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and Şerife Nur Bozdağ1
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Abstract. In this paper, we give some classifications about lightlike hypersurfaces of
almost Norden Golden semi-Riemannian manifolds. We show that, there is no radical
anti-invariant lightlike hypersurfaces of an almost Norden Golden semi-Riemannian
manifold. Also, we define invariant and screen semi-invariant lightlike hypersurface of
almost Norden Golden semi-Riemannian manifolds and give examples.
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1. Introduction

Manifolds are used as a tool to solve many problems in some fields of natural
and engineering sciences. It has also become a popular topic as it contributes to
the development of these fields and finds new application areas.

The biggest shortcoming in differential geometry is that very little isometrics
have been studied, except for positive definite manifolds. This is an important
shortcoming, especially considering the applications in engineering and physics. In-
deed, isometric immersions and Riemannian submersions are the most studied sub-
jects, and their degeneracy cases have been less studied due to the difficulty posed
by the metric. However, it is only possible to obtain more general and powerful
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results in terms of both mathematics and applications by switching from the non-
degenaracy (or positive definiteness) condition to the more arbitrary degenaracy
case. The degenerate version of isometric immersion has been studied by a large
group of researchers under the name of lightlike submanifold, [1, 2, 3, 12, 14, 15].

Let M be a real m-dimensional differentiable manifold and g be the symmetric
tensor field of order (0, 2) on this manifold. If the index of the bilinear form gx is the
same for every point x of the manifold and gx is non-degenerate on the tangent space
of TxM , then the bilinear form is called a semi-Riemannian (briefly, s-Riemannian)
metric and in this case the manifold is called a s-Riemannian manifold. When
the index of the metric is zero (one), the manifold is called a Riemann (Lorentz)
manifold. These manifolds are considered in mathematical physics and especially in
the configuration space of space-time models. On the other hand, the geometries of
some manifolds with differentiable geometric structures are quite interesting. These
manifolds and the maps between them have been extensively studied in differential
geometry.

The golden ratio, which has been started to be studied in modern physics in re-
cent years [5, 6], also has an important role in nuclear physics [7]. A close connection
has emerged between the golden ratio and the transition from Newtonian physics to
relativistic mechanics. Indeed, the golden rectangle is used to obtain the expansion
of time intervals and the Lorentz contraction of lengths in the special theory of
relativity [8]. At the same time, the golden ratio produces interesting and impor-
tant results in Kantor space-time, conformal field theory, topology of 4−manifolds,
mathematical probability theory, Kantor fractal theory and El Naschie’s field the-
ory [9, 10, 13]. Almost complex golden structure was introduced by Crasmareanu
and Hretcanu in [11]. This structure is the analogue of almost golden structure in
the complex case. In [8], the authors also studied almost complex golden structure
which admits a compatible s-Riemannian metric. Compatible metrics on almost
complex golden manifolds are introduced in the same way that Norden metrics on
almost complex manifolds. As well as the authors [8] studied holomorphic Norden
golden manifolds, which are almost Norden golden manifolds such that the Levi-
Civita connection of the s-Riemannian metric parallelizes the almost complex golden
structure. They proved that (M,Φ, g) is a holomorphic Norden Golden manifold if
and only if the Levi-Civita connection of g parallelizes the almost complex struc-
ture JΦ, i.e., (M,JΦ, g) is a Kaehler Norden manifold (see [8] - Prop. 4.3). After
the studies mentioned, the concept of adapted coupling in almost Norden Golden
manifolds was introduced by Etoya et al. [4].

This paper is arranged as follows. First, we begin with preliminaries and basic
facts related to lightlike hypersurfaces of a s-Riemannian manifold. Afterwards,
we introduce lightlike hypersurfaces of an almost Norden Golden (briefly, ANG)
s-Riemannian manifold and study two special types, namely invariant and screen
semi-invariant lightlike hypersurfaces, in ANG s-Riemannian manifolds. We inves-
tigate several properties and derive some geometric results of these types hyper-
surfaces. We also present an example. Finally, we study screen conformal semi-
invariant lightlike hypersurfaces of s-Riemann manifold.
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2. Preliminaries

Let M̃ be a manifold and I be a identity tensor field on M̃ . Then a polynomial
structure ϕ̃ of degree 2 satisfying

(2.1) ϕ̃2 = ϕ̃− 3

2
I,

is called an almost complex golden structure. So, (M̃, ϕ̃) is an almost complex
golden manifold [4].

Moreover, let g̃ be a s-Riemannian metric. Then g̃ is called a Norden golden
metric on M̃ if it satisfies

(2.2) g̃(ϕ̃U1, U2) = g̃(U1, ϕ̃U2),

(2.3) g̃(ϕ̃U1, ϕ̃U2) = g̃(ϕ̃U1, U2)− 3

2
g̃(U1, U2),

for U1, U2 ∈ Γ(TM̃). In this case, (M̃, g̃, ϕ̃) is called s-Riemannian manifold [4].

Example 2.1. Define a map by

ϕ̃ : R4 −→ R4

(x1, x2, x3, x4) −→ ϕ̃(x1, x2, x3, x4) = (Φcx1, Φcx2, Φ̃cx3, Φ̃cx4)

where Φc =
1 +
√

5i

2
and Φ̃c =

1−
√

5i

2
. Then it is easy to see that ϕ̃ satisfies (2.1).

Therefore (R4, ϕ̃) is an almost complex golden manifold.

Let M̃ be a s-Riemannian manifold with index q, 0 < q < m + 2, and M be a
hypersurface of M̃ , with g = g̃ |M . Then M is a lightlike hypersurface of M̃, if the
metric g is of rank m+ 1 and the orthogonal complement TM⊥ of TM , given as

TM⊥ =
⋃
p∈M
{Vp ∈ TpM̃ : gp(Up, Vp) = 0,∀Up ∈ Γ(TpM)},

is a distribution of rank 1 on M , [1]. TM⊥ ⊂ TM and then it coincides with the
radical distribution Rad TM = TM ∩ TM⊥.

A complementary bundle of TM⊥ in TM is a non-degenerate distribution over
M, which is known the screen distribution and denoted by S(TM).

Theorem 2.1. [1] Let (M, g, S(TM)) be a lightlike hypersurface of a s-Riemannian
manifold M̃ . Then there exists a unique rank 1 vector sub-bundle ltr(TM) which is
called the lightlike transversal vector bundle of TM , with base space N , such that for
every non-zero section ξ of Rad TM , there exists a section of ltr(TM) satisfying:

g̃(N,N) = 0, g̃(N,W ) = 0, g̃(N, ξ) = 1, for W ∈ Γ(S(TM)).
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By the previous theorem, we can state:

(2.4) TM = S(TM)⊥Rad TM

and

TM̃ = TM ⊕ ltr(TM)

= S(TM)⊥{Rad TM ⊕ ltr(TM)}.(2.5)

Let ω : Γ(TM)→ Γ(S(TM)) be the projection morphism. For U, V ∈ Γ(TM), we
have

(2.6) ∇̃UV = ∇UV +B(U, V )N,

(2.7) ∇̃UN = −ANU + τ(U)N,

(2.8) ∇UωV = ∇∗UωV + C(U, ωV )ξ,

(2.9) ∇Uξ = −A∗ξU − τ(U)ξ,

where ∇ and ∇∗ are the linear connections on TM and S(TM), respectively, AN
and A∗ξ are called the shape operators on TM and S(TM), respectively, τ is a 1-
form on TM . In addition B and C are called local second fundamental forms on
TM and S(TM), respectively.

For the induced connection ∇, we have

(2.10) (∇Ug)(V,Z) = B(U,Z)θ(V ) +B(U, V )θ(Z),

where θ is a differential 1-form and

(2.11) θ(U) = g̃(N,U).

Also note that

(2.12) B(U, ξ) = 0,

(2.13) g(A∗ξU, ωV ) = B(U, ωV ), g (A∗ξU,N) = 0,

(2.14) g(ANU, ωV ) = C(U, ωV ), g(ANU,N) = 0,

(2.15) A∗ξξ = 0.



Lightlike Hypersurface of Almost Norden Golden Semi-Riemannian Manifolds 817

3. Lightlike Hypersurfaces of Almost Norden Golden
Semi-Riemannian Manifolds

Let (M̃, g̃, ϕ̃) be a (m+2)-dimensional ANG s-Riemannian manifold and (M, g)
be a lightlike hypersurface of M̃. Then for any U1 ∈ Γ(TM) and N ∈ Γ(ltr(TM)),
we can write

(3.1) ϕ̃U1 = ϕU1 + ν(U1)N,

(3.2) ϕ̃N = U + ν(N)N,

where ϕU1, U ∈ Γ(TM) and ν is a 1−form defined as below,

(3.3) ν(U1) = g̃(U1, ϕ̃ξ).

Now for all U1, U2 ∈ Γ(TM), if we apply ϕ̃ to both side of (3.1) and use (2.1) we
get

ϕU1 + ν(U1)N − 3

2
U1 = ϕ2U1 + ν(ϕU1)N + ν(U1)U + ν(U1)ν(N)N.

If the tangential and transversal components on both sides of above equation are
equalized, we obtain

ϕ2U1 = ϕU1 −
3

2
U1 − ν(U1)U,

and
ν(U1)N = ν(ϕU1)N + ν(U1)ν(N)N,

respectively. Similarly, if we apply ϕ̃ to both side of (3.2) and using (2.1), we get

U + ν(N)N − 3

2
N = ϕU + ν(U)N + ν(N)(U + ν(N)N).

The following equations are obtained by equalizing the tangential and transversal
components on both sides of the above equation:

ϕU = U − ν(N)U

and

(ν(N))2N = ν(N)N − 3

2
N − ν(U)N.

If we use (3.1) in (2.2) and (2.3), then we get

g(ϕU1, U2) + ν(U1)g(N,U2) = g(U1, ϕU2) + ν(U2)g(U1, N)

and

g̃(ϕU1 + ν(U1)N,ϕU2 + ν(U2)N) = g(ϕU1 + ν(U1)N,U2)− 3

2
g(U1, U2).

Now we can introduce the following lemma.
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Lemma 3.1. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and (M, g) be a
lightlike hypersurface of M̃. Then for all U1, U2, U ∈ Γ(TM), we have

(3.4) ϕ2U1 = (ϕ− 3

2
I − ν ⊗ U)U1,

(3.5) ν(ϕU1) = (1− ν(N))ν(U1),

(3.6) ϕU = (I − ν(N))U,

(3.7) (ν(N))2 = ν(N)− 3

2
I − ν(U),

g(ϕU1, U2) = g(U1, ϕU2) + ν(U2)η(U1)− ν(U1)η(U2),(3.8)

g(ϕU1, ϕU2) = g(ϕU1, U2)− η(ϕU1)ν(U2)− η(ϕU2)ν(U1)(3.9)

+ν(U1)η(U2)− 3

2
g(U1, U2).

Definition 3.1. An ANG s-Riemannian structure ϕ̃ is called Norden Golden (briefly,
NG) semi-Riemannian structure if ϕ̃ is parallel, i.e.,

(3.10) ∇̃ϕ̃ = 0.

Let (M̃, g̃, ϕ̃) be a NG s-Riemannian manifold and (M, g) be a lightlike hyper-
surface of M̃. Then for all U1, U2 ∈ Γ(TM) from (3.10), we get

(3.11)

(
∇U1

ϕU2 +B(U1, ϕU2)N
+η(U1)ν(U2)N

)
=

 ϕ∇U1
U2 + ν(ϕ∇U1

U2)N
−U1(ν(U2))N +B(U1, U2)U

+B(U1, U2)ν(N)N + ν(U2)ANU1


and

(3.12)

(
∇U1U +B(U1, U)N + U1(ν(N))N

+ν(N)(−ANU1 + η(U1)N)

)
=

(
−ϕANU1 − ν(ANU1)N

+η(U1)U + ν(N)η(U1)N

)
.

By equating the tangential and transversal components of (3.11) and (3.12) respec-
tively, we state

Lemma 3.2. Let (M̃, g̃, ϕ̃) be a NG s-Riemannian manifold and (M, g) be a light-
like hypersurface of M̃. Then for all U1, U2 ∈ Γ(TM), we have

(3.13) (∇U1
ϕ)U2 = g(A∗ξU1, U2)U + ν(U2)ANU1,
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(3.14) (∇U1
ν)U2 = B(U1, U2)ν(N)−B(U1, ϕU2)− ν(U2)η(U1),

(3.15) ∇U1
U = −ϕANU1 + η(U1)U + ν(N)ANU1,

(3.16) U1(ν(N)) = −B(U1, U)− ν(ANU1).

Definition 3.2. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and (M, g) be
a lightlike hypersurface of M̃. If

i) ϕ̃(TM) ⊂ TM then M is called an invariant lightlike hypersurface.

ii) ϕ̃(Rad(TM)) ⊂ S(TM) and ϕ̃(ltr(TM)) ⊂ S(TM) then M is called a screen
semi-invariant lightlike hypersurface.

iii) ϕ̃(Rad(TM)) ⊂ ltr(TM) then M is called a radical anti-invariant lightlike
hypersurface.

Theorem 3.1. (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and (M, g) be a light-
like hypersurface of M̃. Then the following three statements are equivalent:

i) M is ϕ−invariant.

ii) ν vanishes on M.

iii) ϕ is an ANG structure on M .

Proof. Let M be an invariant hypersurface. In this case for all U1 ∈ Γ(TM), we
have ϕU1 = U1, which implies (ii). On the other hand, if ν is equal to zero on M
then we get

ϕ2U1 = ϕ̃2U1 = ϕU1 −
3

2
U1

and

g(ϕU1, U2) = g̃(ϕ̃U1, U2) = g̃(U1, ϕ̃U2) = g(U1, ϕU2),

for all U1 ∈ Γ(TM). By the way ϕ is an ANG structure on M and so (ii) implies
(iii). It is easy to see that if ϕ is an ANG structure onM , thenM is ϕ−invariant.

Theorem 3.2. There is no radical anti-invariant lightlike hypersurface of an ANG
s-Riemannian manifold.

Proof. Let an ANG s-Riemannian manifold (M̃, g̃, ϕ̃) have a radical anti-invariant
lightlike hypersurface. Then for ξ ∈ Γ(Rad TM), we have ϕ̃ξ ∈ Γ(ltr(TM)). By
using (2.2) and (2.3), we have

g̃(ϕ̃ξ, ξ) = 0,

which implies ϕ̃ξ 6∈ Γ(ltr(TM)). This is a contradiction with our assumption.
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4. Screen Semi-Invariant Lightlike Hypersurfaces of Almost Norden
Golden Semi-Riemannian Manifolds

Let (M̃, g̃, ϕ̃) be a (m+2)-dimensional ANG s-Riemannian manifold and (M, g, S(TM))
be a screen semi-invariant lightlike hypersurface of M̃. If

D1 = ϕ̃Rad TM, D2 = ϕ̃ltrTM

and
D = D◦ ⊥ Rad TM ⊥ ϕ̃Rad TM,

then we get

S(TM) = D◦ ⊥ (D1 ⊕D2),(4.1)

TM = D ⊕D2,(4.2)

TM̃ = D ⊕D2 ⊕ ltrTM,(4.3)

where D◦ is a (m − 2)-dimensional distribution. We denote vector fields U and V
as below,

(4.4) U = ϕ̃N, V = ϕ̃ξ.

Lemma 4.1. Let (M̃, g̃, ϕ̃) be a (m+2)-dimensional ANG s-Riemannian manifold
and (M, g, S(TM)) be a screen semi-invariant lightlike hypersurface of M̃. Then,
for all U1, U2 ∈ Γ(TM), U ∈ Γ(D2) and V ∈ Γ(D1), we have

(4.5) ϕ2U1 = (ϕ− 3

2
I − ν ⊗ U)U1,

(4.6) ν(ϕU1) = ν(U1), ϕU = U, ν(U) = −3

2
,

g(ϕU1, U2) = g(U1, ϕU2) + (η ⊗ ν − ν ⊗ η)(U1, U2),(4.7)

g(ϕU1, ϕU2) = g(ϕU1, U2) + g(U1, U2) + ν(U1)η(U2)

−η(ϕU1)ν(U2)− ν(U1)η(ϕU2),(4.8)

(4.9) (∇U1
ϕ)U2 = ν(U2)ANU1 +B(U1, U2)U,

(4.10) (∇U1
ν)U2 = −B(U1, ϕU2),

(4.11) (∇U1U) = −ϕANU1 + η(U1)U.
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Proof. (4.5) is obvious from Lemma 3.1. Since ϕ̃ξ ∈ Γ(ltr(TM)), it is easy to see
that

(4.12) ν(N) = g̃(N, ϕ̃ξ) = 0,

and from (3.5), we get
ν(ϕU1) = ν(U1).

Then using (3.6) and with the help of (4.12), we get

ϕU = U.

Finally via (3.3), we obtain
ν(U) = g(ϕ̃N, ϕ̃ξ)

and

g̃(ϕ̃N, ϕ̃ξ) = g̃(N,ϕξ)− 3

2
g̃(N, ξ) = −3

2
.

It’s obvious that (4.7), (4.8) and (4.9) are obtained from Lemma 3.1 and (4.10)
follows from Lemma 3.2. With the help of Lemma 3.2, we get ν(U2) = g(U2, ϕ̃ξ) =
g(ϕ̃U2, ξ) = 0, via (4.12). Thus we obtain (4.11). Finally if we use (4.12) in (3.15),
(4.11) is easily obtained.

Additionally since ν(N) = 0, (3.16) becomes

B(U1, U) = −ν(ANU1) = −g(ANU1, ϕ̃ξ) = −g(ANU1, V ).

Then by using (2.14) we get

(4.13) B(U1, U) = −C(U1, V ).

Moreover, for ∇̃U1V = ∇̃U1 ϕ̃ξ = ϕ̃∇̃U1ξ, we obtain

(4.14) ∇U1
V +B(U1, V )N = −ϕA∗ξU1 − η(U1)V − ν(A∗ξU1)N.

Then by using tangent and transversal components of (4.14) following equalities are
obtained,

∇U1
V = −ϕA∗ξU1 − η(U1)V,

and
B(U1, V ) = −ν(A∗ξU1).

Via these equalities we get

B(U1, V ) = −ν(A∗ξU1) = −g(A∗ξU1, ϕ̃ξ) = −g(A∗ξU1, V ) = −B(U1, V )

and so B(U1, V ) = 0. On the other hand since ∇̃ is a metric connection then by
using g̃(U,N) = g̃(ϕ̃N,N) = 0, we get

C(U1, U) = 0.

Thus we can state:
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Corollary 4.1. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. In this case for U = ϕ̃N on M,
we have B(U1, U) = 0. Namely, the vector field U makes the second fundamental
form of lightlike hypersurface degenerate.

Corollary 4.2. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. In this case we have B(U1, U) =
g(A∗ξU1, U) = g(A∗ξU1, ϕ̃N) = 0, that is, there is no component of A∗ξ in D2.

Corollary 4.3. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. In this case we have C(U1, V ) =
g(ANU1, V ) = g(ANU1, ϕ̃ξ) = 0, that is, there is no component of ANU1 in D1.

Proposition 4.1. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be
a screen semi-invariant lightlike hypersurface of M̃. Then D◦ is a ϕ̃−invariant
distribution.

Proof. For all U1 ∈ Γ(D◦), ξ ∈ Γ(Rad TM) and N ∈ Γ(ltr(TM)), we have

g(ϕ̃U1, ξ) = g(U1, ϕ̃ξ) = 0,

g(ϕ̃U1, N) = g(U1, ϕ̃N) = 0.

Therefore there is no component of ϕ̃U1 in Rad TM and ltr(TM). On the other
hand for all U1 ∈ Γ(D◦), U ∈ Γ(D1) and V ∈ Γ(D2), we get

g̃(ϕ̃U1, U) = g̃(U1, ϕ̃U) = 0,

g̃(ϕ̃U1, V ) = g̃(U1, ϕ̃V ) = 0,

which imply that there is no component of ϕ̃U1 in D1 and D2. So the proof is
completed.

Corollary 4.4. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. Then D is a ϕ̃−invariant distri-
bution.

Theorem 4.1. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. Then V is a parallel vector field
on M if and only if η = 0 and M is totally geodesic on M̃.

Proof. Let V be a parallel vector field on M. For all U1 ∈ Γ(TM), if we use (3.1),
(3.4) and (2.1), we get

(4.15) −ϕA∗ξU1 − η(U1)V = −ϕ̃A∗ξU1 − η(U1)V = 0.

Then if we apply ϕ̃ to both sides of (4.15) and via (3.1), (3.4) with (2.1), we obtain

(4.16) −ϕA∗ξU1 +
3

2
A∗ξU1 − η(U1)V +

3

2
η(U1)ξ = 0.
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After that by using (4.15) and (4.16), we obtain

(4.17)
3

2
A∗ξU1 +

3

2
η(U1)ξ = 0.

Because of A∗ξU1 ∈ Γ(S(TM)), (4.17) is satisfied if and only if A∗ξU1 = 0 and
η(U1) = 0. Hence A∗ξU1 = 0 if and only if B = 0. The proof is completed.

Theorem 4.2. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold, M be a screen
semi-invariant lightlike hypersurface of M̃ and V be a parallel vector field on M.
Then, either ϕ or U is parallel on M if and only if both M and S(TM) are totally
geodesic on M̃.

Proof. Let ϕ is parallel on M. For all U1, U2 ∈ Γ(TM), if we use (4.9) we get

(4.18) B(U1, U2)U = −ν(U2)ANU1.

Since V is a parallel vector field on M via Theorem 4.1, B = 0 and via (4.18), we
have ν(U2)ANU1 = 0. Here if we substitute U = ϕ̃N instead of U2, we write

ν(U) = g(ϕ̃N, ϕ̃ξ) = g(N, ϕ̃ξ)− 3

2
g(N, ξ) 6= 0.

Here for all U1, U2 ∈ Γ(TM), we obtain ANU1 = 0 hence C = 0.
Similarly let U is a parallel vector field on M, from (3.1) and (4.11) we get

(4.19) −ϕ̃ANU1 + ν(ANU1)N + η(U1)U = 0.

Then if we apply ϕ̃ to (4.19), we obtain

(4.20) ϕANU1 +
(
ν(ANU1) +

3

2
η(U1)

)
N =

3

2
ANU1 +

(
ν(ANU1) + η(U1)

)
U.

By subtracting (4.19) from (4.20) we get

(4.21)
3

2
ANU1 + ν(ANU1)U − ν(ANU1)N − 3

2
η(U1)N = 0,

and from tangential and normal components of (4.21), we obtain

(4.22)
3

2
ANU1 = −ν(ANU1)U, ν(ANU1) = −3

2
η(U1).

Since V is a parallel vector field from Theorem 4.1 we know that η(U1) = 0, therefore
ν(ANU1) = 0 and ANU1 = 0. So the proof is complete.

Definition 4.1. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
lightlike hypersurface of M̃. If B(U1, U2) = 0, for all U1, U2 ∈ Γ(D2), then M is
called as D2−totally geodesic lightlike hypersurface.
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Definition 4.2. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. IfB(U1, U2) = 0, for all U1 ∈ Γ(D)
and U2 ∈ Γ(D2), then M is called as mixed geodesic lightlike hypersurface.

Theorem 4.3. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. Then the following three state-
ments are equivalent:

i) M is a mixed geodesic lightlike hypersurface.

ii) There is no component of AN in D2.

iii) There is no component of A∗ξ in D1.

Proof. Let M be a mixed geodesic lightlike hypersurface and ω be a projective
projection on S(TM). Hence if we use (4.13), we have

(4.23) C(U1, ωU2) = g(ANU1, ωU2)

and

(4.24) g(ANU1, N) = 0.

We obtain

(4.25) B(U1, U) = −C(U1, V ) = −g(ANU1, V ) = 0.

Therefore since V ∈ Γ(D2) there is no component of AN in D2. On the other hand
if we use (4.23), (4.24), (4.25), we get

g(A∗ξU1, U) = −g(ANU1, V ),

which implies there is no component of A∗ξ in D1.

Theorem 4.4. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. Then distribution D is integrable
on M if and only if

(4.26) B(ϕ̃U1, ϕ̃U2) = B(ϕ̃U1, U2)− 3

2
B(U1, U2).

Proof. Let D be an invariant distribution. For U1 ∈ Γ(D) we have ϕ̃U1 ∈ Γ(D).
Thus for all U1, U2 ∈ Γ(D) and V ∈ Γ(D1), the distribution D is integrable if and
only if

ν([ϕ̃U1, U2]) = 0.

Therefore we get

ν([ϕ̃U1, U2]) = g̃([ϕ̃U1, U2], V )

= B(ϕ̃U1, ϕ̃U2)−B(U2, ϕ̃U1) +
3

2
B(U2, U1) = 0.
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Since B is symmetric as a result we get,

B(ϕ̃U1, ϕ̃U2) = B(ϕ̃U1, U2, )−
3

2
B(U1, U2).

Theorem 4.5. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. Then the following three state-
ments are equivalent:

i) D is a parallel distribution.

ii) D is totally geodesic.

iii) (∇U1ϕ)U2 = 0, where U1, U2 ∈ Γ(D).

Proof. For all U1, U2 ∈ Γ(D) and V ∈ Γ(D1), D is parallel on M if and only if

ν(∇U1
U2) = 0.

Here we get

ν(∇U1
U2) = g(∇U1

U2, V ) = B(U1, ϕ̃U2),

namely D is totally geodesic. On the other hand for all U2 ∈ Γ(D), we have
ν(U2) = 0. Thus by using

(∇U1ϕ)U2 = g(A∗ξU1, U2)U + ν(U2)ANU1,

we obtain

(∇U1
ϕ)U2 = g(A∗ξU1, U2)U

= B(U1, U2)U,

which implies (∇U1ϕ)U2 = 0.

Theorem 4.6. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. Then distribution D is totally
geodesic on M if and only if

(4.27) (∇U1ϕ)U2 = 0,

(4.28) (∇U1
ω)U = ANU1,

where U1 ∈ Γ(TM), U2 ∈ Γ(D) and U ∈ Γ(D2).
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Proof. Let M be a totally geodesic hypersurface. For all U2 ∈ Γ(D), ν(U2) = 0 and

(4.29) (∇U1
ϕ)U2 = B(U1, U2)U + ν(U2)ANU1.

From (4.29), we find (∇U1
ϕ)U2 = 0. Similarly, for all U ∈ Γ(D2), since ν(U) = 1

then by substutiting U instead of U2 in (4.29), we obtain

(4.30) (∇U1
ϕ)U = B(U1, U)U +ANU1.

Then from (4.30), we get (∇U1
ϕ)U = ANU1.

Conversely, let us assume that (4.27) and (4.28) are satisfied. Let U2 ∈ Γ(TM)
from (4.2), we can write U2 = (U2)D+fU , where (U2)D ∈ Γ(D) and f is a function.
Therefore we have

B(U1, U2) = B(U1, (U2)D) + fB(U1, U)

and

(4.31) (∇U1
ω)U = B(U1, U2)U + ν(U2)ANU1.

Then in (4.31) if we write (U2)D instead of U2 and via (4.27) we get

B(U1, (U2)D) = −ν((U2)D)ANU1 = −g((U2)D, ϕ̃ξ) = 0.

Similarly, in (4.31) if we substitute U instead of U2 and via (4.28) we have

(∇U1
ω)U = B(U1, U)U + ν(U)ANU1 = ANU1.

Therefore we obtain B(U1, U) = 0 and B(U1, U2) = 0. So the proof is complete.

Theorem 4.7. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. If M is totally umbilical then
M is totally geodesic in M̃.

Proof. Let M be a totally umbilical screen semi-invariant lightlike hypersurface of
M̃. Then

B(U1, V ) = λg(U1, V ) = 0.

Here if we substitute U instead of U1, we get λ = 0. Hence B = 0. So the proof is
complete.

Theorem 4.8. Let (M̃, g̃, ϕ̃) be an ANG s-Riemannian manifold and M be a
screen semi-invariant lightlike hypersurface of M̃. If screen distribution S(TM) is
totally umbilical then it is also totally geodesic.

Proof. Let screen distribution S(TM) be totally umbilical. Then for all U1 ∈
Γ(TM) we have

C(U1, U) = µg(U1, U) = 0.

If we substitute V instead of U1, we get µ = 0. Hence C = 0, which completes the
proof.
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Example 4.1. Let (R5
2, g̃) be a semi-Riemannian manifold with signature (−,+,−,+,+)

and (x1, x2, ..., x5) be a standard coordinate system of R5
2. If we take

ϕ̃(x1, x2, ..., x5) = (Φ̃x1, Φ̃x2, Φx3, Φx4, Φx5),

thus ϕ̃ is an ANG structure on R5
2. Let M be a hypersurface in R5

2 defined by X =
ϕ̃x1 + ϕ̃x2 + x3. Then TM = Span {U1, U2, U3, U4}, where

U1 = ∂x1 + ϕ̃∂x5,

U2 = ∂x2 + ϕ̃∂x5,

U3 = ∂x3 + ∂x5,

U4 = ∂x4.

It is easy to check that M is a lightlike hypersurface. Thus

Rad TM = {ξ = ΦU1 − ΦU2 + U3}
and

S(TM) = {W1,W2,W3}
where

W1 = ∂x4

W2 = −∂x1 + ∂x2 + Φ∂x3 + Φ∂x5

W3 =
−1

2(2 + Φ)
(−∂x1 − ∂x2 + Φ∂x3 − Φ∂x5)

and

ltr(TM) =

{
N =

−1

2(2 + Φ)
(Φ∂x1 + Φ∂x2 + ∂x3 − ∂x5)

}
.

Also, W2 = ϕ̃ξ,W3 = ϕ̃N , thus M is a screen semi invariant lightlike hypersurface.
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