
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 37, No 5 (2022), 993–1006

https://doi.org/10.22190/FUMI220731068K

Original Scientific Paper

A GENETIC ALGORITHM WITH GREEDY CROSSOVER AND
ELITISM FOR CAPACITY PLANNING ∗

Lev Kazakovtsev1,2, Elena Kozlovskaya2, Ivan Rozhnov1,2

and Olga Patsuk2

1 Siberian Federal University, 79 Svobodny pr.

660041 Krasnoyarsk, Russia
2 Reshetnev Siberian State University of Science and Technology

prosp. Krasnoyarskiy Rabochiy, 31660039 Krasnoyarsk, Russia

Abstract. We propose a modification to the genetic algorithm with greedy agglomera-
tive crossover operator for the problem of scheduling product types at metal or plastic
production factory facilities where the goal is to minimize the number of switchings of
the product type of the production lines. Similar algorithms with greedy agglomera-
tive crossover for location problems do not use any elitism in the population. For the
considered problem which may also be classified as a location problem, elitism in the
population implemened in the form of tournament selection plays a positive role. The
article also discusses the dependence of the efficiency of the evolutionary algorithm on
the size of the population. As our experiments show, the introduction of elitism into
such an algorithm enables us to increase both the rate of convergence of the algorithm
and the accuracy of the solution. A special aspect chooses an individual with the best
value of the objective function.
Key words: genetic algorithm, greedy crossover, location problem.

1. Introduction

Optimal utilization of production capacity is an indicator of the efficient pro-

Received July 31, 2022, accepted: October 10, 2022
Communicated by Predrag Stanimirović
Corresponding Author: Lev Aleksandrovich Kazakovtsev, Siberian Federal University, 79 Svo-
bodny pr., 660041 Krasnoyarsk, Russia and Reshetnev Siberian State University of Science and
Technology, prosp. Krasnoyarskiy Rabochiy, 31660039 Krasnoyarsk, Russia | E-mail: levk@bk.ru
2010 Mathematics Subject Classification. Primary 90C57; Secondary 90C27, 90C09

© 2022 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND
∗This work was supported by the Ministry of Science and Higher Education of the Russian Feder-
ation (Grant No.075-15-2022-1121)

993

994 L. Kazakovtsev et al.

duction operation. The metal processing factories which include both foundry and
a metalworking production lines as well as plastic goods production must fulfill the
plan for the release of each type of product, follow the rules concerning the pro-
duction technology, and minimize the number of switches of the production types
among the production lines.

Thanks to their conceptual clarity and intuitive appeal, greedy algorithms have
found many applications in the computer sciences. Greedy algorithms are also often
used as simple heuristics, even if the optimal solution is not guaranteed.

The application of the genetic algorithm allows us to draw up a schedule on
production lines which is close to an optimal schedule. The genetic algorithms with
the greedy agglomerative crossover operator are complex hybrid algorithms: they
organize the global search with the commonly used evolutionary (genetic) frame-
work, they include a special greedy agglomerative procedure which obtains proper-
ties of a local search algorithm, and they include also known commonly used local
search procedures for scheduling problems. Local search algorithms allow gradual
improvement of certain result in the vicinity of the known solution [1]. Since the
greedy crossover procedure is computationally expensive, the population of individ-
uals (solutions) in such algorithms is usually small. The dependence between the
population size and the convergence speed has not been investigated. However, the
convergence rate depends on the size of the population of individuals for the prob-
lem of operational planning of product types at the production facilities of plastic
products. Finding a solution for extreme combinatorial problems such as schedul-
ing problems must take into account the requirements for computing resources [2].
Although such problems can be represented in a form of integer linear program-
ming problems, their linearization leads to a huge dimensionality of the resulting
problem.

Genetic algorithms are common algorithms for solving such problems. They
model evolutionary processes, find the best qualities (for example, genotype and
phenotype) in individuals of the population, which lead to the best solution of the
problem [3]. To plan the load of production capacities, a genetic algorithm applying
greedy heuristics is used [4].

Many methods have been proposed to solve production planning problem such
as: dynamic programming, enumeration, but greedy algorithms are no less known
and common. Thanks to their conceptual clarity and intuitive appeal, greedy algo-
rithms have found many applications in the computer sciences. Greedy algorithms
are also often used as simple heuristics, even if the optimal solution is not guaranteed
[5].

Optimization algorithms are usually a sequence of steps, each of which provides
a number of options. In a greedy algorithm, a choice is always made that seems to
be the best at the moment, that is, a locally optimal choice is made in the hope
that it will lead to an optimal solution to the global problem, which is not always
true [6]. In the greedy agglomerative procedures, some elements of the solution are
succeessively eliminated: each time, the algorithm selects such an element for the
elimination, which leads to the least significant deterioration in the value of the

A Genetic Algorithm with Greedy Crossover and Elitism for Capacity Planning 995

objective function.

The classical problem in the location theory is the p-median problem on a net-
work. It is necessary to find p network nodes in such a way as to minimize the
total sum of distances between each network node and the nearest of the selected
nodes [7]. Known genetic algorithms with greedy agglomerative heuristics [8, 9]
used in many problems including the compiling production schedules [10, 11], re-
ducing such problems to the problems of location of the production switching points
on a three-dimensional grid (time-product-production line), traditionally do not use
the strategy of elitism. As our experiments show, the introduction of elitism in the
population of the genetic algorithm allows us to increase both the rate of conver-
gence of the algorithm and the accuracy of the solution. A special aspect chooses
an individual who has the best value of the objective function/functions [12].

The rest of this paper is organized as follows. In Section 2, we give an overview
of known algorithm for the problem under consideration. In Section 3, we give
a mathematical statement to our problem and describe the genetic algorithm. In
Section 4, we provide the computational results with various parameter settings:
various population size and elitism in the population. In Section 5, we give a
conclusion.

2. Known Algorithms for Capacity Planning

Location problems are often used directly in urban development, in architecture,
transportation, and also have indirect application. Starting from the 60s, the loca-
tion problems were used to determine the optimal composition of various technical
systems, or assortment of products and were not logically related to placement in
a geometric sense [13, 14]. Local search is effectively applied to such problems. So,
the ALA-procedure (Alternating Location-Allocation) used to solve the p-median
problem [15] and the k-means procedure (an algorithm for cluster analysis problem
which can be also considered as a location problem) have the same structure and
are a common algorithm in placement theory.

Classical local search methods can quite simply find local optima of the problem,
and existing varieties of the genetic algorithm differ in that with their help it is
possible to obtain a solution in the form of a global optimum. However, it must
be borne in mind that the task of checking the found optimum for globality is also
a difficult task [16]. Local search methods for production planning problems are
known from 1970s and include several procedure such as shift of the production
type switch in time to the right (future) or left (previous periods), enumeration
of possible production types for a production line, insertion of a new production
switch moment into the production plan, and its elimination.

To obtain a globally optimal solution, many possible techniques can be used:
enumeration, partial enumeration (branch-and-bound algorithms), variable neigh-
borhood search, as well as various evolutionary algorithms.

Alp, Erkut and Drezner considered a genetic algorithm using a special recombi-
nation (crosser) procedure, a greedy (agglomerative) heuristic procedure [17]. This

996 L. Kazakovtsev et al.

algorithm is used to solve the p-median problem on the network [18]. Its feature is
that instead of rearranging the sequences represented by the parent individuals in
the population of the genetic algorithm, this heuristic procedure combines the par-
ent set of indices of network nodes that are selected as the medians in the p-median
problem, so the child solution begins to contain more medians than the conditions
of the problem require. After that, the gradual removal of extra medians, that is,
those elements of the solution, the removal of which gives the smallest increase in
the p-median objective function (sum of distances), until a feasible solution with
the required number of medians is reached [19].

Evolutionary algorithms (including genetic algorithms) use various principles
and the conceptual apparatus of natural evolution. Their advantage, compared to
classical ones, has been investigated experimentally [20], however, they determine
only the general structure of the search. An important feature of greedy agglomer-
ative heuristic methods is the possibility of choosing the next solution of the option
that can give a better decrease in the value of the objective function or, when max-
imizing, the largest increase in the value. It should be borne in mind that these
algorithms are local search methods that allow you to gradually improve a certain
result in some vicinity of the known solution. The method of greedy heuristics was
proposed by relation to the clustering and location problems [21]. The algorithms
of this method give results in solving practical problems, which is problematic to
improve by other methods in comparable time. Although they are mostly random-
ized, the results they produce are quite stable, yielding close results at the restarts
applied. The same properties of the algorithms with the embedded greedy heuristic
procedures remain for the production scheduling problems where the objective func-
tion is the number of production type switches. Since the genetic algorithms with
greedy agglomerative procedure used as the crossover operator are computationally
expensive and include embedded local search procedures, they are usually run with
a small population of the solutions. Moreover, such algorithms for location [20]
and other problems [21] do not involve any elitism: the individuals are chosen for
crossover from the population with equal probability. We investigate modifications
of such algorithms with various population sizes and with the elitism impplemented
in a form of tournament selection.

3. Mathematical problem statement and genetic algorithm

The problem of production capacity scheduling was considered by Antamoshkin
and Masich [22] as a pseudo-Boolean optimization problem. The modified version
of the proposed model with integer variables is also used in this article.

Let there be P types of products that are produced on K production lines.
Their performance is the same, for the selected pth type of products, the Kth line
can produce Vp units of products per shift. The time is discrete and measured in
shifts. We assume that there are three shifts per day. The algorithm will result in
a plotted graph showing the product type produced by each production line. The
limitation is that a part of the assortment produces a certain production line. The
matrix Z of Boolean constants zk,p, 1 ⩽ k ⩽ K, 1 ⩽ p ⩽ P is set, which contains

A Genetic Algorithm with Greedy Crossover and Elitism for Capacity Planning 997

1 if the pth line can produce the pth type of product and 0 otherwise. The Wp

units for each product is entered in the production plan and it is assumed that it
is necessary to fulfill this quantity in Tp days. It is also necessary to establish the
minimum total load of the production complex, which reaches the volume of Wmin

units per day. Product types are combined into M classes Cc, 1 ⩽ c ⩽ M . There is
a limitation that the production must be stopped for one shift if a different product
class is established for the production by a production line. It is assumed that the
non-stop change of production from type p to type r is established by a symmetric
matrix of Boolean constants Cp,r of dimension P × P : the value Cp,r = 1 indicates
the need to stop the line when changing products from p-type to r-type, if Cp,r = 0,
then there is the possibility of non-stop switching production (naturally, Cp,p = 0).

In [10, 11], the authors introduced variables y
′

i,k, 0 ⩽ y
′

i,k ⩽ P . The value

y
′

i,k = p means the release of the pth type of product on the kth line on the ith

day (value y
′

i,k = 0 means no release). It is assumed that y
′

0,k is a constant that
characterizes the initial setting of each Kth production line for a certain type of
product at an initial point in time. Additional variables x

′

i,k were also introduced:

(3.1) x
′

i,k =

{
y

′

i,k, y
′

i,k ̸= y
′

(i−1),k′ ∀i = 1, I, k = 1,K,

0, y
′

i,k = y
′

i,k

Values y
′

i,k can be derived from x
′

i,k:

(3.2) y
′

i,k =

{
y

′

(i−1),k, x
′

i,k = 0, ∀i = 1, I, k = 1,K.

x
′

i,k x
′

i,k ̸= 0

We also use dependent boolean variables:

(3.3) f3(x) = −
I∑

i=1

max{0,Wmin −
K∑

k=1

P∑
p=1

V
′

yp(3− C
′

y′ (i−1),k,y′ i,k
)}

(3.4) xi,k,1 =

{
1, x

′

i,k = p, ∀i = 1, I, k = 1,K, p = 1, P ,

0, x
′

i,k ̸= p,

(3.5) yi,k,1 =

{
1, y

′

i,k = p, ∀i = 1, I, k = 1,K, p = 1, P .

0, y
′

i,k ̸= p,

In this notation, the problem of production planning is formulated as follows:

998 L. Kazakovtsev et al.

(3.6) min

I∑
i=1

K∑
k=1

P∑
p=1

yi,k,p(1− y(i−1),k,p);

with constraints (taking into account operation in three shifts):

(3.7) Vp

Tp∑
i=1

K∑
k=1

yi,k,p(3− C
′

y
′

(i−1),k,y
′
i,k

) ⩾ W1 ∀p = 1, P ,

(3.8)

K∑
k=1

P∑
p=1

V
′

y′
p
(3− C

′

y
′

(i−1),k,y
′
i,k

) ⩾ Wmin ∀i = 1, I.

(3.9) yi,k,p ⩽ Zk,p ∀i = 1, I, k = 1,K, p = 1, P

The C
′

p,r is taken as matrix of Boolean values, and Cp,r is an augmented string
with a zero index and a column with a zero index (p, r ∈ {0, P}):

(3.10) C
′

p,r =


Cp,r, p > 0, r > 0,

0, r = 0,

1, p = 0, r > 0

Here, V
′
is the vector of the production rate by type of products per shift,

supplemented by V a zero element:

(3.11) V
′

p =

{
Vp, p > 0,

0, p = 0.

In this work, for the algorithm, it is proposed to replace all restrictions with the
following penalty functions:

(3.12) f2(x) = −
P∑

p=1

max{0,Wp − Vp

Tp∑
i=1

K∑
k=1

Yi,k,p(3− C
′

y′ (i−1),k,y′ i,k
)}.

(3.13) f3(x) = −
I∑

i=1

max{0,Wmin −
K∑

k=1

P∑
p=1

V
′

y′p
(3− C

′

y′ (i−1),k,y′ i,k
)}.

A Genetic Algorithm with Greedy Crossover and Elitism for Capacity Planning 999

We also define the objective function:

(3.14) f(x) = |X| =
I∑

i=1

K∑
k=1

P∑
p=1

xi,k,p,

The economic meaning of the function f2(X) is the total amount of products
produced with a lag behind the plan, the function f3(X) is the total underperfor-
mance of the daily minimum of products produced.

The general scheme of the algorithm for problem (3.5) - (3.8) can be described
using a genetic algorithm with greedy heuristics for planning continuous production
[10, 11] and it will look like this:

Step 1. The initial array of sets of lattice nodes ”change-line-type of pro-
duction” represented by the threes of indices (i, k, p) is formed: A = {Xj} =
{(i1, k1, p1), . . . , (inj , knj , pnj)}, j = 1, N .) A population of N individuals of the
genetic algorithm is formed. It is assumed that the number of lattice nodes nj in
each of the elements of the array A can be different.

Step 2. Randomly selected are two indices of parent ”individuals” j1, j2 ∈
{1, N}, j1 ̸= j2. Then randomly selected j3 ∈ w. Here w is some set of indices of
”individuals” (array elements) rated as ”bad.”

Step 3. Assign Xj3 = Xj1 ∪Xj2 .

Step 4. For a selected Xj3 a mutation procedure is performed (optional, not
used in practice for genetic algorithms with greedy crossover).

Step 5. For each node V = (i1, k1, p1) ∈ Xj3 , do:

Step 5.1. If ∃V2 = (i2, k2, p2) ∈ Xj3 : p2 ̸= p1, i2 = i1, k2 = k1, then choose ran-
domly with equal probability index p ∈ {p1, p2}, to assign Xj3 = Xj3\{(i1, k1, p1)}.

Step 5.2. Next iteration of loop 5.

Step 6. Calculate the boolean and integer variables [xi,k,p], [yi,k,p], [x
′

i,k], [C
′

y
′
i,k

],

corresponding to the set of matrices Xj3 according to formulae (3.9), (3.1)-(3.3).
Due to the fact that the sets Xj in this algorithm are represented by matrices of

integer variables, this step and the rest are reduced to calculation [y
′

i,k] according
to the expression (3.1).

Step 7. Assign FOUND = 0.

Step 8. The nodes Xj3 of the set are arranged in random order, then, for each

node V = (i
′
, k

′
, p

′
) ∈ Xj3 the following steps are performed:

Step 8.1. Assign ξ = Xj3\{V }. Find matrices of Boolean and integer variables

[xξ
i,k,1], [y

ξ
i,k,1], [x

ξ
i,k], [C

′

y
′ξ
i,k

] which correspond to set ξ. If f4(ξ) < f4(Xj3), then as-

sign Xj3 = ξ, FOUND = 1, the corresponding matrices of Boolean and integer

variables [xi,k,p], [yi,k,p], [x
′

i,k], [C
′

y
′
i,k

]. To the next iteration of cycle 7. It is impor-

tant that site V = (i
′
, k

′
, p

′
) exclusion from set and recalculation of corresponding

1000 L. Kazakovtsev et al.

integer variables is reduced to zero value x
′

i′ ,k′ and recalculation of values y
′

i′′ ,k′ for

i
′′
= i′ , T1.

Step 8.2. The application of local search procedures in the vicinity of the node
V described below significantly increases the efficiency of the algorithm. Such pro-
cedures are known since 1970s and were described in [11] for our problem.

Step 8.3. Next iteration of loop 8.

Step 9. If FOUND = 1, then go back to Step 7.

Step 10. Check the shutdown conditions, if they are not met, go to Step 2.

This algorithm sequentially excludes one node from the set Xj3 , which corre-
sponds to the work of the genetic algorithm with greedy heuristics for the p-median
problem [8].

Steps 8-8.3 implement the greedy procedure which consequently eliminates the
lattice nodes. This procedure includes local search procedures embedded in it.
Thus, this procedure is computationally expensive. Algorithms with the greedy
crossover operator are usually used with a small population. The extreme version
of such algorithm is the (1+1)-Evolutionary Algorithm [26] with only one individual
in the population. For several applications in clustering and location theory, such
algorithms outperform the genetic algorithms.

Thus, the size of the population is a highly important parameter which predefines
the efficiency of the whole algorithm. For algorithms with the greedy agglomerative
crossover operator, the constant small number of individuals can be used. Other
algorithms use a permanently expanded population [27]. In the next Section, we
show that an optimal population size is relatively small, however, algorithms with
an extremely small populations of 3 or 5 individuals are less efficient. An optimal
size of the population for practically important production planning problems can
be found by a reconnaissance search which can be used for constructing a self-
configuring algorithm.

In addition, we demonstrate that including the elitism implemented in a form
of a tournament selection improves the results of the algorithm, and this feature
of the genetic algorithm distinguishes this algorithm from greedy crossover genetic
algorithms for location problems where elitism is not used.

4. Dependence of algorithm effectiveness on population size

In our experiments, we used various values of population size were established
(3, 5, 10, 30, 100). The condition for forced shutdown of the algorithm was the
time limitation: 30 minutes. For each population size, 30 algorithm launches were
performed (see Table 4.1).

The best result corresponds to 33 production type switches for populations with
a size of 10, 30 and 100 individuals. Smaller populations, due to the lack of diversity,
are unable to reach this result. Table 4.2 shows the ratio of attempts of all launches
of our algorithm that achieve the best result, as well as the running time of the
program during which the best solution was found.

A Genetic Algorithm with Greedy Crossover and Elitism for Capacity Planning 1001

Table 4.1: Results of the algorithm without elitism for various population sizes
Population size Best result Worst result Average value

100 33 44 34.1
30 33 34 33.1
10 33 38 34.6
5 34 36 34.9
3 34 36 34.3

Table 4.2: Ratio of attempts achieving the best results
Population size Ratio of attempts Program running time

achieving the best result for the best achieved result, sec.
100 0.9 838
30 0.9 277
10 0.2 744
5 0 204
3 0 158

Additional data on the results of the algorithm are given in Tables 4.3 and 4.4
as well as Fig. 4.1.

We used the genetic algorithm in two versions: original, with equiprobabilistic
selection of the parent solutions at Step 2, and its version with modified Step 2.
During the tournament selection at Step 2, all individuals of the population are
divided into subgroups with the subsequent choice of individuals with the best
fitness in each of them [23].

Despite the fact that with a population size of 30 individuals, the algorithm
requires a slightly longer time to stop, it was with this population size in 90 per-
centages of program launches that a better solution was found. The experience
showed that for a population with an initial size of 10 individuals there is no di-
rect dependence. The best time in this case is higher than the population of 30
individuals. However, the algorithm converges to the best solution in 20 percent of
attempts only.

The extremes of the graph are in direct dependence - the largest value of the
population (100 individuals) corresponds to the greatest time of the best solution

Table 4.3: Actial tiome consumption to achieve the best result
Population size Running time limit Minimum Maximum

100 18000 31 1486
30 18000 240 1376
10 18000 113 1288
5 18000 70 1762
3 18000 158 1794

1002 L. Kazakovtsev et al.

Table 4.4: Median and average time for reaching the best achieved solution
Population size Median Average value

100 1217 1096.5
30 514 596.3
10 365 473.8
5 493 608.4
3 1161 1098.6

Fig. 4.1: The time needed to find a better solution depends on the original popu-
lation size

(838 seconds), and the smallest value of the population (3 individuals) corresponds
to the smallest time of the best solution (158 seconds).

On average, the solution is most quickly found with an initial population size of
10 individuals, and this time is 2 times less than the largest averages. Figure 4.2
shows this data as a graph.

Conclusion from Figure 4.2: the graph of results is a parabola. On average,
the program worked longest in populations where the sample was maximum and
minimum. For a population with an initial size of 10 individuals, the minimum
average time it took the program to find a better solution is observed.

Subsequently, populations of 30 individuals were used to study the influence
of elitism on the result of the algorithm. Tournament selection scheme: from a
population containing N lines, t lines are randomly selected, and the best line is
written to the intermediate array (a tournament is held between the selected lines).
This operation is repeated N times. The rows in the resulting intermediate array
are then used to cross (randomly). The size of the group of lines selected for the
tournament is often 2. In this case, they talk about a binary or doubles tournament.

A Genetic Algorithm with Greedy Crossover and Elitism for Capacity Planning 1003

Fig. 4.2: The average program time taken to find a better solution depending on
the original population size

Table 4.5: Results for an algorithm with tournament selection, population size 10
Minimum

operating time,
sec.

Maximum
value, s

Ratio of
successful
attempts

Average
program time,

sec.
233 1105 0.6 546.7

The number of the tournament is taken as t. The more subgroups participate in
the tournament, the less chances for individuals to get into the selection [24].

The advantage of using tournament selection as an elitism strategy is that there
is no need for additional calculations, as well as ordering the lines in the population
by increasing adaptability. This selection option is closer to reality, because the
success of an individual is largely determined by its environment - decision points
that are included in the area of permissible/best solutions, as far as they are better
or worse than it [25]. We introduced the following modification into the algorithm
with greedy heuristics.

Step 2 of our genetic algorithm will take the form:

Step 2. Randomly select three indices of parents j11, j12, j2, j11 ̸= j12 ̸= j2.
Select randomly j3 ∈ w. Here w is a set of indices of individuals (array elements A)
rated as ”bad.”

Step 2.1. If f2(χj11) + f3(χj11) > f2(χj12) + f3(χj12) then j1 = j12;

Step 2.2. If f2(χj11) + f3(χj11) < f2(χj12) + f3(χj12) then j1 = j11;

Step 2.3. If f2(χj11) + f3(χj11) = f2(χj12) + f3(χj12) and f(χj11) > f(χj12)
then j1 = j12, other j1 = j11.

The results of the program using tournament selection are presented in Table
4.5. The original population size is 10 individuals. The launch was carried out 30
times. The program limit time is 1800 seconds.

Using tournament selection, the best result is 33 switches, which was found in

1004 L. Kazakovtsev et al.

233 seconds, which is slower than the result of finding the best solution with a size
of the original population of 10 individuals without applying the strategy of elitism.
However, with elitism, 60 percent of all launches of the program found the best
solution (without it, we had much less successful attempts). Thus, elitism improves
the likelihood of finding an optimal solution.

5. Conclusions

The introduction of the elitism strategy in the form of tournament selection, as
well as the study of the dependence of the efficiency of the evolutionary algorithm
for planning capacity utilization on population size, made it possible to increase
the effectiveness of the genetic algorithm with a greedy agglomerate crossing op-
erator for the task of planning production. The effectiveness of the algorithm is
determined by the size of the population, which requires additional research in the
direction of developing algorithms with a dynamic population, as well as the study
of the possibility of applying evolutionary algorithms ”without population” to this
problem, namely the (1 + 1)-EA algorithm [26] ad similar ones.

REFERENCES

1. E. B. Patsuk and L. A. Kazakovtsev: Formal model of dynamic scheduling of the
educational center. Economics and management of management systems. 28 (2018),
182.

2. L. A. Kazakovtsev, M. N. Gudyma, D. V. Stashkov, A. A. Stupin and N.
N. Dzhioeva: Evolutionary algorithms with a heterogeneous population for clustering
and placement problems. Monograph. Scientific and Publishing Center ”Relevance”.
Moscow, (2017), 196.

3. L. Kazakovtsev, I. Rozhnov, I. Nasyrov and V. Orlov: Self-adjusting genetic
algorithm with greedy agglomerative crossover for continuous p-median problems. In:
Mathematical Optimization Theory and Operations Research: Recent Trends. MO-
TOR 2021. Communications in Computer and Information Science, 1476 (2021), 184-
200. Springer, Cham. doi.org/10.1007/978-3-030-86433-0-13.

4. O. V. Patsuk: Investment activity of the region. Bulletin of SibGAU named after
academician M. F. Reshetnev. 3(43) (2012), 184-189.

5. A. A. Lazarev and E. R. Gafarov: Schedule theory. Tasks and algorithms. Eco-
nomics . MOSCOW STATE UNIVERSITY, Moscow, (2011), 220.

6. E. G. Coffman: Schedule Theory and Computing Machines. Publishing Center
”Academy”, Moscow, (2010), 156.

7. A. Kapoor: Hands-On Artificial Intelligence for IoT. Packt Publishing, Mumbai,
(2019), 267.

8. L. Kazakovtsev, I. Rozhnov, G. Shkaberina and V. Orlov: K-Means Genetic
Algorithms with Greedy Genetic Operators. Mathematical Problems in Engineering.
2020 (2020), ArticleID 8839763. doi.org/10.1155/2020/8839763.

9. L. Kazakovtsev, I. Rozhnov, A. Popov and E. Tovbis: Self-Adjusting Variable
Neighborhood Search Algorithm for Near-Optimal k-Means Clustering. Computation.
8(4) (2020), ArticleID 90. doi.org/10.3390/computation8040090.

A Genetic Algorithm with Greedy Crossover and Elitism for Capacity Planning 1005

10. L. A. Kazakovtsev and A. N. Antamoshkin: Algorithm for scheduling. Bulletin of
KrasGAU. 4(103) (2015), 215-219.

11. L. A. Kazakovtsev., M. N. Guyma and A. N. Antamoshkin: Genetic Algorithm
with Greedy Heuristic for Capacity Planning. International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops. 4 (2014), 607-613.

12. A. V. Eremeev and Yu. B. Kovalenko: The task of compiling schedules with the
grouping of machines by technology. Discrete analysis and research of operations. 18
(2011), 54-79.

13. E. A. Beltz: Optimizing the location of enterprises taking into account the minimum
permissible distances. Bulletin of Omsk University. 4 (2012), 13-16.

14. Yu. A. Kochetov: Comparison of metaheuristics for solving the two-level problem of
enterprise placement and factory pricing. Discrete analysis and research of operations.
3 (123) (2015), 36-54.

15. A. V. Panteleev: Application of evolutionary methods of global optimization in prob-
lems of optimal control of deterministic systems. MAI Publishing House, Moscow.
(2013), 128.

16. S. Gonzalez-Martin, A. Ferrer, A. Juan and D. Riera: Solving non-smooth arc
routing problems throughout biased- randomized heuristics. Computer-based Modeling
and Optimization in Transportation, Springer International Publishing. (2014), 451.

17. B. A. Bozkaya: Genetic Algorithm for the p-Median Problem. Facility Location Ap-
plications and Theory. 7 (2002), 179-232.

18. N. S. Grigorvea: The task of compiling maximum time offset schedules for parallel
processors. MAI Publishing House, Moscow. (2016), 246.

19. I. H. Sigal and A. P. Ivanova: Introduction to applied discrete programming: models
and computational algorithms. 2nd edition, supplemented and corrected, FIZMATLIT,
Moscow, (2007), 140.

20. D. Kirszenblat: Dubins networks: Thesis. Melbourne Department of Mathematics
and Statistics of the University of Melbourne. 2 (2011), 56-89.

21. L. A. Kazakovtsev and A.N. Antamoshkin: Genetic algorithm with fast greedy
heuristic for clustering and location problems. Informatica. 38 (2014), 229–240.

22. A. Antamoshkin and I. Masich: Pseudo-Boolean Optimization in Case of an Un-
connected Feasible Set. In: ”Models and Algorithms for Global Optimization”, Opti-
mization and Its Applications. 4 (2007), 111–122.

23. G. N. Dubin and A. A. Korbut: FBehavior on average of greedy algorithms for the
minimization problem about the rant - general distributions of coefficients. Journal of
Computational Mathematics and Mathematical Physics. 48 (2008), 1556-1579.

24. I. L. Vasiliev: New lower grades for the problem of placement with client preferences.
Journal of Computational Mathematics and Mathematical Physics. 6 (2009), 1055-
1097.

25. R. A. Neidorf, V. G. Kobak and D. V. Titov: Comparative analysis of the ef-
fectiveness of tournament selection of a genetic algorithm for solving homogeneous
distributive problems. Bulletin of the Don State Technical. un-ta. 3 (2009), 410-432.

26. L. Kazakovtsev, I. Rozhnov and G. Shkaberina: Self-Configuring (1 + 1)-
Evolutionary Algorithm for the Continuous p-Median Problem with Agglomerative Mu-
tation. Algorithms. 14 (2021), 130. https://doi.org/10.3390/a14050130.

1006 L. Kazakovtsev et al.

27. L. Kazakovtsev, D. Stashkov, M. Gudyma and V. Kazakovtsev: Al-
gorithms with Greedy Heuristic Procedures for Mixture Probability Distribu-
tion Separation. Yugoslav Journal of Operations Research. 29(1) (2019), 51-67.
https://doi.org/10.2298/YJOR171107030K.

