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Abstract. Riemannian maps are generalization of well-known notions of isometric
immersions and Riemannian submersions. In this paper, we define and study a nat-
ural generalization of previously defined quasi bi-slant submersions [18] in the case
of Riemannian maps. We mainly investigate fundamental results on quasi bi-slant
Riemannian maps from almost Hermitian manifolds to Riemannian manifolds: the in-
tegrability of distributions, geometry of foliations, the condition for such maps to be
totally geodesic, etc. At the end of the article, we give proper non-trivial examples for
this notion.
Keywords: Riemannian maps, Quasi bi-slant Riemannian maps, Almost Hermitian
manifolds.

1. Introductions

In differential geometry, initiating and utilising the idea of appropriate transforma-
tions to compare geometric properties between two manifolds is one of the main
features. Immersions and submersions are the most used transformations in this
sense. The study of Riemannian submersions was initiated by O′Neill [8] and Gray
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[2]. Watson [9] studied almost complex type of Riemannian submersions. Further,
several kinds of Riemannian submersions were introduced and studied [3]. These
maps have a wide range of applications in different branches of science and engineer-
ing, for example, the Yang-Mills theory [10], Kaluza-Klein theory [11], supergravity
and superstring theories [13], [14], Euclidean super-symmetry [25] etc.

On the other side, the study of Riemannian maps have risen in popularity in
recent geometric evaluations due to its envolvement in the mathematical physics.
The basic properties of Riemannian maps were first given by Fischer [1]. More pre-
cisely, a differentiable map π : (N1, g1) → (N2, g2) between Riemannian manifolds
(N1, g1) and (N2, g2) is called a Riemannian map (0 < rankπ∗ < min{m,n}, where
dimN1 = m,dimN2 = n) if it satisfies the equation:

g2(π∗V1, π∗V2) = g1(V1, V2), (1.1)

for V1, V2 ∈ Γ(kerπ∗)
⊥.

Consequently, isometric immersions and Riemannian submersions are particular
cases of Riemannian maps with kerπ∗ = {0} and (rangeπ∗)

⊥ = 0, respectively.
In [1], the author has shown a conspicuous property of Riemannian map is that
it satisfies the generalized eikonal equation ‖ π∗ ‖2= rankπ and also proposed an
approach to build a quantum model using Riemannian maps that would provide an
interesting relationship between Riemannian maps, harmonic maps, and Lagrangian
field theory. Further, the notion of Riemannian map and related topics are being
studied continuously from different perspectives, as Invariant and anti-invariant
Riemannian map [4], semi-invariant Riemannian map [5], slant Riemannian map
([6], [15], [19]), semi-slant Riemannian map ([12], [16], [20], [22]) and hemi-slant
Riemannian map ([7], [17]) quasi-hemi-slant Riemannian map [21] etc.

In this paper, we study the notion of quasi bi-slant Riemannian maps from
an almost Hermitian manifold to a Riemannian manifold. The paper is organized
as follows: In Section 2, we will recall some basic definitions related to quasi bi-
slant Riemannian maps. In section 3, we will define quasi bi-slant Riemannian
map from Kähler manifolds to Riemannian manifolds and study the geometry of
leaves of distributions that are involved in the definition of such maps. We will
provide necessary and sufficient conditions for quasi bi-slant Riemannian maps to
be totally geodesic. In section 4, we will provide some non-trivial examples of such
Riemannian maps.

2. Preliminaries

Let N1 be an even-dimensional differentiable manifold. Let J be a (1, 1) tensor
field on N1 such that J2 = −I, where I is identity operator. Then J is called
an almost complex structure on N1. The manifold N1 with an almost complex
structure J is called an almost complex manifold [24]. It is well known that an
almost complex manifold is necessarily orientable. Nijenhuis tensor N of an almost
complex structure is defined as:

N(X1, X2) = [JX1, JX2]− [X1, X2]− J [JX1, X2]− J [X1, JX2], (2.1)
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for all X1, X2 ∈ Γ(TN1).

If Nijenhuis tensor field N on an almost complex manifold N1 is zero, then the
almost complex manifold N1 is called a complex manifold.

Let g1 be a Riemannian metric on N1 such that

g1(JX1, JX2) = g1(X1, X2), (2.2)

for all X1, X2 ∈ Γ(TN1).

Then g1 is called an almost Hermitian metric on N1 and manifold N1 with Her-
mitian metric g1 is called almost Hermitian manifold. The Riemannian connection
∇ of the almost Hermitian manifold N1 can be extended to the whole tensor algebra
on N1. Tensor fields (∇Y1J) is defined as

(∇Y1
J)Y2 = ∇Y1

JY2 − J∇Y1
Y2 (2.3)

for Y1, Y2 ∈ Γ(TN1).

An almost Hermitian manifold (N1, g1, J) is called a Kähler manifold if

(∇Y1J)Y2 = 0 (2.4)

for Y1, Y2 ∈ Γ(TN1).

Now, we recall following definitions for later use:

Definition 2.1. [3] Let π be a Riemannian map from an almost Hermitian man-
ifold (N1, g1, J) to a Riemannian manifold (N2, g2). If for any non-zero vector
Y1 ∈ (kerπ∗)q, q ∈ N1, the angle θ(Y1) between JY1 and the space (kerπ∗)q is
constant, i.e., it is independent of the choice of the point q ∈ N1 and the tangent
vector Y1 in kerπ∗, then we say that π is a slant Riemannian map. In this case,
the angle θ is called the slant angle of the Riemannian map. If the slant angle is
0 < θ < π

2 , then the Riemannian map is called a proper slant Riemannian map.

Definition 2.2. [3] Let (N1, g1, J) be an almost Hermitian manifold and (N2, g2)
a Riemannian manifold. A Riemannian map π : (N1, g1, J) → (N2, g2) is called a
semi-slant Riemannian map if there is a distribution D1 ⊂ kerπ∗ such that

kerπ∗ = D ⊕D1, J(D) = D, (2.5)

and the angle θ = θ(Y1) between JY1 and the space (D1)q is constant for non-zero
vector Y1 ∈ (D1)q and q ∈ N1, where D1 is the orthogonal complement of D in
kerπ∗.

We call the angle θ a semi-slant angle.

Definition 2.3. [7] Let N1 be an almost Hermitian manifold with Hermitian met-
ric g1 and almost complex structure J, and N2 be a Riemannian manifold with
Riemannian metric g2. A Riemannian map π : (N1, g1, J) → (N2, g2) is called a
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hemi-slant Riemannian map if the vertical distribution kerπ∗ of π admits two or-
thogonal complementary distributions Dθ and D⊥ such that Dθ is slant with angle
θ and D⊥ is anti-invariant, i.e, we have

kerπ∗ = Dθ ⊕D⊥. (2.6)

In this case, the angle θ is called the hemi-slant angle of the Riemannian map.

Define O’Neill’s tensors T and A by [8]

AF1
F2 = H∇HF1

VF2 + V∇HF1
HF2, (2.7)

TF1
F2 = H∇VF1

VF2 + V∇VF1
HF2, (2.8)

for any vector fields F1, F2 on N1, where ∇ is the Levi-Civita connection of g1. It is
easy to see that TF1

and AF1
are skew-symmetric operators on the tangent bundle

of N1 reversing the vertical and the horizontal distributions.

From equations (2.7) and (2.8), we have

∇Z1
Z2 = TZ1

Z2 + V∇Z1
Z2, (2.9)

∇Z1
Y1 = TZ1

Y1 +H∇Z1
Y1, (2.10)

∇Y1Z1 = AY1Z1 + V∇Y1Z1, (2.11)

∇Y1
Y2 = H∇Y1

Y2 +AY1
Y2 (2.12)

for Z1, Z2 ∈ Γ(kerπ∗) and Y1, Y2 ∈ Γ(kerπ∗)
⊥, where H∇Z1Y1 = AY1Z1, if Y1

is basic. It is not difficult to observe that T acts on the fibers as the second
fundamental form, while A acts on the horizontal distribution and measures the
obstruction to the integrability of this distribution [3].

It is seen that for p ∈ N1, Z1 ∈ Vp and Y1 ∈ Hp the linear operators

AY1
, TZ1

: TqN1 → TqN1, (2.13)

are skew-symmetric, that is

g1(AY1F1, F2) = −g1(F1,AY1F2), g1(TZ1F1, F2) = −g1(F1, TZ1F2) (2.14)

for F1, F2 ∈ Γ(TpN1). Since TY1
is skew-symmetric, we observe that π has totally

geodesic fibres if and only if T ≡ 0.

We recall that the notation of second fundamental form of a map between two
Riemannian manifolds. Let (N1, g1) and (N2, g2) be Riemannian manifolds and
π : (N1, g1) → (N2, g2) be a C∞ map then the second fundamental form of π is
given by

(∇π∗)(Z1, Z2) = ∇πZ1
π∗Z2 − π∗(∇N1

Z1
Z2) (2.15)

for Z1, Z2 ∈ Γ(TN1), where ∇π is the pullback connection and we denote for con-
venience by ∇ the Riemannian connections of the metrics g1 and g2 [23].

Finally we also recall that a differentiable map π between two Riemannian man-
ifolds is totally geodesic if

(∇π∗)(Z1, Z2) = 0, (2.16)

for all Z1, Z2 ∈ Γ(TN1). A totally geodesic map is that it maps every geodesic in
the total space into a geodesic in the base space in proportion to arc lengths.
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3. Quasi bi-slant Riemannian maps

Now, we introduce the notion of a quasi bi-slant Riemannian map as a natural
generalization of hemi-slant Riemannian map and semi-slant Riemannian map from
almost Hermitian manifolds to Riemannian manifolds.

Definition 3.1. Let (N1, g1, J) be an almost Hermitian manifold and (N2, g2) be
a Riemannian manifold. A Riemannian map

π : (N1, g1, J)→ (N2, g2), (3.1)

is called a quasi bi-slant Riemannian map if there exist three mutually orthogonal
distribution D,D1 and D2 such that

(i) kerπ∗ = D ⊕D1 ⊕D2,

(ii) J(D) = D i.e., D is invariant,

(iii) J(D1) ⊥ D2 and J(D2) ⊥ D1,

(iv) for any non-zero vector field Y1 ∈ (D1)q, q ∈ N1, the angle θ1 between JY1
and (D1)q is constant and independent of the choice of point q and Y1 in (D1)q,

(v) for any non-zero vector field Z1 ∈ (D2)q, q ∈ N1, the angle θ2 between JZ1

and (D2)q is constant and independent of the choice of point q and Z1 in (D2)q,

These angles θ1 and θ2 are called slant angles of the Riemannian map.

We easily observe that

(a) If dimD = 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, θ2 = π

2 , then π is a
hemi-slant Riemannian map.

(b) If dimD = 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , then π

is a bi-slant Riemannian map.

(c) If dimD 6= 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, θ2 = π

2 , then we may
call π is an quasi-hemi-slant Riemannian map.

(d) If dimD 6= 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , then π

is proper quasi bi-slant Riemannian map.

Let π be quasi bi-slant Riemannian maps from an almost Hermitian manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, we have

TN1 = kerπ∗ ⊕ (kerπ∗)
⊥. (3.2)

Now, for any vector field V1 ∈ Γ(kerπ∗), we put

V1 = PV1 +QV1 +RV1, (3.3)

where P,Q and R are projection morphisms [13] of kerπ∗ onto D,D1 and D2,
respectively.

For Z1 ∈ (Γ kerπ∗), we set
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JZ1 = φZ1 + ωZ1, (3.4)

where φZ1 ∈ (Γ kerπ∗) and ωZ1 ∈ (Γ kerπ∗)
⊥.

From equations (3.3) and (3.4), we have

JZ1 = J(PZ1) + J(QZ1) + J(RZ1),

= φ(PZ1) + ω(PZ1) + φ(QZ1) + ω(QZ1) + φ(RZ1) + ω(RZ1),

since JD = D, we get ωPZ1 = 0.

Hence above equation reduces to

JZ1 = φ(PZ1) + φQZ1 + ωQZ1 + φRZ1 + ωRZ1. (3.5)

Thus we have the following decomposition

J(kerπ∗) = D ⊕ (φD1 ⊕ φD2)⊕ (ωD1 ⊕ ωD2), (3.6)

where ⊕ denotes orthogonal direct sum.

Further, let V1 ∈ Γ(D1) and V2 ∈ Γ(D2). Then

g1(V1, V2) = 0. (3.7)

From definition 3.1(iii), we have

g1(JV1, V2) = g1(V1, JV2) = 0. (3.8)

Now, consider

g1(φV1, V2) = g1(JV1 − ωV1, V2),

= g1(JV1, V2),

= 0.

Similarly, we have
g1(V1, φV2) = 0. (3.9)

Let U1 ∈ Γ(D) and U2 ∈ Γ(D1). Then we have

g1(φU2, U1) = g1(JU2 − ωU2, U1),

= g1(JU2, U1),

= −g1(U2, JU1),

= 0,

as D is invariant i.e., JU1 ∈ Γ(D).

Similarly, for U1 ∈ Γ(D) and U3 ∈ Γ(D2), we obtain

g1(φU3, U1) = 0, (3.10)
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From above equations, we have

g1(φW1, φW2) = 0, (3.11)

and
g1(ωW1, ωW2) = 0, (3.12)

for all W1 ∈ Γ(D1) and W2 ∈ Γ(D2).

So, we can write

φD1 ∩ φD2 = {0}, ωD1 ∩ ωD2 = {0}. (3.13)

If θ2 = π
2 , then φR = 0 and D2 is anti-invariant, i.e., J(D2) ⊆ (kerπ∗)

⊥. In this
case we denote D2 by D⊥.

We also have
J(kerπ∗) = D ⊕ φD1 ⊕ ωD1 ⊕ JD⊥. (3.14)

Since ωD1 ⊆ (kerπ∗)
⊥, ωD2 ⊆ (kerπ∗)

⊥. So we can write

(kerπ∗)
⊥ = ωD1 ⊕ ωD2 ⊕ µ, (3.15)

where µ is orthogonal complement of (ωD1 ⊕ ωD2) in (kerπ∗)
⊥.

Also for any non-zero vector field Y1 ∈ Γ(kerπ∗)
⊥, we have

JY1 = BY1 + CY1, (3.16)

where BY1 ∈ Γ(kerπ∗) and CY1 ∈ Γ(kerπ∗)
⊥.

Lemma 3.1. Let π be a quasi bi-slant Riemannian map from an almost Hermitian
manifold (N1, g1, J) to a Riemannian manifold (N2, g2). Then, we have

φ2W1 +BωW1 = −W1, ωφW1 + CωW1 = 0, (3.17)

ωBW2 + C2W2 = −W2, φBW2 +BCW2 = 0, (3.18)

for all W1 ∈ Γ(kerπ∗) and W2 ∈ Γ(kerπ∗)
⊥.

Proof. Using equations (3.4), (3.16) and J2 = −I, we have Lemma 3.1.

Lemma 3.2. Let π be a quasi bi-slant Riemannian map from an almost Hermitian
manifold (N1, g1, J) to a Riemannian manifold (N2, g2). Then, we have

(i) φ2Zi = −(cos2 θ1)Zi

(ii) g1(φZi, φVi) = cos2 θ1g1(Zi, Vi),

(iii) g1(ωZi, ωVi) = sin2 θ1g1(Zi, Vi),

for all Zi, Vi ∈ Γ(Di), where i = 1, 2.
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Proof. By Lemma (3.2) in [18], we obtain Lemma 3.2.

.

Lemma 3.3. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, we have

V∇Y1
φY2 + TY1

ωY2 = φV∇Y1
Y2 +BTY1

Y2, (3.19)

TY1
φY2 +H∇Y1

ωY2 = ωV∇Y1
Y2 + CTY1

Y2, (3.20)

V∇Z1BZ2 +AZ1CZ2 = φAZ1Z2 +BH∇Z1Z2, (3.21)

AZ1
BZ2 +H∇Z1

CZ2 = ωAZ1
Z2 + CH∇Z1

Z2, (3.22)

V∇Y1
BZ1 + TY1

CZ1 = φTY1
Z1 +BH∇Y1

Z1, (3.23)

TY1BZ1 +H∇Y1CZ1 = ωTY1Z1 + CH∇Y1Z1, (3.24)

V∇Z1
φY1 +AZ1

ωY1 = BAZ1
Y1 + φV∇Z1

Y1, (3.25)

AZ1
φY1 +H∇Z1

ωY1 = CAZ1
Y1 + ωV∇Z1

Y1 (3.26)

for any Y1, Y2 ∈ Γ(kerπ∗) and Z1, Z2 ∈ Γ(kerπ∗)
⊥.

Proof. Using equations (2.9), (2.10), (2.11), (2.12), (3.4) and (3.16), we get equations
(3.19)-(3.26).

Now, we define
(∇V1φ)V2 = V∇V1φV2 − φV∇V1V2, (3.27)

(∇V1
ω)V2 = H∇V1

ωV2 − ωV∇V1
V2, (3.28)

(∇Z1
C)Z2 = H∇Z1

CZ2 − CH∇Z1
Z2, (3.29)

(∇Z1B)Z2 = V∇Z1BZ2 −BH∇Z1Z2 (3.30)

for V1, V2 ∈ Γ(kerπ∗) and Z1, Z2 ∈ Γ(kerπ∗)
⊥.

Lemma 3.4. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, we have

(∇V1φ)V2 = BTV1V2 − TV1ωV2, (3.31)

(∇V1
ω)V2 = CTV1

V2 − TV1
φV2, (3.32)

(∇Z1C)Z2 = ωAZ1Z2 −AZ1BZ2, (3.33)

(∇Z1
B)Z2 = φAZ1

Z2 −AZ1
CZ2, (3.34)

for V1, V2 ∈ Γ(kerπ∗) and Z1, Z2 ∈ Γ(kerπ∗)
⊥.



Investigation of Quasi bi-slant Riemannian maps 67

Proof. Using equations (3.19), (3.20), (3.21), (3.22), (3.27), (3.28), (3.29) and (3.30),
we get all equations of Lemma 3.4.

If the tensors φ and ω are parallel with respect to the linear connection ∇ on
N1, respectively, then

BTU1U2 = TU1ωU2, CTU1U2 = TU1φU2, (3.35)

for U1, U2 ∈ Γ(TN1).

Theorem 3.1. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, the invariant distribution D
is integrable if and only if

g1(TZ1
JZ2 − TZ2

JZ1, ωQV1 + ωRV1) = g1(V∇Z1
JZ2 − V∇Z2

JZ1, φQV1 + φRV1)
(3.36)

for Z1, Z2 ∈ Γ(D) and V1 ∈ Γ(D1 ⊕D2).

Proof. For Z1, Z2 ∈ Γ(D), and V1 ∈ Γ(D1⊕D2), using equations (2.2), (2.4), (2.9), (3.3)
and (3.4), we have

g1([Z1, Z2], V1)

= g1(∇Z1JZ2, JV1)− g1(∇Z2JZ1, JV1),

= g1(TZ1JZ2 − TZ2JZ1, ωQV1 + ωRV1)− g1(V∇Z1JZ2 − V∇Z2JZ1, φQV1 + φRV1),

which completes the proof.

Theorem 3.2. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, the slant distribution D1 is
integrable if and only if

g1(TX1
ωφX2 − TX2

ωφX1, Z1)

= g1(TX1
ωX2 − TX2

ωX1, JPZ1 + φRZ1) + g1(H∇X1
ωX2 −H∇X2

ωX1, ωRZ1)

for X1, X2 ∈ Γ(D1) and Z1 ∈ Γ(D ⊕D2).

Proof. For X1, X2 ∈ Γ(D1) and Z1 ∈ Γ(D ⊕D2), we have

g1([X1, X2], Z1) = g1(∇X1
X2, Z1)− g1(∇X2

X1, Z1). (3.37)

Using equations (2.2), (2.4), (2.9), (2.10), (3.4) and Lemma 3.2, we have

g1([X1, X2], Z1)

= g1(∇X1
JX2, JZ1)− g1(∇X2

JX1, JZ1),

= g1(∇X1
φX2, JZ1) + g1(∇X1

ωX2, JZ1)− g1(∇X2
φX1, JZ1)− g1(∇X2

ωX1, JZ1),

= cos2 θ1g1(∇X1
X2, Z1)− cos2 θ1g1(∇X2

X1, Z1)− g1(TX1
ωφX2 − TX2

ωφX1, Z1)

+g1(H∇X1
ωX2 + TX1

ωX2, JPZ1 + φRZ1 + ωRZ1)

−g1(H∇X2
ωX1 + TX2

ωX1, JPZ1 + φRZ1 + ωRZ1).
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Now, we have

sin2 θ1g1([X1, X2], Z1)

= g1(TX1ωX2 − TX2ωX1, JPZ1 + φRZ1) + g1(H∇X1ωX2 −H∇X2ωX1, ωRZ1)

−g1(TX1ωφX2 − TX2ωφX1, Z1),

which completes the proof.

The proof of the following theorem is similar as the Theorem 3.2.

Theorem 3.3. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, the slant distribution D2 is
integrable if and only if

g1(TZ1
ωφZ2 − TZ2

ωφZ1, X1) (3.38)

= g1(H∇Z1
ωZ2 −H∇Z2

ωZ1, ωX1) + g1(TZ1
ωZ2 − TZ2

ωZ1, φX1)

for Z1, Z2 ∈ Γ(D2) and X1 ∈ Γ(D ⊕D1).

Theorem 3.4. Let π be a quasi bi-slant Riemannian map from a Kähler mani-
fold (N1, g1, J) to a Riemannian manifold (N2, g2). Then the horizontal distribution
(kerπ∗)

⊥ defines a totally geodesic foliation on N1 if and only if

g1(AV1
V2, PW1 + cos2 θ1QW1 + cos2 θ2RW1) (3.39)

= g1(H∇V1
V2, ωφPW1 + ωφQW1 + ωφRW1)

+g1(AV1
BV2 +H∇V1

CV2, ωW1)

for V1, V2 ∈ Γ(kerπ∗)
⊥ and W1 ∈ Γ(kerπ∗).

Proof. For V1, V2 ∈ Γ(kerπ∗)
⊥ and W1 ∈ Γ(kerπ∗), we have

g1(∇V1
V2,W1) = g1(∇V1

V2, PW1 +QW1 +RW1). (3.40)

Using equations (2.2), (2.4), (2.11), (2.12), (3.3), (3.4), (3.16) and 3.2, we have

g1(∇V1
V2,W1) = g1(∇V1

JV2, JPW1) + g1(∇V1
JV2, JQW1) + g1(∇V1

JV2, JRW1),

= g1(AV1
V2, PW1 + cos2 θ1QW1 + cos2 θ2RW1)

−g1(H∇V1
V2, ωφPW1 + ωφQW1 + ωφRW1)

+g1(AV1
BV2 +H∇V1

CV2, ωPW1 + ωQW1 + ωRW1).

Now, since ωPW1 + ωQW1 + ωRW1 = ωW1 and ωPW1 = 0, one obtains

g1(∇V1
V2,W1) = g1(AV1

V2, PW1 + cos2 θ1QW1 + cos2 θ2RW1)

−g1(H∇V1
V2, ωφPW1 + ωφQW1 + ωφRW1)

+g1(AV1
BV2 +H∇V1

CV2, ωW1).
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Theorem 3.5. Let π be a quasi bi-slant Riemannian map from a Kähler mani-
fold (N1, g1, J) to a Riemannian manifold (N2, g2). Then the vertical distribution
(kerπ∗) defines a totally geodesic foliation on N1 if and only if

g1(TX1
X2, Z1) + cos2 θ1g1(TX1

QX2, Z1) + cos2 θ2g1(TX1
RX2, Z1)(3.41)

= g1(H∇X1
ωφPX2 +H∇X1

ωφQX2 +H∇X1
ωφRX2, Z1)

+g1(TX1
ωX2, BZ1) + g1(H∇X1

ωX2, CZ1)

for X1, X2 ∈ Γ(kerπ∗) and Z1 ∈ Γ(kerπ∗)
⊥.

Proof. For X1, X2 ∈ Γ(kerπ∗) and Z1 ∈ Γ(kerπ∗)
⊥, using equations (2.2), (2.4) and

(3.3), we have

g1(∇X1
X2, Z1)

= g1(∇X1
JPX2, JZ1) + g1(∇X1

JQX2, JZ1) + g1(∇X1
JRX2, JZ1).

Now, using equations (2.9), (2.10), (3.4), (3.16) and Lemma 3.2, we have

g1(∇X1X2, Z1)

= g1(TX1X2, Z1) + cos2 θ1g1(TX1QX2, Z1) + cos2 θ2g1(TX1RX2, Z1)

−g1(H∇X1ωφPX2 +H∇X1ωφQX2 +H∇X1ωφRX2, Z1)

+g1(∇X1ωPX2 +∇X1ωQX2 +∇X1ωRX2, JZ1).

Since ωPX2 + ωQX2 + ωRX2 = ωX2 and ωPX2 = 0, we have

g1(∇X1X2, Z1)

= g1(TX1X2, Z1) + cos2 θ1g1(TX1QX2, Z1) + cos2 θ2g1(TX1RX2, Z1)

−g1(H∇X1ωφPX2 +H∇X1ωφQX2 +H∇X1ωφRX2, Z1)

+g1(TX1ωX2, BZ1) + g1(H∇X1ωX2, CZ1).

Theorem 3.6. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, the invariant distribution D
defines a totally geodesic foliation on N1 if and only if

g1(TU1
JPU2, ωQW1 + ωRW1) = −g1(V∇U1

JPU2, φQW1 + φRW1), (3.42)

and
g1(TU1JPU2, CW2) = −g1(V∇U1JPU2, BW2) (3.43)

for U1, U2 ∈ Γ(D),W1 ∈ Γ(D1 ⊕D2) and W2 ∈ Γ(kerπ∗)
⊥.

Proof. For U1, U1 ∈ Γ(D),W1 ∈ Γ(D1 ⊕D2) and W2 ∈ Γ(kerπ∗)
⊥, using equations

(2.2), (2.4), (2.9), (3.3) and (3.4), we have

g1(∇U1
U2,W1) = g1(∇U1

JU2, JW1),

= g1(∇U1
JPU2, JQW1 + JRW1),

= g1(TU1
JPU2, ωQW1 + ωRW1) + g1(V∇U1

JPU2, φQW1 + φRW1).
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Using equations (2.2), (2.4), (2.9), (3.3) and (3.16), we have

g1(∇U1
U2,W2) = g1(∇U1

JU2, JW2),

= g1(∇U1
JPU2, BW2 + CW2),

= g1(V∇U1
JPU2, BW2) + g1(TU1

JPU2, CW2),

which completes the proof.

Theorem 3.7. Let π be a quasi bi-slant Riemannian map from a Kähler mani-
fold (N1, g1, J) to a Riemannian manifold (N2, g2). Then, the slant distribution D1

defines a totally geodesic foliation on N1 if and only if

g1(TV1
ωφV2, Z1) = g1(TV1

ωQV2, JPZ1 + φRZ1) + g1(H∇V1
ωQV2, ωRZ1), (3.44)

and
g1(H∇V1

ωφV2, Z2) = g1(H∇V1
ωV2, CZ2) + g1(TV1

ωV2, BZ2) (3.45)

for V1, V2 ∈ Γ(D1), Z1 ∈ Γ(D ⊕D2) and Z2 ∈ Γ(kerπ∗)
⊥.

Proof. For V1, V2 ∈ Γ(D1), Z1 ∈ Γ(D ⊕D2) and Z2 ∈ Γ(kerπ∗)
⊥, using equations

(2.2), (2.4), (2.10), (3.3), (3.4) and Lemma 3.2, we have

g1(∇V1V2, Z1)

= g1(∇V1φV2, JZ1) + g1(∇V1ωV2, JZ1),

= cos2 θ1g1(∇V1V2, Z1)− g1(TV1ωφV2, Z1)

+g1(TV1ωQV2, JPZ1 + φRZ1) + g1(H∇V1ωQV2, ωRZ1).

Now, we have

sin2 θ1g1(∇V1V2, Z1)

= −g1(TV1ωφV2, Z1) + g1(TV1ωQV2, JPZ1 + φRZ1)

+g1(H∇V1ωQV2, ωRZ1)

Next, from equations (2.2), (2.4), (2.10), (3.3), (3.16) and Lemma 3.2, we have

g1(∇V1
V2, Z2) = g1(∇V1

φV2, JZ2) + g1(∇V1
ωV2, JZ2),

= cos2 θ1g1(∇V1
V2, Z2)− g1(H∇V1

ωφV2, Z2)

+g1(H∇V1
ωV2, CZ2) + g1(TV1

ωV2, BZ2).

Now, we have

sin2 θ1g1(∇V1
V2, Z2)

= −g1(H∇V1
ωφV2, Z2) + g1(H∇V1

ωV2, CZ2) + g1(TV1
ωV2, BZ2).
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The proof of the following theorem is similar as the Theorem 3.7.

Theorem 3.8. Let π be a quasi bi-slant Riemannian map from a Kähler mani-
fold (N1, g1, J) to a Riemannian manifold (N2, g2). Then, the slant distribution D2

defines a totally geodesic foliation on N1 if and only if

g1(TU1
ωφU2, Y1) = g1(TU1

ωQU2, JPY1 + φRY1) + g1(H∇U1
ωQU2, ωRY1), (3.46)

and

g1(H∇U1
ωφU2, Y2) = g1(H∇U1

ωU2, CY2) + g1(TU1
ωU2, BY2) (3.47)

for U1, U2 ∈ Γ(D2), Y1 ∈ Γ(D ⊕D1) and Y2 ∈ Γ(kerπ∗)
⊥.

Theorem 3.9. Let π be a quasi bi-slant Riemannian map from a Kähler manifold
(N1, g1, J) to a Riemannian manifold (N2, g2). Then, π is a totally geodesic map if
and only if

g1(H∇V1
ωφQV2 +H∇V1

ωφRV2 − cos2 θ1∇V1
QV2 − cos2 θ2∇V1

RV2, U1)

= g1(V∇V1
JPV2 + TV1

ωQV2 + TV1
ωRV2, BU1)

+g1(TV1
JPV2 +H∇V1

ωQV2 +H∇V1
ωRV2, CU1),

and

g1(H∇U1ωφQV1 +H∇U1ωφRV1 − cos2 θ1∇U1QV1 − cos2 θ2∇U1RV1, U2)

= g1(V∇U1JPV1 +AU1ωQV1 +AU1ωRV1, BU2)

+g1(AU1JPV1 +H∇U1ωQV1 +H∇U1ωRV1, CU2)

for V1, V2 ∈ Γ(kerπ∗) and U1, U2 ∈ Γ(kerπ∗)
⊥.

Proof. Since π is a Riemannian map, we have

(∇π∗)(U1, U2) = 0, (3.48)

for U1, U2 ∈ Γ(kerπ∗)
⊥.

For V1, V2 ∈ Γ(kerπ∗) and U1, U2 ∈ Γ(kerπ∗)
⊥, using equations (2.2), (2.4),

(2.9), (2.10), (2.15), (3.3), (3.4) and Lemma 3.2, we have

g2((∇π∗)(V1, V2), π∗U1)

= −g1(∇V1
V2, U1)

= −g1(∇V1
JV2, JU1)

= −g1(∇V1
JPV2, JU1)− g1(∇V1

JQV2, JU1)− g1(∇V1
JRV2, JU1),

= −g1(∇V1
JPV2, JU1)− g1(∇V1

φQV2, JU1)− g1(∇V1
φRV2, JU1)

−g1(∇V1
ωQV2, JU1)− g1(∇V1

ωRV2, JU1),
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g2((∇π∗)(V1, V2), π∗U1) (3.49)

= −g1(V∇V1
JPV2 + TV1

ωQV2 + TV1
ωRV2, U1)

−g1(TV1
JPV2 +H∇V1

ωQV2 +H∇V1
ωRV2, CU1)

−g1(cos2 θ1∇V1
QV2 + cos2 θ2∇V1

RV2 −H∇V1
ωφQV2 −H∇V1

ωφRV2, U1).

Next, using equations (2.2), (2.4), (2.9), (2.10), (2.15), (3.3), (3.4), (3.16) and Lemma
3.2, we have

g2((∇π∗)(U1, V1), π∗U2)

= −g1(∇U1V1, U2)

= −g1(∇U1JV1, JU2)

= −g1(∇U1JPV1, JU2)− g1(∇U1JQV1, JU2)− g1(∇U1JRV1, JU2),

= −g1(∇U1JPV1, JU2)− g1(∇U1φQV1, JU2)− g1(∇U1φRV1, JU2)

−g1(∇U1ωQV1, JU2)− g1(∇U1ωRV1, JU2),

g2((∇π∗)(U1, V1), π∗U2) (3.50)

= −g1(V∇U1JPV1 +AU1ωQV1 +AU1ωRV1, BU2)

−g1(AU1JPV1 +H∇U1ωQV1 +H∇U1ωRV1, CU2)

−g1(cos2 θ1∇U1QV1 + cos2 θ2∇U1RV1 −H∇U1ωφQV1 −H∇U1ωφRV1, U2).

The proof follows in view of equations (3.49) and (3.50).

4. Example

Note that given an Euclidean space R2s with coordinates (y1, y2, ......, y2s−1,y2s) we
can canonically choose an almost complex structure J on R2s as follows:

J(a1
∂

∂y1
+ a2

∂

∂y2
+ ...........+ a2s−1

∂

∂y2s−1
+ a2s

∂

∂y2s
)

= −a2
∂

∂y1
+ a1

∂

∂y2
+ .............− a2s

∂

∂y2s−1
+ a2s−1

∂

∂y2s
,

where a1, a2, ............., a2s are C∞ functions defined on R2s. Throughout this sec-
tion, we will use this notation.

Example 4.1. Define a map π : R16 → R8 by

π(y1, y2, ........., y15, y16) = (y3 sinα−y5 cosα, 2021, y6, y7 sinβ−y9 cosβ, 2022, y10, y13, y14),
(4.1)

which is a quasi bi-slant Riemannian map such that

V1 =
∂

∂y1
, V2 =

∂

∂y2
, V3 = cosα

∂

∂y3
+ sinα

∂

∂y5
, V4 =

∂

∂y4
,

V5 = cosβ
∂

∂y7
+ sinβ

∂

∂y9
, V6 =

∂

∂y8
, V7 =

∂

∂y11
, V8 =

∂

∂y12
, V9 =

∂

∂y15
, V10 =

∂

∂y16
,
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kerπ∗ = D ⊕D1 ⊕D2, (4.2)

where

D = < V1 =
∂

∂y1
, V2 =

∂

∂y2
, V7 =

∂

∂y11
, V8 =

∂

∂y12
, V9 =

∂

∂y15
, V10 =

∂

∂y16
>,

D1 = < V3 = cosα
∂

∂y3
+ sinα

∂

∂y5
, V4 =

∂

∂y4
>,

D2 = < V5 = cosβ
∂

∂y7
+ sinβ

∂

∂y9
, V6 =

∂

∂y8
>,

(kerπ∗)
⊥

= <
∂

∂y6
, sinα

∂

∂y3
− cosα

∂

∂y5
, sinβ

∂

∂y7
− cosβ

∂

∂y9
,
∂

∂y10
,
∂

∂y13
,
∂

∂y14
>

with bi-slant angles α and β.

Example 4.2. Define a map π : R14 → R8 by

π(y1, y2, ........., y13, y14) = (
y1 − y3√

2
, 101, y2,

y7 −
√

3y9
2

, 202, y10, y13, y14), (4.3)

which is a quasi bi-slant Riemannian map such that

V1 =
1√
2

(
∂

∂y1
+

∂

∂y3
), V2 =

∂

∂y4
, V3 =

∂

∂y5
, V4 =

∂

∂y6
,

V5 =
1

2
(
√

3
∂

∂y7
+

∂

∂y9
), V6 =

∂

∂y8
, V7 =

∂

∂y11
, V8 =

∂

∂y12
,

kerπ∗ = D ⊕D1 ⊕D2, (4.4)

D = < V3 =
∂

∂y5
, V4 =

∂

∂y6
, V7 =

∂

∂y11
, V8 =

∂

∂y12
>,

D1 = < V1 =
1√
2

(
∂

∂y1
+

∂

∂y3
), V2 =

∂

∂y4
>,

D2 = < V5 =
1

2
(
√

3
∂

∂y7
+

∂

∂y9
), V6 =

∂

∂y8
>,

(kerπ∗)
⊥

= <
∂

∂y2
,

1√
2

(
∂

∂y1
− ∂

∂y3
),

1

2
(
∂

∂y7
−
√

3
∂

∂y9
),

∂

∂y10
,
∂

∂y13
,
∂

∂y14
>

with bi-slant angles θ1 = π
4

and θ2 = π
6
.
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