banach space, ε > 0 and g : W −→ R
be convex on W and uniformly convex on bounded subsets of W . Then

g
( m∑

n=1

anun

)
≤

m∑
n=1

ang(un)− aiajρε
(
∥ui − uj∥

)
where i, j ∈ {1, 2, . . . ,m}, un ∈ Bε = {u ∈ W : ∥u∥ ≤ ε} and an ∈ (0, 1) such that
m∑

n=1
an = 1, and the ρε is defined as in Definition 2.6.

By using Lemma 2.1, we get the following result.

Lemma 2.2. Let W be a real reflexive Banach space, g : W −→ R be a Legendre,
strongly coercive function which is uniformly Fréchet differentiable and bounded on
bounded subsets of W . Then

Dg

(
u,∇g∗

( m∑
n=1

an∇g(un)
))

≤
m∑

n=1

anDg(u, un)− aiajρ
∗
ε

(
∥∇g(ui)−∇g(uj)∥

)
,

where i, j ∈ {1, 2, . . . ,m}, ∇g(un) ∈ B∗
ε = {u ∈ W ∗ : ∥u∥ ≤ ε} and an ∈ [0, 1] such

that
m∑

n=1
an = 1, and the ρ∗ε is defined as in Definition 2.6.

We denote by F (H) = {u ∈ W : Hu = u} the set of fixed points of the mapping
H : W −→ W . Next, we recall some notions of the mappings with respect to
the Bregman distance for our main results. More information on various classes of
Bregman nonexpansive operators can be found in the references, for example [20].

Definition 2.8. Let W be a real reflexive Banach space, g : W −→ R be a
Gâteaux differentiable function and H : W −→ W be a mapping. Then

(1) ([5], Definition 2) H is said to be a Bregman quasi-nonexpansive mapping if
F (H) ̸= Ø and for all u ∈ W and p ∈ F (H), we have Dg(p,Hu) ≤ Dg(p, u).
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(2) ([38], Definition 2.10) H is said to be a Bregman quasi-asymptotically nonexpan-
sive mapping if F (H) ̸= Ø and there exists a real sequence {kn} ⊂ [1,∞) with
lim
n→∞

kn = 1 such that Dg(p,H
nu) ≤ knDg(p, u) for all u ∈ W and p ∈ F (H).

(3) ([10], Definition 2.10) H is said to be a Bregman totally quasi-asymptotically
nonexpansive mapping if F (H) ̸= Ø and there exist nonnegative real sequences
{ηn}, {µn} with lim

n→∞
ηn = lim

n→∞
µn = 0 and a strictly increasing continuous

function ξ : [0,∞) −→ [0,∞) with ξ(0) = 0 such that

(2.2) Dg(u,H
nx) ≤ Dg(u, x) + ηnξ(Dg(u, x)) + µn

for all u ∈ W and p ∈ F (H).

(4) ([5], Definition 2) H is said to be a Bregman firmly nonexpansive mapping if
for all u, v ∈ W , we have

⟨∇g(Hu)−∇g(Hv), Hu−Hv⟩ ≤ ⟨∇g(u)−∇g(v), Hu−Hv⟩.

(5) H is said to be closed if any sequence {un} in W such that lim
n→∞

un = u ∈ W

and lim
n→∞

Hun = v ∈ W , we have Hu = v.

(6) ([27], p.3877) H is said to be uniformly asymptotically regular on W if for any
bounded subset U of W , we have lim

n→∞
sup
u∈U

∥Hn+1u−Hnu∥ = 0.

Remark 2.6. (1) Every Bregman quasi-asymptotically nonexpansive mapping is a Breg-
man totally quasi-asymptotically nonexpansive mapping with ξ(t) = t for all t ≥ 0,
ηn = kn − 1 with kn ≥ 1 satisfying lim

n→∞
kn = 1, and µn = 0, but the converse is

not true.

(2) Every Bregman firmly nonexpansive mapping is a Bregman quasi-nonexpansive map-
ping.

Lemma 2.3. ([10], Lemma 2.16) Let W be a real reflexive Banach space, g :
W −→ (−∞,+∞] be a Legendre function which is totally convex on bounded subsets
of W , U be a nonempty, closed and convex subset of int(domg), H : U −→ U be
a closed and Bregman totally quasi-asymptotically nonexpansive mapping. Then
F (H) is a closed and convex subset of U .

For solving the problem (GMEP ), let us assume that F satisfies the following
conditions.

(C1) F (u, u) = 0 for all u ∈ U .

(C2) F is monotone, that is, F (u, v) + F (v, u) ≤ 0 for all u, v ∈ U .

(C3) For all u, v, w ∈ U , we have lim sup
t↓0

F (tw + (1− t)u, v) ≤ F (u, v).
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(C4) For each u ∈ U , v 7−→ F (u, v) is convex and lower semi-continuous.

In order to find the solution of the problem (GMEP ), Darvish [12] intro-
duced the notion of mixed resolvent of F . In addition, this notion was studied
in [13, 14, 35].

Definition 2.9. ([12], Definition 2.4) Let W be a real reflexive Banach space,
U be a nonempty, closed and convex subset of W , g : W −→ (−∞,+∞] be a
Gâteaux differentiable function, F : U × U −→ R be a bifunction satisfying the
conditions (C1) - (C4), A : U −→ R be a lower semi-continuous and convex function,
B : U −→ W ∗ be a continuous monotone mapping. The mixed resolvent of F is
the operator ResgF,A,B : W −→ 2U defined by

ResgF,A,B(u) =
{
w ∈ U : F (w, v) +A(v) + ⟨B(u), v − w⟩

+⟨∇g(w)−∇g(u), v − w⟩ ≥ A(w) for all v ∈ U
}
.

By using a similar idea of [30, Lemma 1], the author of [12, 13] proved that if g :
W −→ (−∞,+∞] is a strongly coercive and Gâteaux differentiable function, then
dom

(
ResgF,A,B

)
= W. We find that the formula of the function ResgF,A,B contains

the term B(u) for all u ∈ W . Since domB = U ⊂ W , the value B(u) does not exist
for all u ∈ W \U . Motivated by this confusion, we revise the formula of the function
ResgF,A,B by replacing the term B(u), u ∈ W by B(w), w ∈ U . This formula has
been stated in [23, Lemm 2.5] as follows

ResgF,A,B(u) =
{
w ∈ U : F (w, v) +A(v) + ⟨B(w), v − w⟩

+⟨∇g(w)−∇g(u), v − w⟩ ≥ A(w) for all v ∈ U
}
.(2.3)

Next, by using the idea of [30, Lemma 1], we also prove that dom
(
ResgF,A,B

)
= W

under some suitable conditions, where the function ResgF,A,B is defined by (2.3).

The following lemma presents some properties of the mixed resolvent ResgF,A,B

which is defined by (2.3). The proof of this lemma is similar to the proof [12,
Lemma 2.8]. Furthermore, these results have been studied in [23, Lemm 2.5].

Lemma 2.4. ([12], Lemma 2.8) Let W be a real reflexive Banach space, U be a
nonempty, closed and convex subset of W , g : W −→ (−∞,+∞] be a Legendre
function and F : U ×U −→ R be a bifunction satisfying the conditions (C1) - (C4).
Then

(1) ResgF,A,B is a single-valued.

(2) ResgF,A,B is a Bregman firmly nonexpansive mapping.
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(3) F
(
ResgF,A,B

)
= GMEP (F,A,B) with

F
(
ResgF,A,B

)
= {u ∈ U : ResgF,A,B(u) = u}.

(4) GMEP (F,A,B) is a closed and convex subset of W .

(5) For all p ∈ F
(
ResgF,A,B

)
and u ∈ W , we have

Dg

(
p,ResgF,A,B(u)

)
+Dg

(
ResgF,A,B(u), u

)
≤ Dg(p, u).

3. Main results

Let Hi : W −→ W be Bregman totally quasi-asymptotically nonexpansive map-

ping with nonnegative real sequences {η(i)n } and {µ(i)
n } satisfying

lim
n→∞

η(i)n = lim
n→∞

µ(i)
n = 0

and strictly increasing continuous functions ξ(i) : [0,∞) −→ [0,∞) with ξ(i)(0) = 0
for each i ∈ I := {1, 2, ..., N} with N ∈ N. Put

ηn = max{η(i)n : i ∈ I}, µn = max{µ(i)
n : i ∈ I}, and ξ(t) = max{ξ(i)(t) : i ∈ I}

for all t ≥ 0. Then lim
n→∞

ηn = lim
n→∞

µn = 0, ξ(0) = 0, and by (2.2), we obtain

Dg(p,H
n
i u) ≤ Dg(p, u) + ηnξ(Dg(p, u)) + µn

for all u ∈ W and p ∈
⋂
i∈I

F (Hi), and for all i ∈ I.

Theorem 3.1. Let W be a real reflexive Banach space, and U is a nonempty,
closed and convex subset of W , and g : W −→ R be Legendre, strongly coer-
cive on W , and g be bounded, totally convex, uniformly Fréchet differentiable on
bounded subsets of W . For each k ∈ K := {1, 2, . . . ,M} with M ∈ N, Fk :
U × U −→ R satisfies the conditions (C1) - (C4), Ak : U −→ R is a lower semi-
continuous and convex function, Bk : U −→ W ∗ is a continuous monotone map-
ping. For each i ∈ I, Hi : W −→ W is a closed, uniformly asymptotically reg-
ular and Bregman totally quasi-asymptotically nonexpansive mapping with non-

negative real sequences {η(i)n } and {µ(i)
n } satisfying lim

n→∞
η
(i)
n = lim

n→∞
µ
(i)
n = 0 and

strictly increasing continuous function ξ(i) : [0,∞) −→ [0,∞) with ξ(i)(0) = 0 such

that F =
( ⋂

i∈I

F (Hi)
)⋂( ⋂

k∈K

GMEP (Fk, Ak, Bk)
)
is nonempty and bounded. Let
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{un} be a sequence generated by

(3.1)



u1, u2 ∈ U,U1 = U2 = U

vn = un + bn(un − un−1), n ≥ 2

wn = ∇g∗
(
an,0∇g(vn) +

N∑
i=1

an,i∇g(Hn
i vn)

)
z
(k)
n ∈ U such that Fk(z

(k)
n , y) +Ak(y) + ⟨Bk(z

(k)
n ), y − z

(k)
n ⟩

+⟨∇g(z
(k)
n )−∇g(wn), y − z

(k)
n ⟩ ≥ Ak(z

(k)
n ),∀y ∈ U.

kn = argmax{Dg(z
(k)
n , vn) : k ∈ K}

Un+1 =
{
u ∈ Un : Dg(u, z

(kn)
n ) ≤ Dg(u, vn) + θn

}
un+1 = P g

Un+1
(u1),

where θn = ηn sup
{
ξ
(
Dg(u, vn)

)
: u ∈ F

}
+ µn, {bn} ⊂ [0, 1], and {an,i} ⊂ [0, 1]

for all i ∈ I such that
N∑
i=0

an,i = 1 and lim inf
n→∞

an,0an,i > 0 for all i ∈ I.

Then the sequence {un} strongly converges to p = P g
F (u1).

Proof. The proof of Theorem 3.1 is divided into following six steps.

Step 1. We claim that P g
F (u1) is well-defined. Indeed, we conclude from Lemma

2.3 and Lemma 2.4 that F (Hi) and GMEP (Fk, Ak, Bk) are closed and convex sets
for all i ∈ I and k ∈ K. This proves that

F =
(⋂

i∈I

F (Hi)
)⋂( ⋂

k∈K

GMEP (Fk, Ak, Bk)
)

is a closed and convex subset of U . Since F is a nonempty set, we find that F
is a nonempty, closed and convex subset of U . This fact ensures that P g

F (u1) is
well-defined.

Step 2. We claim that P g
Un+1

(u1) is well-defined. Indeed, we first claim that
Un is closed and convex for all n ≥ 2 by mathematical induction. Obviously, we
have U2 = U is closed and convex. Now, we assume that Um is closed and convex
for some m ≥ 2. It follows from the definition of Um+1, we get that

Um+1 =
{
u ∈ Um : ⟨∇g(vm), u− vm⟩ − ⟨∇g(z(km)

m ), u− z(km)
m ⟩

≤ g(z(km)
m )− g(vm) + θm

}
.(3.2)

Then by directly checking, we find that Um+1 is convex. Furthermore, we conclude
from (3.2) and the continuity of ∇g(.) that Um+1 is closed. Therefore, we find
that Um+1 is closed and convex, and hence Un is closed and convex for all n ≥ 2.
Combining this with U1 = U2 is closed and convex, we get that Un is closed and
convex for all n ∈ N.

Next, we prove by mathematical induction that F ⊂ Un for all n ≥ 2. Obviously,
we obtain F ⊂ U = U2. Suppose that F ⊂ Um for some m ≥ 2. Now, we prove
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that F ⊂ Um+1. Assume that u ∈ F . It follows from F ⊂ Um that u ∈ Um. By
using Remark 2.3(3) and the fact that Hi is a Bregman totally quasi-asymptotically
nonexpansive mapping, we get

Dg(u,wm) = Dg

(
u,∇g∗

(
am,0∇g(vm) +

∞∑
i=1

am,i∇g(Hm
i vm)

))
≤ am,0Dg(u, vm) +

∞∑
i=1

am,iDg(u,H
m
i vm)

≤ am,0Dg(u, vm) +

∞∑
i=1

am,i[Dg(u, vm) + ηnζ(Dg(u, vm)) + µm]

= am,0Dg(u, vm) + (1− am,0)[Dg(u, vm) + ηnζ(Dg(u, vm)) + µm]

≤ Dg(u, vm) + θm.(3.3)

By definition of the function ResgFk,Ak,Bk
as in (2.3), we get that

z(km)
m = Resgfkm ,Akm ,Bkm

(wm).

From Lemma 2.4, we find that Resgfkm ,Akm ,Bkm
is a Bregman firmly nonexpansive

mapping and hence it is a Bregman quasi-nonexpansive mapping for each km ∈ J .
Then, by Remark 2.6(2), we conclude that Resgfkm ,Akm ,Bkm

is a Bregman quasi

nonexpansive mapping. It follows from (3.3) that

Dg(u, z
(km)
m ) = Dg(u,Res

g
fkm ,Akm ,Bkm

(wm)

≤ Dg(u,wm)

≤ Dg(u, vm) + θm.(3.4)

This leads to u ∈ Um+1. It means F ⊂ Um+1. This imples that F ⊂ Un for all
n ≥ 2. Then, we conclude from U1 = U2 that F ⊂ Un for all n ∈ N. Since F is
nonempty, we conclude that Un is nonempty. By the above, we obtain that Un is
nonempty, closed and convex. Therefore, we find that P g

Un+1
(u1) is well-defined.

Step 3. We claim that {un} is bounded and lim
n→∞

Dg(un, u1) exists. Indeed, we

conclude from un = P g
Un

(u1) and Proposition 2.7 that

(3.5) Dg(v, un) +Dg(un, u1) ≤ Dg(v, u1)

for all v ∈ Un. Suppose u ∈ F . It follows from F ⊂ Un that u ∈ Un. By taking
v = u in (3.5), we get

(3.6) Dg(u, un) +Dg(un, u1) ≤ Dg(u, u1).

This leads toDg(un, u1) ≤ Dg(u, u1)−Dg(u, un) ≤ Dg(u, u1), and hence {Dg(un, u1)}
is bounded. By Proposition 2.5, we find that the sequence {un} is bounded.
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It follows from the definition of Un that un+1 = P g
Un+1

(u1) ∈ Un+1 ⊂ Un. By

choosing v = un+1 in (3.5), we obtain Dg(un+1, un) + Dg(un, u1) ≤ Dg(un+1, u1),
and hence Dg(un, u1) ≤ Dg(un+1, u1)−Dg(un+1, un) ≤ Dg(un+1, u1). This implies
that the sequence {Dg(un, u1)} is nondecreasing. It follows from the boundedness
of the sequence {Dg(un, u1)} that the limit lim

n→∞
Dg(un, u1) exists.

Step 4. We claim that lim
n→∞

un = p ∈ U . Indeed, for m > n, it follows from

the definition of Un that um = P g
Um

(u1) ∈ Um ⊂ Un. Therefore, by taking v = um

in (3.5), we obtain Dg(um, un) +Dg(un, u1) ≤ Dg(um, u1). This implies that

(3.7) 0 ≤ Dg(um, un) ≤ Dg(um, u1)−Dg(un, u1).

Letting the limit (3.7) asm,n → ∞, and using the existence of the limit lim
n→∞

Dg(un, u1),

we find that

(3.8) lim
m,n→∞

Dg(um, un) = 0.

Then, we conclude from (3.8), the boundedness of {un} and Proposition 2.4 that

(3.9) lim
m,n→∞

∥um − un∥ = 0.

This implies that the sequence {un} is a Cauchy sequence in U . SinceW is a Banach
space and U is a closed subset of W , there exists p ∈ U such that lim

n→∞
un = p.

Step 5. We claim that p ∈ F . First, we prove that p ∈
⋂
i∈I

F (Hi). Indeed, by

taking m = n+ 1 in (3.8) and (3.9), we obtain

(3.10) lim
n→∞

Dg(un+1, un) = lim
n→∞

∥un+1 − un∥ = 0.

It follows from un+1 = P g
Un+1

(u1) ∈ Un+1 ⊂ Un that

(3.11) Dg(un+1, z
(kn)
n ) ≤ Dg(un+1, vn) + θn.

We have ∥vn − un∥ = bn∥un − un−1∥. By combining this with (3.10) and the
boundedness of {bn}, we obtain lim

n→∞
∥vn − un∥ = 0. Since lim

n→∞
un = p, we find

that lim
n→∞

vn = p. Therefore, we conclude from lim
n→∞

vn = p and lim
n→∞

un+1 = p that

lim
n→∞

∥un+1 − vn∥ = 0. It follows from the definition of Dg that

|Dg(un+1, vn)| = |g(un+1)− g(vn)− ⟨∇g(vn), un+1 − vn⟩|
≤ |g(un+1)− g(vn)|+ ∥un+1 − vn∥.∥∇g(vn)∥.(3.12)

Furthermore, by Remark 2.1, we obtain that g is uniformly continuous on W . By
using Proposition 2.1, we find that ∇g is bounded on bounded subsets of W . Then,
by combining this with the boundedness of {vn}, lim

n→∞
∥un+1 − vn∥ = 0 and (3.12),

we find that

(3.13) lim
n→∞

Dg(un+1, vn) = 0.
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Suppose that u ∈ F . By the definition of Dg, we have

|Dg(u, vn)| = |g(u)− g(vn)− ⟨∇g(vn), u− vn⟩|
≤ |g(u)− g(vn)|+ ∥u− vn∥.∥∇g(vn)∥
≤ |g(u)|+ |g(vn)|+ (∥u∥+ ∥vn∥).∥∇g(vn)∥.(3.14)

Then, we conclude from (3.14), the boundedness of F and {vn}, the uniform conti-
nuity of g and the boundedness on bounded subsets of∇g that |Dg(u, vn)| < ∞, and
hence the sequence {Dg(u, vn)} is bounded. It follows from lim

n→∞
ηn = lim

n→∞
µn = 0

that
lim
n→∞

θn = lim
n→∞

(
ηn sup

{
ξ
(
Dg(u, vn)

)
: u ∈ F

}
+ µn

)
= 0.

By combining (3.11), (3.13) and lim
n→∞

θn = 0, we find that lim
n→∞

Dg(un+1, z
(kn)
n ) = 0.

By using the same proof as in that of (3.4), we conclude that

(3.15) Dg(u, z
(kn)
n ) ≤ Dg(u, vn) + θn.

Then, we conclude from the boundedness of {Dg(u, vn)}, {θn} and (3.15) that

the sequence {Dg(u, z
(kn)
n )} is bounded. By Proposition 2.9, we find that g∗ is

bounded on bounded subsets of W ∗.This implies that ∇g∗ is bounded on bounded

subsets of W ∗. By combining this with the boundedness of {Dg(u, z
(kn)
n )} and using

Proposition 2.6, we find that the sequence {z(kn)
n } is bounded. By combining this

with lim
n→∞

Dg(un+1, z
(kn)
n ) = 0, and using Proposition 2.4, we have

lim
n→∞

∥un+1 − z(kn)
n ∥ = 0.

Then, it follows from (3.10) and lim
n→∞

∥un+1 − vn∥ = 0 that

lim
n→∞

∥un − z(kn)
n ∥ = lim

n→∞
∥vn − z(kn)

n ∥ = 0.

Since ∇g is uniformly continuous on bounded subsets, we get that

(3.16) lim
n→∞

∥∇g(vn)−∇g(z(kn)
n )∥ = 0.

Furthermore, by using similar arguments as in the proof of (3.13), from

lim
n→∞

∥z(kn)
n − vn∥ = 0,

we obtain

(3.17) lim
n→∞

Dg(z
(kn)
n , vn) = 0.

By the definition of kn, we find that lim
n→∞

Dg(z
(k)
n , vn) = 0 for each k ∈ I. By

combining this with the boundedness of {vn} and using Proposition 2.4, we get

that lim
n→∞

∥z(k)n − vn∥ = 0. Then, it follows from lim
n→∞

vn = p that lim
n→∞

z
(k)
n = p.
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Next, by the definition of Resgfk,Ak,Bk
, we obtain z

(kn)
n = Resgfkn ,Akn ,Bkn

(wn).

Then, by Lemma 2.4(3)&(5), we find that Dg(u, z
(kn)
n )+Dg(z

(kn)
n , wn) ≤ Dg(u,wn).

This leads to

(3.18) Dg(z
(kn)
n , wn) ≤ Dg(u,wn)−Dg(u, z

(kn)
n ).

By using the same proof as in that of (3.3), we obtain

(3.19) Dg(u,wn) ≤ Dg(u, vn) + θn.

It follows from (3.18) and (3.19) that

(3.20) Dg(z
(kn)
n , wn) ≤ Dg(u, vn)−Dg(u, z

(kn)
n ) + θn.

From the property of the Bregman distance Dg, we obtain

|Dg(u, z
(kn)
n )−Dg(u, vn)|

= | −Dg(z
(kn)
n , vn) + ⟨∇g(vn)−∇g(z(kn)

n ), u− z(kn)
n ⟩|

≤ |Dg(z
(kn)
n , vn)|+ ∥u− z(kn)

n ∥.∥∇g(vn)−∇g(z(kn)
n )∥.(3.21)

Therefore, we conclude from (3.16), (3.17), (3.21) that

lim
n→∞

|Dg(u, z
(kn)
n )−Dg(u, vn)| = 0.

By using (3.20) and lim
n→∞

θn = 0, we find that lim
n→∞

Dg(z
(kn)
n , wn) = 0. Moreover,

by using (3.19) and the boundedness of {Dg(u, vn)}, we get that {Dg(u,wn)} is
bounded. It follows from the boundedness on bounded subsets of ∇g∗ and Propo-
sition 2.6 that {wn} is bounded. Then, we conclude from Proposition 2.4 and

lim
n→∞

Dg(z
(kn)
n , wn) = 0 that lim

n→∞
∥z(kn)

n −wn∥ = 0. Then, by lim
n→∞

∥z(kn)
n −vn∥ = 0,

we have lim
n→∞

∥wn − vn∥ = 0. By using similar arguments as in the proof of (3.13),

we get that lim
n→∞

Dg(wn, vn) = 0. By combining this with the boundedness of {vn}
and using Proposition 2.4, we obtain that lim

n→∞
∥wn − vn∥ = 0. It follows from the

uniform continuous on bounded subsets of ∇g that

(3.22) lim
n→∞

∥∇g(wn)−∇g(vn)∥ = 0.

Since Hi is a Bregman totally quasi-asymptotically nonexpansive mapping, we ob-
tain

Dg(u,H
n
i vn) ≤ Dg(u, vn) + ηnξ(Dg(u, vn)) + µn.

Then, it follows from the boundedness of {Dg(u, vn)} that {Dg(u,H
n
i vn)} is bounded.

By using the boundedness on bounded subsets of ∇g∗ and Proposition 2.6, we
find that {Hn

i vn} is bounded. Then, we conclude from the boundedness of {vn},
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{Hn
i vn} and the uniform continuity on bounded subsets of ∇g that {∇g(vn)} and

{∇g(Hn
i vn)} are bounded in W ∗. Put

ε = max{sup
n∈N

∥∇g(vn)∥, sup
n∈N

∥∇g(Hn
i vn)∥}.

This leads to ∇g(vn),∇g(Hn
i vn) ∈ B∗

ε . Therefore, by Lemma 2.2, we obtain

Dg(u,wn) = Dg

(
u,∇g∗

(
an∇g(vn) + (1− an)∇g(Hn

i vn)
))

≤ anDg(u, vn) + (1− an)Dg(u,H
n
i vn)

−an(1− an)ρ
∗
ε(∥∇g(vn)−∇g(Hn

i vn)∥)
≤ anDg(u, vn) + (1− an)[Dg(u, vn) + ηnξ(Dg(u, vn)) + µn]

−an(1− an)ρ
∗
ε(∥∇g(vn)−∇g(Hn

i vn)∥)
≤ Dg(u, vn) + θn − an(1− an)ρ

∗
ε(∥∇g(vn)−∇g(Hn

i vn)∥).

This proves that

(3.23) an(1− an)ρ
∗
ε(∥∇g(vn)−∇g(Hn

i vn)∥) ≤ Dg(u, vn)−Dg(u,wn) + θn.

By the property of the Bregman distance Dg, we have

|Dg(u,wn)−Dg(u, vn)| = | −Dg(wn, vn) + ⟨∇g(vn)−∇g(wn), u− wn⟩|
≤ |Dg(wn, vn)|+ ∥u− wn∥.∥∇g(vn)−∇g(wn)∥.(3.24)

Therefore, we conclude from lim
n→∞

Dg(wn, vn) = 0, (3.22) and (3.24) that

lim
n→∞

|Dg(u,wn)−Dg(u, vn)| = 0.

It follows from (3.23) and lim inf
n→∞

an(1− an) > 0 that

lim
n→∞

ρ∗ε(∥∇g(vn)−∇g(Hn
i vn)∥) = 0.

Now, we claim that lim
n→∞

∥∇g(vn)−∇g(Hn
i vn)∥ = 0. Suppose the assertion is false.

Then we find that there exist ε > 0 and a subsequence {k(n)} of n such that

∥∇g(vk(n))−∇g(H
k(n)
i vk(n))∥ ≥ ε.

By using the nondecreasing property of ρ∗ε, we find that

ρ∗ε(∥∇g(vk(n))−∇g(H
k(n)
i vk(n))∥) ≥ ρ∗ε(ε)

for all n ∈ N. By letting the limit as n → ∞, we have 0 ≥ ρ∗ε(ε). This contradicts the
fact that ρ∗ε(ε) > 0. Hence, lim

n→∞
∥∇g(vn) −∇g(Hn

i vn)∥ = 0. Since ∇g∗ = (∇g)−1

is uniformly continuous on bounded subsets, we have lim
n→∞

∥vn − Hn
i vn∥ = 0. It

follows from lim
n→∞

vn = p that lim
n→∞

Hn
i vn = p. We also have

(3.25) ∥Hn+1
i vn − p∥ ≤ ∥Hn+1

i vn −Hn
i vn∥+ ∥Hn

i vn − p∥.
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Therefore, since Hi is uniformly asymptotically regular and using (3.25), we find
that lim

n→∞
Hn+1

i vn = p. This proves that lim
n→∞

Hi(H
n
i vn) = p. By using the closed-

ness of Hi, we find that Hip = p, and hence p ∈
⋂
i∈I

F (Hi).

Next, we claim that p ∈
⋂

k∈K

GMEP (Fk, Ak, Bk). Indeed, for each k ∈ K =

{1, 2, . . . ,M}, we have z
(k)
n = ResgFk,Ak,Bk

(wn). It follows from (2.3) that

Fk(z
(k)
n , y)+Ak(y)+⟨Bk(z

(k)
n ), y−z(k)n ⟩+⟨∇g(z(k)n )−∇g(wn), y−z(k)n ⟩ ≥ Ak(z

(k)
n ),∀v ∈ U.

By using the condition (C2), we get

⟨Bk(z
(k)
n ), v − z(k)n ⟩+ ⟨∇g(z(k)n )−∇g(wn), v − z(k)n ⟩+Ak(v)−Ak(z

(k)
n )(3.26)

≥ −Fk(z
(k)
n , v) ≥ Fk(v, z

(k)
n ).

Now, by lim
n→∞

∥vn−wn∥ = 0 and lim
n→∞

vn = p, we find that lim
n→∞

wn = p. Then, from

lim
n→∞

∥z(k)n − vn∥ = 0 and lim
n→∞

∥vn−wn∥ = 0, we conclude that lim
n→∞

∥z(k)n − wn∥ = 0.

Since ∇g is uniformly continuous on bounded subsets, we obtain

lim
n→∞

∥∇g(z(k)n )−∇g(wn)∥ = 0.

This implies that

(3.27) lim
n→∞

|⟨∇g(z(k)n )−∇g(wn), v − z(k)n ⟩| = 0.

Since Ak is lower semi-continuous and lim
n→∞

z
(k)
n = p, we find that

(3.28) lim inf
n→∞

Ak(z
(k)
n ) ≥ Ak(p).

By the condition (C4), we get that Fk is lower semi-continuous in the second vari-

able. It follows from lim
n→∞

z
(k)
n = p that

(3.29) lim inf
n→∞

Fk(v, z
(k)
n ) ≥ Fk(v, p).

We also have

|⟨Bk(z
(k)
n ), v − z(k)n ⟩ − ⟨Bk(p), v − p⟩|(3.30)

= |⟨Bk(z
(k)
n )−Bk(p), v⟩ − ⟨Bk(z

(k)
n ), z(k)n ⟩+ ⟨Bk(p), p⟩|

≤ |⟨Bk(z
(k)
n )−Bk(p), v⟩|+ |⟨Bk(z

(k)
n ), z(k)n − p⟩|+ |⟨Bk(z

(k)
n )−Bk(p), p⟩|

≤ |⟨Bk(z
(k)
n )−Bk(p), v⟩|+ ∥Bk(z

(k)
n )∥.∥z(k)n − p∥+ |⟨Bk(z

(k)
n )−Bk(p), p⟩|.

It follows from (3.30), the continuity of Bk, Bk(z
(k)
n ) ∈ W ∗ and lim

n→∞
z
(k)
n = p that

(3.31) lim
n→∞

⟨Bk(z
(k)
n ), v − z(k)n ⟩ = ⟨Bk(p), v − p⟩.
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Then, by (3.26), (3.27), (3.28), (3.29) and (3.31), we find that

(3.32) ⟨Bk(p), v − p⟩+Ak(v)−Ak(p) ≥ Fk(v, p)

for all v ∈ U . For all t ∈ (0, 1], put vt = tv + (1 − t)p. Due to y, p ∈ U and U is
convex, we have vt ∈ U . Then, by replacing y by vt in (3.32), we conclude that

(3.33) Fk(vt, p) + ⟨Bk(p), p− vt⟩+Ak(p)−Ak(vt) ≤ 0.

By using the condition (C1), the convexity in the second variable of Fk and the
convexity of Ak and (3.33), we conclude that

0 = Fk(vt, vt) = Fk(vt, vt) + ⟨Bk(p), vt − vt⟩+Ak(vt)−Ak(vt)

≤ tFk(vt, y) + (1− t)Fk(vt, p) + t⟨Bk(p), y − vt⟩
+(1− t)⟨Bk(p), p− vt⟩+ tAk(y) + (1− t)Ak(p)−Ak(vt)

= t
[
Fk(vt, v) + ⟨Bk(p), v − vt⟩+Ak(v)−Ak(vt)

]
+(1− t)

[
Fk(vt, p) + ⟨Bk(p), p− vt⟩+Ak(p)−Ak(vt)

]
≤ t

[
Fk(vt, y) + ⟨Bk(p), v − vt⟩+Ak(v)−Ak(vt)

]
.(3.34)

It follows from (3.34) and t > 0 that

(3.35) Fk(vt, v) + ⟨Bk(p), v − vt⟩+Ak(v)−Ak(vt) ≥ 0.

Therefore, by the condition (C3), we have

(3.36) lim sup
t↓0

Fk(vt, v) = lim sup
t↓0

Fk(tv + (1− t)p, v) ≤ Fk(p, v).

Since Ak is lower semi-continuous, we get that −Ak is upper semi-continuous. From
lim
t→0

vt = lim
t→0

(tv + (1− t)p) = p, we find that

(3.37) lim sup
t→0

[−Ak(vt)] ≤ −Ak(p).

By (3.35), (3.36), (3.37) and lim
t→0

vt = p, we find that

Fk(p, v) + ⟨Bk(p), v − p⟩+Ak(v)−Ak(p) ≥ 0.

This implies that p ∈
⋂

k∈K

GMEP (Fk, Ak, Bk). By the above, we conclude that

p ∈ F =
(⋂

i∈I

F (Hi)
)⋂( ⋂

k∈K

GMEP (Fk, Ak, Bk)
)
.

Step 6. We claim that p = P g
F (u1). Indeed, we put u = P g

F (u1). We will prove
that u = p. By un = P g

Un
(u1) and Definition 2.4, we find that

(3.38) Dg(un, u1) ≤ Dg(v, u1)
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for all v ∈ Un. It follows u = P g
F (u1) ∈ F and F ⊂ Un that u ∈ Un. Therefore, by

choosing v = u in (3.38), we conclude that

(3.39) Dg(un, u1) ≤ Dg(u, u1)

We also have

|Dg(un, u1)−Dg(p, u1)| = |g(un)− g(p) + ⟨∇g(u1), p− un⟩|
≤ |g(un)− g(p)|+ ∥∇g(u1)∥.∥p− un∥.(3.40)

It follows from (3.40) as n −→ ∞, lim
n→∞

un = p, the uniform continuity of g and the

boundedness on bounded subsets of ∇g that lim
n→∞

Dg(un, u1) = Dg(p, u1). There-

fore, we conclude from (3.39) that Dg(p, u1) ≤ Dg(u, u1). By definition of u and
p ∈ F , we conclude that p = u = P g

F (u1).

In Theorem 3.1, by choosing I = {1}, H1 = H, Fk = F , Ak = A and Bk = B
for all k ∈ K = {1, 2, . . . ,M}, we get the following result.

Corollary 3.1. Let W be a real reflexive Banach space, and U is a nonempty,
closed and convex subset of W , and g : W −→ R is Legendre, strongly coercive on
W , and g is bounded, totally convex, uniformly Fréchet differentiable on bounded
subsets of W . Suppose that F : U × U −→ R satisfies the conditions (C1) - (C4),
A : U −→ R is a lower semi-continuous and convex function, B : U −→ W ∗ is a
continuous monotone mapping. Let H : W −→ W be a closed, uniformly asymptot-
ically regular and Bregman totally quasi-asymptotically nonexpansive mapping with
nonnegative real sequences {ηn} and {µn} satisfying lim

n→∞
ηn = lim

n→∞
µn = 0 and

strictly increasing continuous function ξ : [0,∞) −→ [0,∞) with ξ(0) = 0 such that
F = F (H) ∩ GMEP (F,A,B) is nonempty and bounded. Let {un} be a sequence
generated by 

u1, u2 ∈ U,U1 = U2 = U

vn = un + bn(un − un−1) for all n ≥ 2

wn = ∇g∗
(
an∇g(vn) + (1− an)∇g(Hnvn)

)
zn = ResgF,A,B(wn)

Un+1 =
{
u ∈ Un : Dg(u, zn) ≤ Dg(u, vn) + θn

}
un+1 = P g

Un+1
(u1),

where θn = ηn sup
{
ξ
(
Dg(u, vn)

)
: u ∈ F

}
+ µn, {bn} ⊂ [0, 1], and {an} ⊂ [0, 1]

such that lim inf
n→∞

an(1− an) > 0, and the function ResgF,A,B is defined as in (2.3).

Then the sequence {un} strongly converges to p = P g
F (u1).

Remark 3.1. (1) Since every Bregman quasi-asymptotically nonexpansive mapping is
a Bregman totally quasi-asymptotically nonexpansive mapping with ξ(t) = t for all
t ≥ 0, ηn = kn − 1 with kn ≥ 1 satisfying lim

n→∞
kn = 1, and µn = 0, the conclusions

of Theorem 3.1 and Corollary 3.1 hold when Hi is a Bregman quasi-asymptotically
nonexpansive mapping for all i ∈ I and θn = (kn − 1) sup

{
Dg(u, vn) : u ∈ F

}
.
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(2) The conclusions of Theorem 3.1 and Corollary 3.1 are satisfied when (GMEP ) is
replaced by (GEP ), (GMP ), (MV I) and (EP )

In Theorem 3.1 and Corollary 3.1, when Hi is an identity mapping for all i ∈ I,
we obtain the following two corollaries, respectively. Note that the iterative process
(3.41) is an improvement of the the iterative process (1.3) in the sense of adding
the inertial extrapolation. Therefore, the following result is a generalization of the
main result in [35].

Corollary 3.2. Suppose that W is a real reflexive Banach space, and U is a
nonempty, closed and convex subset of W , and g : W −→ R is Legendre, strongly
coercive on W , and g is bounded, totally convex, uniformly Fréchet differentiable
on bounded subsets of W . For each k ∈ K := {1, 2, . . . ,M} with M ∈ N, Fk :
U × U −→ R satisfies the conditions (C1) - (C4), Ak : U −→ R is a lower semi-
continuous and convex function, Bk : U −→ W ∗ is a continuous monotone mapping
such that F1 =

⋂
k∈K

GMEP (Fk, Ak, Bk) is nonempty and bounded. Let {un} be a

sequence generated by

(3.41)



u1, u2 ∈ U,U1 = U2 = U

vn = un + bn(un − un−1) for all n ≥ 2

z
(k)
n = ResgFk,Ak,Bk

(vn)

kn = argmax{Dg(z
(k)
n , vn) : k ∈ K}

Un+1 =
{
u ∈ Un : Dg(u, z

(kn)
n ) ≤ Dg(u, vn)

}
un+1 = P g

Un+1
(u1),

where {bn} ⊂ [0, 1] and the function ResgFk,Ak,Bk
is defined as in (2.3). Then the

sequence {un} strongly converges to p = P g
F1

(u1).

Corollary 3.3. Let W be a real reflexive Banach space, and U is a nonempty,
closed and convex subset of W , and g : W −→ R be Legendre, strongly coercive on
W , and g be bounded, totally convex, uniformly Fréchet differentiable on bounded
subsets of W . Assume that F : U × U −→ R satisfies the conditions (C1) - (C4),
A : U −→ R is a lower semi-continuous and convex function, B : U −→ W ∗ is a
continuous monotone mapping such that F2 = GMEP (F,A,B) is nonempty and
bounded. Let {un} be a sequence generated by

u1, u2 ∈ U,U1 = U2 = U

vn = un + bn(un − un−1) for all n ≥ 2

zn = ResgF,A,B(vn)

Un+1 =
{
u ∈ Un : Dg(u, zn) ≤ Dg(u, vn)

}
un+1 = P g

Un+1
(u1),

where {bn} ⊂ [0, 1] and the function ResgF,A,B is defined as in (2.3). Then the

sequence {un} strongly converges to p = P g
F2

(u1).
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Finally, we give a numerical example to illustrate for the convergence of the
mentioned iterations.

Example 3.1. Let W = R, U = [0, 1], g(u) = u4, Hi(u) =
u

2i
for all u ∈ W and i = 1, 2.

Let Bk(u) = ku, Ak(u) = ku2 and Fk(u, v) = k(−u2 + uv) for all u, v ∈ U and k = 1, 2.
Then

(1) By directly calculating, we have ∇g(u) = 4u3 for all u ∈ W , g∗(w) = 3
3

√(w
4

)4

and

∇g∗(w) =
3

√
w

4
for all w ∈ W .

(2) For all u, v ∈ W , we have

Dg(u, v) = F (u)− F (v)− ⟨∇g(v), u− v⟩
= u4 − v4 − 4v3(u− v) = u4 + 3v4 − 4uv3.

(3) For each i = 1, 2, we obtain F (Hi) = {0}. Therefore, for all p ∈ F (Hi) and u ∈ U , we
find that

Dg(p,H
n
i u) = 3(Hn

i u)
4 = 3

( u

2ni

)4

≤ 3(u)4 = Dg(0, u) = Dg(p, u).

This proves that Hi is a Bregman totally quasi-asymptotically nonexpansive mapping
with η

(i)
n = µ

(i)
n = 0 for all n ∈ N.

(4) By directly checking, for each k = 1, 2, we find that Fk satisfies the conditions (C1) -
(C4), and Ak is a lower semi-continuous and convex function, and Bk is a continuous
monotone mapping.

(5) Now, we will find the formula of ResgFk,Ak,Bk
as in (2.3). Indeed, w = ResgFk,Ak,Bk

(u)
for all u ∈ W if and only if

(3.42) Fk(w, v) +Ak(v) + ⟨Bk(w), v − w⟩+ ⟨∇g(w)−∇g(u), v − w⟩ ≥ Ak(w)

for all v ∈ U . By substituting Fk, Ak, Bk into (3.42) and by directly calculating, we
find that

kv2 + (2kw + 4w3 − 4u3)v + 4u3w − 4w4 − 3kw2 ≥ 0.

Put h(v) = kv2 + (2kw + 4w3 − 4u3)v + 4u3w − 4w4 − 3kw2. We have

∆ = (4kw + 4w3 − 4u3)2.

We consider the following two cases.

Case 1. ∆ > 0. Then the quadratic equation h(v) = 0 have two solutions as follows.

v1 = w and v2 =
4u3 − 4w3 − 3kw

k
.

In oder to h(v) ≥ 0 for all v ∈ U , we have the following cases.

Case 1.1. v1 = 1 and v2 > v1. Then w = v1 = 1, and v2 =
4u3 − 3k − 4

k
> 1 and

hence u > 3
√
k + 1.

Case 1.2. v1 = 0 and v2 < v1. Then w = v1 = 0, and v2 =
4u3

k
< 0 and hence u < 0.
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Case 2. ∆ ≤ 0. Then kw + w3 = u3 and h(v) ≥ 0 for all v ∈ U . Note that

kw+w3 = u3 if and only if w =

(
3
√√

81u6 + 12k3 + 9u3
)2

− 3
√
12k

3
√
18

3
√√

81u6 + 12k3 + 9u3
. Since w ∈ U , we

have 0 ≤ kw + w3 = u3 ≤ k + 1 and hence 0 ≤ u ≤ 3
√
k + 1. Therefore,

ResgFk,Ak,Bk
(u) = w =



0 if u < 0(
3
√√

81u6 + 12k3 + 9u3
)2

− 3
√
12k

3
√
18

3
√√

81u6 + 12k3 + 9u3
if 0 ≤ u ≤ 3

√
k + 1

1 if u > 3
√
k + 1.

By the above, all assumptions in Theorem 3.1 are satisfied with the given functions

Iteration (3.41) Iteration (3.41) Iteration (3.41)

n Iteration (1.3) with bn =
1

n
with bn =

1

2
with bn =

9n+ 2

10n+ 2
1 1.000000 1.000000 1.000000 1.000000
2 0.792136 0.800000 0.800000 0.800000
3 0.606144 0.530425 0.530425 0.121742
4 0.456147 0.330499 0.296756 0.121742
5 0.342213 0.210390 0.134941 0.091306
6 0.256668 0.139776 0.040525 0.047862
7 0.192502 0.096005 0.040525 0.006481
8 0.144376 0.067314 0.030394 0.006481
...

...
...

...
...

17 0.010840 0.003690 0.000087 0.000014
18 0.008130 0.002708 0.000018 0.000007
19 0.006097 0.001990 0.000018 0.000001
20 0.004573 0.001464 0.000013 0.000001
21 0.003430 0.001078 0.000008 0.
22 0.002572 0.000795 0.000004 0.
23 0.001929 0.000586 0.000001 0.
24 0.001447 0.000433 0. 0.
...

...
...

...
...

45 0.000004 0.000001 0. 0.
46 0.000003 0. 0. 0.
...

...
...

...
...

49 0.000001 0. 0. 0.
50 0. 0. 0. 0.

Table 3.1: Number of iterations of the iterative processes (1.3) and (3.41).
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Fk, Ak, Bk, Ti. Therefore, by Theorem 3.1, the sequence {un} which is defined by (3.1)

converges to 0 ∈
( 2⋂

i=1

F (Hi)
)⋂( 2⋂

k=1

GMEP (Fk, Ak, Bk)
)
.

Now, we compare the rate of convergence of the iterative process (1.3) and the iterative
process (3.41) to 0 which is a solution of the system of (GMEP ). Numerical results of
the mentioned iterative process es with the initial point u1 = 1, u2 = 0.8 and the different
choices of bn are presented in Table 3.1.

The above table shows that for given mappings, the iterative process (3.41) has a
better convergence rate and requires a smaller number of iterations than the iterative
process (1.3).
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