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1. Introduction

In this paper, we deal with the existence of solutions to a coupled system of non-
linear hybrid fractional differential equations with Erdélyi-Kober integral boundary
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Abstract. In this work, we investigate the existence result for a coupled system of hybrid 
fractional differential equations in a Banach algebra. Our main result is based on a 
generalization of Darbo’s fixed point theorem in Banach algebra. We apply in our 
approach the technique of measure of non-compactness, we prove that the Kuratowski 
measure of noncompactness satisfies a condition (m) which will be useful in our con-
siderations. An example is given to illustrate the feasibility of our main result. An 
example is provided to illustrate our result.
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conditions.

cDα
(

x(t)
f1(t,x(t),y(t))

)
= h1(t, x(t), y(t)), t ∈ I = [0, T ], 1 < α ≤ 2,

cDβ
(

y(t)
f2(t,x(t),y(t))

)
= h2(t, x(t), y(t)), t ∈ I = [0, T ], 1 < β ≤ 2,

x(0) = 0, y(0) = 0,(
x(t)

f1(t,x(t),y(t))

)
t=T

= γIς,τκ x(ζ),(
y(t)

f2(t,x(t),y(t))

)
t=T

= δIς,τκ y(ω),

(1.1)

where cDα, cDβ are the Caputo fractional derivatives of order α, β respectively and
f1, f2, h1, h2 are given functions f1, f2 : I×R×R → R\{0}, h1, h2 : I×R×R → R , γ
and δ are real numbers , Iς,τκ denotes the Erdélyi-Kober fractional integral of order
τ > 0, κ > 0 and ς ∈ R, ζ, ω ∈ (0, T ). Recently, fractional differential equations
have a large application in a variety of fields such as physics, mathematics, electrical
networks, signal and image processing, aerodynamics, economics and so on. Hence
there has been increased attention from both theoretical and the applied points, for
more details see [5, 3, 4, 6, 15, 26, 23, 24], etc. The study of coupled systems of
fractional differential equations is also important as such systems appear in a variety
of problems of applied nature, especially in biosciences. For instance, see [7]. Hybrid
fractional differential equations have been also studied by several researchers. This
class of equations involves the fractional derivative of an unknown function hybrid
with the nonlinearity depending on it. Our aim in this paper is to generalize in a
consistent way this line of reasoning for the case of nonlinear coupled system of a
hybrid fractional differential equations.

In the first part of the paper [14], the author dealt with properties concerning the
fractional derivative of the Riemann ζ function. He made use Grünwald-Letnikov
fractional derivative to compute the functional equation, this one is rewritten in a
simplified form that reduces the computational cost. The aim of the second part
examined the link with the distribution of prime numbers. The Dirichlet ζ function
suggests the introduction of a complex strip as a fractional counterpart of the critical
strip; finally the author showed the fractional derivative of ζ with the distribution
of prime numbers in the left half-plane.

ζα(s) ∼
∑
p∈P

+∞∑
t=0

lnα pt

p−st
.

In the paper [13], the author dealt with the fractional calculus of ζ function. In
particular, his study is based on the Hurwitz ζ function defined by

ζ(s, a) =
+∞∑
n=0

1

(n+ a)s
, Res > 1, a ∈ R : 0 < a ≤ 1;

F (s) =
+∞∑
n=0

f(n)

ns
, f : N → C.
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The main tool is the complex generalization of the Grünwald-Letnikov fractional
derivative. He began by proving the functional equation together with an integral
representation by Bernoulli numbers; finally an application in terms of Shannon
entropy is given.

In the paper [12], the aim is the study of the fractional derivative of the Lerch
zeta function. The calculus of the fractional derivative of the Lerch zeta function was
obtained by using a complex generalization of the Grünwald-Letnikov derivative.
This derivation combined with generalized Leibniz rule ensures him to obtain a
functional equation for the fractional derivative of the Lerch zeta function. He gave
another form of this equation, and simplified and proved an approximate functional
equation for the fractional derivative of the Lerch zeta function.

In the paper [20] the authors dealt with in the first part properties of the Caputo
derivative in real line. Then they studied the fractional derivative in complex plane
by Ortigueira defined by

Dαf(z) =
Γ(α+ 1)

2π j

∫
C

f(ω)

(ω − z)α+1
dw,

where C is any U shaped contour that encircles the half-straight line starting at z
that is the branch cut line of w−α−1, j is the imaginary part. In the second part
they generalized the Caputo derivative in real line to that in complex plane then
they studied its properties.
In the paper [21] the authors presented a number of fractional derivative and integral
representations for general families of the Hurwitz-Lerch ζ function defined by

+∞∑
n=0

1

(n+ a)s
, R(s) > 1, a ∈ C\Z−

0 , Z−
0 = {0,−1,−2...},

it can be presented as the following sum-integral representation :

k−1∑
j=0

1

Γ(s)

∫ +∞

0

ts−1e−(a+j)t

1− e−kt
dt.

In the article [25] the author used a fractional q-calculus operator to define the
subclasses Sn α(λ, β, b, q) and Gnα(λ, β, b, q) of normalized analytic functions with
complex order and negative coefficients. Using the results he obtained their asso-
ciated coefficient estimates, radii of close-to-convexity, starlikeness and convexity,
extreme points and growth and distortion theorems. This survey motives the re-
searchers to applique the basic (or q-) series and basic (or q-) polynomials, especially
the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric poly-
nomials in several areas, we remind at the end the definition of the q-derivative (or
the q-difference) of a function f as follows :

Definition 1.1. The q-derivative (or the q-difference) of a function f(z) is denoted
by Dqf(z) and defined in a given subset of C by

Dqf(z) =

{
f(z)−f(qz)

1−qz , z ̸= 0;

f ′(0), z = 0.
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In the paper[27], the author dealt with a fractional derivative introduced by means
of the Fourier transform. The explicit form of the kernel of general derivative
operator acting on the functions analytic on a curve in complex plane is deduced
and the correspondence to exiting approaches is shown.

As far as we know, there are a few papers which treated this work based on fixed
point theorem combined with measure of non-compactness for hybrid fractional
differential coupled system in Banach algebra see [11, 16], which constitute our
first contribution. The second motivation deals with the result that a Kuratowski
measure of compactness υ that will be specified later satisfies the condition, that is,

υ(XY ) ≤ ∥X∥υ(Y ) + ∥Y ∥υ(X).

As far as we know, this preliminary result doesn’t exist anywhere in the literature.
Let us now list the difficulties which arise in this situation:

(1) We need to know how to define the measure of non-compactness in Banach
product space?

(2) How to choose a judicious measure of non-compactness which is compatible
with Darbo’s fixed point generalization?

(3) Proving that measure of non-compactness of Kuratowski, the measure chosen,
verifies the condition (m) see [9] and this is the crucial step of this paper.

We show that that the conditions imposed are optimal in a natural way, in the sense
that on one hand they don’t imply each other, and on the other hand one there is
no need to add further conditions to prove this result. The paper is divided into
four sections. In Section 2. we give some basic notations as well as some preliminary
lemmas which will play essential roles in this paper. In Section 3. we present the
existence results for the problem (1.1) by using a generalization of Darbo’s fixed
point theorem combined with measure of non-compactness in a Banach algebra ;
finally in the last Section 4., we conclude the paper by giving a concrete example
to illustrate the feasibility of our main result.

2. Preliminaries

In this section, we introduce some notations and technical results which will be
used throughout this paper. By C(I,R), we denote the Banach space of continuous
functions x from I to R equipped with the supremum norm

∥x∥ = sup
t∈[0,T ]

|x(t)| .

By C(I,R)×C(I,R), we denote the Banach space of pair of functions (x, y) equipped
with the norm

∥(x, y)∥1 = ∥x∥+ ∥y∥.
We begin with some definitions from the theory of fractional calculus.
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Definition 2.1. [8] Let h ∈ L1([a, b],R) . The fractional integral of order α > 0
of the function h is defined almost everywhere in [a, b] and given by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds,

provided that the right side is pointwise defined on (0,+∞). Γ is the gamma

function. When a = 0, we write Iαh(t) = [h ∗ ϑα](t), where ϑα(t) =
tα−1

Γ(α) for t > 0

and ϑα(t) = 0 for t ≤ 0. the equality holds everywhere if h ∈ C ([a, b],R).

Definition 2.2. [8] Let α > 0 and n be the smallest integer greater than or equal
to α and h ∈ Cn([a, b],R). Then the Caputo fractional derivative of order α of the
function h is defined by

CDα
a+h(t) = In−α

a+

dnh

dtn
(t)

=
1

Γ(n− α)

∫ t

a

(t− s)n−α−1 d
nh

dsn
(s)ds,

provided that the right side is pointwise defined on (0,+∞).

Definition 2.3. [22] Let h be a function such that h ∈ L1([a, b],R). The Erdélyi-
Kober fractional integral of order τ > 0, with κ > 0 and ϵ ∈ R, is defined by

Iς,τκ h(t) =
κt−κ(τ+ς)

Γ(τ)

∫ t

0

sκς+κ−1

(tκ − sκ)1−τ
h(s)ds,

provided the right side is pointwise defined on (0,+∞).

Remark 2.1. For κ = 1 the above operator is reduced to the Kober operator

Iς,τ1 h(t) =
t−(τ+ς)

Γ(τ)

∫ t

0

sς

(t− s)1−τ
h(s)ds, ς, τ > 0.

For ς = 0, the Kober operator is reduced to the Riemann-Liouville fractional integral with
a power weight,

I0,τ1 h(t) =
t−τ

Γ(τ)

∫ t

0

h(s)

(t− s)1−τ
ds, τ > 0.

For the existence of solutions of our problem (1.1), we need the following auxil-
iary lemmas.

Lemma 2.1. [18] Let α > 0 and β > 0 and h a function such that h ∈ L1([a, b],R).
Then the following semigroup property is valid for fractional integrals :

(i)

Iαa+I
β
a+h(t) = Iα+β

a+ h(t),
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(ii)

Iαb−I
β
b−h(t) = Iα+β

b− h(t).

Lemma 2.2. [18] Let α > 0. Then we have for a function h ∈ Cn([a, b],R)
cDαh(t) = 0,

has a unique solution h(t) = c0 + c1t + c2t
2 + .... + cn−1t

n−1, where ci ∈ R, i =
0, 1, 2, ...., n− 1, and n = [α] + 1.

Lemma 2.3. [18] Let α > 0. Then we have for a function h ∈ Cn([a, b],R)

IαcDαh(t) = h(t) + c0 + c1t+ c2t
2 + ....+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, ...., n− 1, and n = [α] + 1.

Lemma 2.4. [22] Let κ, τ > 0 and ς, q ∈ R, then we have

Iς,τκ tq =
tqΓ

(
ς + ( qκ ) + 1

)
Γ
(
ς + ( qκ ) + τ + 1

) .(2.1)

2.1. Measure of non-compactness

The measure of non-compactness is a very useful tool in nonlinear analysis. It
was initiated by Kuratowski [19] and Darbo [10] which are applied to the theories
of differential and integral equations. In this section, we give some definitions,
properties and examples about measure of non-compactness that will be used in
this work. More details about these facts can be found in the monograph [2].
Let us now give the definition of the measure of non-compactness in the sense of
Kuratowski and its properties. Let E be a Banach space with the norm ∥.∥, If X is
a nonempty subset X of E then X and ConvX denote the closure and the convex
closure of X, respectively. By diam X we will denote the diameter of a bounded
set X, the norm of X is defined by ∥.∥, i.e. ∥X∥ = sup ∥x∥ : x ∈ X. Further we
denote by ME the family of all nonempty and bounded subsets of E and by NE its
subfamily which contains all relatively compact subsets.
Recall that a subset X ⊂ E is relatively compact provided that the closure X is
compact.

Definition 2.4. [17] Let E be a Banach space and ME the family of all bounded
subsets of E. Then the function: υ : ME to R+ defined by

υ(Ω) = inf{ς > 0 : Ωadmits a finite cover by sets of diameter ≤ ς},

is called the Kuratowski measure of noncompactness.

Let us list some properties of Kuratowski measure of non-compactness that will
be useful hereafter.
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Lemma 2.5. [17] Let A,B ∈ ME. The following properties hold :

(i1) υ(A) = 0 if and only if A is relatively compact,

(i2) υ(A) = υ(A), where A denotes the closure of A,

(i3) υ(A+B) ≤ υ(A) + υ(B),

(i4) A ⊂ B implies υ(A) ≤ υ(B),

(i5) υ(aA) = ∥a∥υ(A) for all a ∈ E,

(i6) υ({a} ∪A) = υ(A) for all a ∈ E,

(i7) υ(A) = υ(Conv(A)), where Conv(A) is the smallest convex set that contains
A.

Lemma 2.6. [17] If V ⊂ C(I, E) is a bounded and equicontinuous set, then
i) the function υ(V (.)) is continuous on I and

υc(V ) = sup
0≤t≤T

υ(V (t)),

ii)

υ

(∫ T

0

x(s)ds : x ∈ V

)
≤
∫ T

0

υ(V (s))ds,

where V (s) = {x(s) : x ∈ V }, s ∈ I.

In the following part, we will assume that the space E has a structure of Banach
algebra. In this situation, we denote by xy the product of two elements x, y ∈ E
and by XY the product of two subsets X and Y of E, i.e. XY = {xy : x ∈ X,
y ∈ Y }. Now, we recall the following property of measure of non-compactness [2]
which will be very useful hereafter.

Definition 2.5. [9] We say that a measure of noncompactness µ defined on the
Banach algebra E satisfies the assumption (m) if, for any X,Y ∈ ME , the following
property holds,

µ(XY ) ≤ ∥X∥µ(Y ) + ∥Y ∥µ(X).(2.2)

Let us first give an essential result which will be used in the following.

Theorem 2.1. The Kuratowski measure of noncompactness υ on C(I,R) satisfies
the condition (2.2).



650 H. M. Srivastava and B. Hedia

Proof. Let X,Y ⊂ MC(I,R) a nonempty bounded subset of C(I,R). Let Si be a
partition of bounded subset of C(I,R), with diam(Si) < d for each i = 1, . . . , n and
X =

∪n
i=1 Si. Furthermore, let Gi be a partition of bounded subset of C(I,R) with

diam(Gj) < p for each j = 1, . . . ,m and Y =
∪n

j=1 Gj . Note that diam(Si) and
diam(Gi) indicate respectively the diameter of (Si) and (Gi).

diam(SiGj) = sup
(x,y)∈SiGi, (x′,y′)∈SiGj

∥xy − x′y′∥

= sup
(x,y)∈SiGi, (x′,y′)∈SiGj

∥xy − xy′ + xy′ − x′y′∥

≤ ∥x∥ sup
(y,y′)∈G2

j

∥y − y′∥+ ∥y′∥ sup
(x,x′)∈S2

i

∥x− x′∥

≤ ∥X∥diam(Gj) + ∥Y ∥diam(Sj).

From the infimum property, we deduce that there exists ϵ such that

diam(Sj) < d < υ(X) + ϵ, diam(Gj) < p < υ(Y ) + ϵ,

it follows then,

diam(SiGj) ≤ ∥X∥diam(Gj) + ∥Y ∥diam(Si)

< ∥X∥p+ ∥Y ∥d
< ∥X∥υ(Y ) + ∥Y ∥υ(X) + ϵ∥X∥+ ς∥Y ∥.

Bearing in the mind definition (2.4) and taking ϵ → 0 in the last inequality, we get

υ(XY ) ≤ ∥X∥υ(Y ) + ∥Y ∥υ(X).

In [1], the authors proved the following generalization of Darbo’s fixed point
theorem.

Theorem 2.2. [9]Let Ω be a nonempty, bounded, closed and convex subset of a
Banach space E and let N : Ω to Ω be a continuous operator satisfying

υ(NX) ≤ ϑ(υ(X)),(2.3)

for any nonempty subset X of Ω, where υ is an arbitrary measure of noncompactness
and ϑ : R+ −→ R+ is a nondecreasing function such that limn→+∞ ϑn(t) = 0 for
each t ∈ R+, where ϑn denotes the n-iteration of ϑ. Then N has at least one fixed
point in Ω.

Moreover, in [1] the authors proved the following lemma which will be useful in
our consideration.
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Lemma 2.7. [9]Let ϑ : R+ to R+ be a nondecreasing and upper semicontinuous
function. Then the following conditions are equivalent :
a) limn→+∞ ϑn(t) = 0, for any t ≥ 0,
b) ϑ(t) < t for any t > 0.

Theorem 2.3. [7] Assume that υ1, υ2, υ3, . . . , υn are the measures of noncompact-
ness in E1, E2, . . . , En, a sequence of Banach spaces, respectively. Moreover suppose
that the function F : [0,+∞)n to [0,+∞) is convex and F(x1, x2 . . . xn) = 0 if, and
only if xi = 0 for i = 1, . . . , n. Then

υ̃(V ) = F(υ(V1), υ(V2), . . . , υ(Vn)),

defines a measure of noncompactness on E1 × E2 × · · · × En, where Vi denotes the
natural projection of V onto Ei for i = 1, . . . , n.

Example 2.1. [7] Let υ be a measure of non-compactness. We define F(x, y) = x + y
for any x, y ∈ [0,+∞). Then F satisfies all assumptions cited in Theorem 2.3. Hence
υ̃(V ) = υ(V1)+υ(V2) is a measure of noncompactness in the space E×E where Vi, i = 1, 2
denote the natural projections of V .

3. Main Result

Definition 3.1. A pair of functions (x, y) ∈ C(I,R) × C(I,R), whose α, β-
derivatives exists on I is said to be a solution of (1.1) if x and y satisfy the equations,

cDα
(

x(t)
f1(t,x(t),y(t))

)
= h1(t, x(t), y(t)), t ∈ I = [0, T ], 1 < α ≤ 2,

cDβ
(

y(t)
f2(t,x(t),y(t))

)
= h2(t, x(t), y(t)), t ∈ I = [0, T ], 1 < β ≤ 2,

on I and also satisfy the conditions,
x(0) = 0, y(0) = 0,(

x(t)
f1(t,x(t),y(t))

)
t=T

= γIς,τκ x(ζ), ζ ∈ (0, T ),(
y(t)

f2(t,x(t),y(t))

)
t=T

= δIς,τκ y(ω) ω ∈ (0, T ).

Lemma 3.1. Let 1 < α ≤ 2 and let h : I → R be continuous. A function x is a
solution of the fractional equation

x(t) = tγκζ−κ(τ+ς)

Γ(α)Γ(τ)

[
T−γ

ζΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1h(s)dsdr

− t

Γ(α)

[
T−γ

ζΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ T

0

(T − s)α−1h(s)ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

(3.1)
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if and only if x is a solution of the fractional differential equation

cDαx(t) = h(t), 0 < t < T,(3.2)

x(0) = 0, x(T ) = γIς,τκ x(ζ),(3.3)

with

T − γ
ζΓ(ς + 1

κ + 1)

Γ(ς + 1
κ + τ + 1)

̸= 0.

Proof. Assume that x satisfies (3.2). Lemma 2.3 implies

x(t) = c0 + c1t+ Iαh(t),

where c0, c1 ∈ R are arbitrary constants. From the condition (3.3), we deduce that
c0 = 0. It follows then

x(T ) = c1T +
1

Γ(α)

∫ T

0

(T − s)α−1h(s)ds

and

x(ζ) = c1ζ +
1

Γ(α)

∫ ζ

0

(ζ − s)α−1h(s)ds.

Again from the condition (3.3) we obtain

c1 = γκζ−κ(τ+ς)

Γ(α)Γ(τ)

[
T−γ

ζΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1h(s)dsdr

− 1

Γ(α)

[
T−γ

ζΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ T

0

(T − s)α−1h(s)ds;

so,

x(t) =
tγκζ−κ(τ+ς)

Γ(α)Γ(τ)
[
T − γ

ζΓ(ς+ 1
κ+1)

Γ(ς+ 1
κ+τ+1)

] ∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1h(s)dsdr

− t

Γ(α)
[
T − γ

ζΓ(ς+ 1
κ+1)

Γ(ς+ 1
κ+τ+1)

] ∫ T

0

(T − s)α−1h(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds.

Conversely, assume that x satisfies the fractional equation (3.1), since cDα is the
left inverse of Iα, we get

cDαx(t) = h(t), for each t ∈ [0, T ].

Also, obviously one has by an easy computation (3.3).
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From lemma 3.1 we infer :

Lemma 3.2. Let 1 < α, β ≤ 2, h1, h2 : I × R× R −→ R
and f1, f2 : I × R× R −→ R \ {0}. Then (x, y) is a solution of the integral system

x(t) = f1(t, x(t), y(t))×

− t

Γ(α)

[
T−γ

ζΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ T

0

(T − s)α−1h1(s, x(s), y(s))ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1h1(s, x(s), y(s))ds

+ tβκζ−κ(τ+ς)

Γ(α)Γ(τ)

[
T−γ

ζΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1h1(s, x(s), y(s))dsdr



y(t) = f2(t, x(t), y(t))×

− t

Γ(β)

[
T−δ

ωΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ T

0

(T − s)β−1h2(s, x(s), y(s))ds

+ 1
Γ(β)

∫ t

0

(t− s)β−1h2(s, x(s), y(s))ds

+ tβκω−κ(τ+ς)

Γ(β)Γ(τ)

[
T−δ

ωΓ(ς+ 1
κ

+1)

Γ(ς+ 1
κ

+τ+1)

] ∫ ω

0

∫ r

0

rκς+κ−1

(ωκ − rκ)1−τ
(r − s)β−1h2(s, x(s), y(s))dsdr

 ,

if and only if (x, y) is a solution of the coupled fractional differential system
cDα

(
x(t)

f1(t,x(t),y(t))

)
= h1(t, x(t), y(t)), 0 < t < T,

cDβ
(

y(t)
f2(t,x(t),y(t))

)
= h2(t, x(t), y(t)), 0 < t < T,

added with the boundary conditions, x(0) = 0, y(0) = 0,
x(T ) = γIς,τκ y(ζ), ζ ∈ (0, T ),
y(T ) = δIς,τκ y(ω), ω ∈ (0, T ),

with

T − γ
ζΓ(ς + 1

κ + 1)

Γ(ς + 1
κ + τ + 1)

̸= 0, T − δ
ωΓ(ς + 1

κ + 1)

Γ(ς + 1
κ + τ + 1)

̸= 0.

Assume that Λ is the following set of functions

Λ =
{
ϑ : R+ −→ R+ : ϑ is nondecreasing such that lim

n→∞
ϑn(t) = 0 for any t ∈ R+

}
.
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Remark 3.1. The set Λ satisfies the following properties.
1) If λ ∈ [0, 1] and ϑ ∈ Λ then λϑ ∈ Λ.
2) If ϑ1, ϑ2 ∈ A, then max(ϑ1, ϑ2) ∈ Λ.
3) Let ϑ ∈ Λ, it is easy to see that ϑ(t) < t for any t > 0.

Let us now assume the following assumptions,

(H1) f1, f2 ∈ C(I × R× R,R \ {0}) and h1, h2 ∈ C(I × R× R,R).

(H2) For any t ∈ I and x1, x2, y1, y2 ∈ R :

|f1(t, x1, y1)− f1(t, x2, y2)| ≤ ϑ1(|x1 − x2|+ |y1 − y2|),
|f2(t, x1, y1)− f2(t, x2, y2)| ≤ ϑ2(|x1 − x2|+ |y1 − y2|),
|h1(t, x1, y1)− h1(t, x2, y2)| ≤ σ1(|x1 − x2|+ |y1 − y2|),
|h2(t, x1, y1)− h2(t, x2, y2)| ≤ σ2(|x1 − x2|+ |y1 − y2|),

where ϑ1, ϑ2, σ1, σ2 ∈ Λ and ϑ1, ϑ2, σ1 and σ2 are continuous functions.
(H3) There exists r > 0 satisfying,

Tα T |M1|+1
Γ(α+1) + Tα+1γ |M1|Γ(ς+1)

Γ(α+1)Γ(ς+τ+1) ≤ r
2(ϑ1(r)+f⋆

1 )(σ1(r)+h⋆
1)
,

and

T β T |M2|+1
Γ(β+1) + Tβ+1δ |M2|Γ(ς+1)

Γ(β+1)Γ(ς+τ+1) ≤ r
2(ϑ2(r)+f⋆

2 )(σ2(r)+h⋆
2)
,

(3.4)

where

M1 =
1[

T − γ
ζΓ(ς+ 1

κ+1)

Γ(ς+ 1
κ+τ+1)

] , M2 =
1[

T − δ
ωΓ(ς+ 1

κ+1)

Γ(ς+ 1
κ+τ+1)

] .
Notice that

h⋆1 = sup
t∈I

h1(t, 0, 0), h⋆2 = sup
t∈I

h2(t, 0, 0), f⋆1 = sup
t∈I

f1(t, 0, 0), f⋆2 = sup
t∈I

f2(t, 0, 0).

Remark 3.2. From assumption (H2) we deduce,

υ (f1(t,Ω1,Ω2)) ≤ ϑ1 (υ(Ω1) + υ(Ω2)) , υ (f2(t,Ω1,Ω2)) ≤ ϑ2 (υ(Ω1) + υ(Ω2)) ,
υ (h1(t,Ω1,Ω2)) ≤ σ1 (υ(Ω1) + υ(Ω2)) , υ (h2(t,Ω1,Ω2)) ≤ σ2 (υ(Ω1) + υ(Ω2)) ,

for any bounded sets Ω1,Ω2 ⊂ C(I,R) and for each t ∈ I.

Theorem 3.1. If (H1)− (H3) hold, then the boundary value problem (1.1) has at
least one solution.

Proof. We transform the boundary value problem (1.1) into a fixed point problem.
Consider the set

Dr = {(x, y) ∈ C(I,R)× C(I,R) : ∥(x, y)∥ ≤ r} ,
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where r is defined by (3.4). Clearly, the subset Dr is closed, bounded and convex.
We define the operator N : C(I,R)× C(I,R) −→ C(I,R)× C(I,R)

N(x, y) =

(
N1(x, y)
N2(x, y)

)
,

with

N1(x, y)(t) = f1(t, x(t), y(t))×

(
−t M1

Γ(α)

∫ T

0

(T − s)α−1h1(s, x(s), y(s))ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1h1(s, x(s), y(s))ds

+ t γ M1

Γ(α)

∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1h1(s, x(s), y(s))dsdr

)
,

N2(x, y)(t) = f2(t, x(t), y(t))×

(
−t M2

Γ(β)

∫ T

0

(T − s)β−1h2(s, x(s), y(s))ds

+ 1
Γ(β)

∫ t

0

(t− s)β−1h2(s, x(s), y(s))ds

+ t δ M2

Γ(β)

∫ ω

0

∫ r

0

rκς+κ−1

(ωκ − rκ)1−τ
(r − s)β−1h2(s, x(s), y(s))dsdr

)
.

Obviously the fixed points of the operator N are solutions of the problem (1.1).
Consider the operators A1,A2,B1 and B2 defined on C(I,R)× C(I,R) by

A1(x, y)(t) = f1(t, x(t), y(t)), A2(x, y)(t) = f2(t, x(t), y(t)).

B1(x, y)(t) =

(
−t M1

Γ(α)

∫ T

0

(T − s)α−1h1(s, x(s), y(s))ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1h1(s, x(s), y(s))ds

+ t γ M1

Γ(α)

∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1h1(s, x(s), y(s))dsdr

)
,
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and

B2(x, y)(t) =

(
−t M2

Γ(β)

∫ T

0

(T − s)β−1h2(s, x(s), y(s))ds

+ 1
Γ(β)

∫ t

0

(t− s)β−1h2(s, x(s), y(s))ds

+ t δ M2

Γ(β)

∫ ω

0

∫ r

0

rκς+κ−1

(ωκ − rκ)1−τ
(r − s)β−1h2(s, x(s), y(s))dsdr

)
.

Now, we shall show that N satisfies all assumptions of Theorem 2.2.
We break the proof into several steps.
Step 1. N maps Dr into itself.
Let (x, y) ∈ Dr, from (H2), we have

|N1(x, y)(t)| ≤ |f1(t, x(t), y(t))|
[

1
Γ(α) t |M1|

∫ T

0

(T − s)α−1|h1(s, x(s), y(s))|ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1|h1(s, x(s), y(s))|ds

+ 1
Γ(α) t γ |M1|

∫ r

0

(r − s)α−1Iς,τκ |h1(s, x(s), y(s))|(ξ)ds|
]

≤ |f1(t, x(t), y(t)− f1(t, 0, 0)|+ |f1(t, 0, 0)|

×
[

1
Γ(α) t |M1|

∫ T

0

(T − s)α−1
(
|h1(s, x(s), y(s))− h1(s, 0, 0)|+ |h1(s, 0, 0)|

)
ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1
(
|h1(s, x(s), y(s))− h1(s, 0, 0)|+ h|1(s, 0, 0)|

)
ds

+ 1
Γ(α) t γ |M1|

∫ r

0

(r−s)α−1Iς,τκ (|h1(s, x(s), y(s))− h1(s, 0, 0)|+ |h1(s, 0, 0)|)(ξ)ds
]

≤ (ϑ1(∥x∥+ ∥y∥) + f⋆1)
[

1
Γ(α) t |M1|(σ1(∥x∥+ ∥y∥) + h⋆1)

∫ T

0

(T − s)α−1ds

+ 1
Γ(α) (σ1(∥x∥+ ∥y∥) + h⋆1)

∫ t

0

(t− s)α−1ds

+ 1
Γ(α) t γ |M1|(σ1(∥x∥+ ∥y∥) + h⋆1)

∫ r

0

(r − s)α−1Iς,τκ (1)(ζ)ds
]

≤ (ϑ1(r) + f⋆1)(σ1(r) + h⋆1)
[
Tα+1|M1|+Tα

Γ(α+1) + Tα+1γ|M1|Γ(ς+1)
Γ(α+1)Γ(ς+τ+1)

]
.

Thanks to the condition (H3), we get

∥N1(x, y)∥ ≤ 1

2
r,

As in the previous step, one has,

|N2(x, y)(t)| ≤ (ϑ2(r) + f⋆2)(σ2(r) + h⋆2)
[
T β T |M2|+1

Γ(β+1) + Tβ+1δ M2Γ(ς+1)
Γ(β+1)Γ(ς+τ+1)

]
.
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Using condition H3, it follows,

∥N2(x, y)∥ ≤ 1

2
r;

finally

∥N(x, y)∥1 ≤ r.

and then N maps Dr into itself.

Step 2. N is continuous on C(I,R)× C(I,R).
Indeed, let {(xn, yn)}n∈N be a sequence such that (xn, yn) → (x, y) in C(I,R) ×
C(I,R). Then

|A1(xn, yn)(t)− A1(x, y)(t)| = |f1(t, xn(t), yn(t))− f1(t, x(t), y(t))|
≤ ϑ1(|xn(t)− x(t)|+ |yn(t)− y(t)|)
≤ ϑ1(∥xn − x∥+ ∥yn − y∥).

From the fact that ϑ1(t) < t for any t > 0, we conclude that ϑ1(0) = 0 and
limt→0 ϑ1(t) = 0. Consequently, ϑ1 is continuous at t = 0, this means that

lim
n→+∞

∥A1(xn, yn)− A1(x, y)∥ = 0;

finally A1 is continuous on Dr.
Also, one has

|B1(xn, yn)(t)−B1(x, y)(t)|

≤ 1

Γ(α)
t |M1|

∫ T

0

(T − s)α−1| (|σ1(|xn(s)− x(s)|+ |yn(s)− y(s))|) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|σ1 (|xn(s)− x(s)|+ |yn(s)− y(s)|) ds

+
1

Γ(α)
tγ|M1|

∫ r

0

(r − s)α−1Iς,τκ (|σ1(|xn(s)− x(s)|+ |yn(s)− y(s)|))(ξ)ds

≤ 1

Γ(α)
|M1|σ1(∥xn − x∥+ ∥yn − y∥)T

α+1 + 1

Γ(α+ 1)

+
Tα+1σ1(∥xn − x∥+ ∥yn − y∥)

Γ(α+ 1)

+ γ|M1|σ1(∥xn − x∥+ ∥yn − y)∥ Γ(ς + 1)

Γ(ς + τ + 1)

Tα+1 + 1

Γ(α+ 1)
.

Arguing as the previous step, one has,

∥B1(xn, yn)−B1(x, y)∥ → 0 as n → ∞,

it follows that N1 is continuous.

The continuity of N2 = A2B2 is proved similarly. Consequently, N =

(
N1

N2

)
is
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continuous.
Step 3. Next, we will prove that N maps bounded sets into equi-continuous sets
in Dr.
Let t1, t2 ∈ I, t1 < t2, and Bη∗ = {(x, y) ∈ Dr, ∥(x, y)∥1 ≤ η∗} be a bounded set of
Dr, let (x, y) ∈ Bη∗ , it follows then,

|A1(x, y)(t1)− A1(x, y)(t2)| = |f1(t1, x(t1), y(t1))− f1(t2, x(t2), y(t2))|
≤ |f1(t1, x(t1), y(t1))− f1(t1, x(t2), y(t2))|
+|f1(t1, x(t2), y(t2))− f1(t2, x(t2), y(t2))|
≤ ϑ1(|x(t2)− x(t1)|+ |y(t2)− y(t1)|)
+|f1(t1, x(t2), y(t2))− f1(t2, x(t2), y(t2))|.

Arguing as in step 2 and from the fact that x and y are continuous, we deduce that

ϑ1(|x(t2)− x(t1)|+ |y(t2)− y(t1)|)t1→t2 → 0.

On another hand,

|f1(t1, x(t2), y(t2))− f1(t2, x(t2), y(t2))|
≤ sup

{
f1(t, u, v)− f1(s, u, v)|, (r, s) ∈ [0, T ]2, |r − s| ≤ ϵ, (u, v) ∈ [−η∗, η∗]2

}
,

since t2 → t1 and bearing in the mind that f is uniformly continuous on any
bounded subset of [0, T ]× R× R, one has

sup
ϵ→0

{
f1(t, u, v)− f1(s, u, v)|, (r, s) ∈ [0, T ]2, |r − s| ≤ ϵ, (u, v) ∈ [−η∗, η∗]2

}
→ 0;

finally A1(Bη∗) is equi-continuous.
A similar argument shows that the operator A2 maps bounded sets of Dr into equi-
continuous ones.
Now, we prove that the operator B1 maps bounded set Bη∗ of Dr into an equi-
continuous one. Let us consider a nonempty bounded Bη∗ subset of Dr. Then, for
(x, y) ∈ Bη∗ and t1, t2 ∈ [0, T ] with t1 ≤ t2, one has

|B1(x, y)(t2)−B1(x, y)(t1)| ≤
1

Γ(α)
(t2 − t1)|M1|

∫ T

0

(T−s)α−1|h1(s, x(s), y(s))|ds

+
1

Γ(α)

∫ t2

0

(t2 − s)α−1h1(s, x(s), y(s))ds

− 1

Γ(α)

∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1)h1(s, x(s), y(s))ds

+
1

Γ(α)
(t2 − t1)γ|M1|

∫ r

0

(r − s)α−1Iς,τκ (|h1(s, x(s), y(s))|)(ξ)ds

≤ 1

Γ(α)
(t2−t1)|M1|

∫ T

0

(T−s)α−1(|h1(s, x(s), y(s))−h1(s, 0, 0)|+ |h1(s, 0, 0)|)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1 (|h1(s, x(s), y(s))− h1(s, 0, 0))|+ |h1(s, 0, 0)|) ds
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+
1

Γ(α)

∫ t1

0

((t2−s)α−1−(t1−s)α−1) (|h1(s, x(s), y(s))−h1(s, 0, 0))|+ |h1(s, 0, 0)|) ds

+
(t2−t1)γ|M1|

Γ(α)

∫ r

0

(r−s)α−1 (Iς,τκ |h1(s, x(s), y(s))−h1(s, 0, 0)|+ |h1(s, 0, 0)|) (ξ)ds

≤ 1

Γ(α)
(t2 − t1)|M1| (σ1(∥x∥+ ∥y∥) + h∗1)

∫ T

0

(T − s)α−1ds

+ | (σ1(∥x∥+ ∥y∥) + h∗1)
1

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+ | (σ1(∥x∥+ ∥y∥) + h∗1)
1

Γ(α)

∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1)ds

+
1

Γ(α)
(t2 − t1) γ|M1|(| (σ1(∥x∥+ ∥y∥) + h∗1))

∫ r

0

(r − s)α−1|Iς,τκ (1)(ξ)|ds

≤ Tα(t2 − t1)|M1| (σ1(η
∗) + h∗1)

Γ(α)
+

| (σ1(η
∗) + h∗1) | (t2 − t1)

α

Γ(α+ 1)

+
| (σ1(η

∗) + h∗1) | (tα2 −(t2−t1)
α−tα1 )

Γ(α+ 1)
+

TαΓ(ς + 1)(t2 − t1)γ|M1|(σ1(η
∗) + h∗1|)

Γ(α+ 1)Γ(ς + τ + 1)
.

As t1 → t2, the right hand side of the above inequality goes to zero, which implies
that B1(Bη∗) is equi-continuous, arguing samely as previously one has B2(Bη∗) is
equicontinous. Therefore, the operator N maps a bounded set into an equicontinu-
ous one ; finally we deal with the proof of the inequality (2.3).

Setting V = co(NDr). Clearly V is a bounded, convex and closed subset of Dr.
One remarks that NV ⊂ NDr) ⊂ V, it follows that step 1 and step 2 infer that N :
V → V is bounded and continuous, and therefore the function t → v(t) = (υ̃(V(t))
is continuous and bounded on I. From Example 2.1 combined with properties of
the measure of noncompactness υ̃, we have for each t ∈ I,

υ̃(N(V)(t)) = υ(N1(V)(t)) + υ(N2(V)(t))

≤ υ(A1(V(t))) ·B1(V(t))) + υ(A2(V(t)) ·B2(V(t)))

≤ ∥A1(V(t))∥υ(B1(V(t)) + ∥B1(V(t))∥υ(A1(V(t))

+ ∥A2(V(t))∥υ(B2(V(t)) + ∥B2(V(t))∥υ(A2(V(t))).

We estimate

∥A1(V(t))∥, υ(B1(V(t)), ∥B1(V(t))∥, υ(A1(V(t))
∥A2(V(t))∥, υ(B2(V(t)), ∥B2(V(t))∥, υ(A2(V(t))).

∥A1(V(t))∥ ≤ (ϑ1(r) + f⋆
1 )(σ1(r) + h⋆

1), ∥A2(V(t))∥ ≤ (ϑ2(r) + f⋆
2 )(σ2(r) + h⋆

2),

we denote by V1, V2, the natural projection of V ⊂ Dr over C(I,R).

υ(A1(V(t))) = υ(f1(t,V1(t),V2(t))),
≤ ϑ1(υ(V1(t)) + υ(V2(t))),
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υ(A2(V(t))) = υ(f2(t,V1(t),V2(t))),
≤ ϑ2(υ(V1(t)) + υ(V2(t))).

Then it follows

υ̃c(A1(V)) ≤ ϑ1(υ̃c(V)), υ̃c(A2(V)) ≤ ϑ2(υ̃c(V)).

∥B1(V(t))∥ ≤ N1(σ1(r) + h⋆
1), ∥B2(V(t))∥ ≤ N2(σ2(r) + h⋆

2),

where

N1 =
Tα+1|M1|
Γ(α+ 1)

+
Tα

Γ(α+ 1)
+

Tα+1γ|M1|Γ(ς + 1)

Γ(α+ 1)Γ(ς + τ + 1)
,

N2 =
T β+1|M2|
Γ(β + 1)

+
T β

Γ(β + 1)
+

T β+1δ|M2|Γ(ς + 1)

Γ(β + 1)Γ(ς + τ + 1)
,

υ(B1V(t)) ≤

 t

Γ(α)

∣∣∣∣T−γ
ζΓ(ς+ 1

κ
+1)

Γ(ς+ 1
κ

+τ+1)

∣∣∣∣
∫ T

0

(T − s)α−1σ1 (υ(V1(s) +V2(s))) ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1σ1 (υ(V1(s) +V2(s))) ds

+ tγκζ−κ(τ+ς)

Γ(α)Γ(τ)

∣∣∣∣T−γ
ζΓ(ς+ 1

κ
+1)

Γ(ς+ 1
κ

+τ+1)

∣∣∣∣∫ ζ

0

∫ r

0

rκς+κ−1

(ζκ − rκ)1−τ
(r − s)α−1σ1 (υ(V1(s) +V2(s))) dsdr

)
≤ σ1 (υ̃c(V))

(
Tα T |M1|+1

Γ(α+1)

)
+ σ1 (υ̃c(V))

(
|M1|γκTα+1Γ(ς+α

κ+1)

Γ(α+1)Γ(ς+α
κ+τ+1)

)
;

so,

υ̃c(B1V) ≤ σ1 (υ̃c(V))

(
TαT |M1|+ 1

Γ(α+ 1)
+

|M1|γκTαΓ(ς + α
κ + 1)

Γ(α+ 1)Γ(ς + α
κ + τ + 1)

)
.

In the same way, we obtain,

υ̃c(B2(V)) ≤ σ2 (υ̃c(V))

(
T β T |M2|+ 1

Γ(β + 1)
+

|M2|δκT βΓ(ς + β
κ + 1)

Γ(β + 1)Γ(ς + β
κ + τ + 1)

)
.

Setting,

Π = [((ϑ1(r) + f⋆
1 )σ1(r) + h⋆

1)(
TαT |M1|+ 1

Γ(α+ 1)
+

|M1|γκTαΓ(ς + α
κ + 1)

Γ(α+ 1)Γ(ς + α
κ + τ + 1)

)
σ1

+ N1(σ1(r) + h⋆
1)ϑ1 +N2(σ2(r) + h⋆

2)ϑ2

+ (ϑ2(r) + f⋆
2 )(σ2(r) + h⋆

2)(
T β T |M2|+ 1

Γ(β + 1)
+

|M2|δκT βΓ(ς + β
κ + 1)

Γ(β + 1)Γ(ς + β
κ + τ + 1)

)
σ2

]
.
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Bearing in mind that ϑ1, ϑ2, σ1, σ2 belong to Λ, and taking account Remark 3.1,
it follows that Π ∈ Λ.

Consequently,

υ̃c(N(V)) ≤ Π(υ̃c(V)) ;

finally by using Theorem 2.2, the operator N has at least one fixed point in Dr.

The paper concludes with an example to illustrate the feasibility of our main
result.

4. Example

Consider the following hybrid fractional differential coupled system with Erdélyi-
Kober integral boundary conditions,

cD3/2
(

x(t)
1/2+ln(|x(t)+y(t)|+1)

)
+ 10−2 arctan |x(t) + y(t)| = 0, t ∈ I = [0, 1],

cD3/2
(

x(t)
1/4+tanh |x(t)+y(t)|

)
+ 10−2 arctan |x(t) + y(t)| = 0, t ∈ I = [0, 1],

x(0) = 0, y(0) = 0,

x(1) = I
1/2,1
1/2 x(1/2),

y(1) = I
1/2,1
1/2 y(1/2).

(4.1)

Notice that, the equation (1.1) is an abstract form of (4.1), where α = β = 3/2,
γ = δ = 1, ς = 1/2, κ = 1/2, τ = 1, ζ = ω = 1/2,f1(t, u, v) = 1/2 + ln(|u +
v| + 1), f2(t, u, v) = 1/4 + tanh |u + v| and h(t, u, v) = h1(t, u, v) = h2(t, u, v) =
10−2 arctan |u+v|. It is clear that f1, f2 ∈ C([0, 1]×R×R,R\{0}), h1, h2 ∈ C([0, 1]×
R×R,R) and |f1(t, 0, 0)| = 1/2, |f2(t, 0, 0)| = 1/4 and |h1(t, 0, 0)| = |h2(t, 0, 0)| = 0.
Thus, we conclude that condition (H1) is satisfied.
We recall that :
1) A function ϑ : R+ → R+ is said to be subadditive if

ϑ(x+ y) ≤ ϑ(x) + ϑ(y), for any x, y ∈ R+.

2) If ϑ : R+ → R+ is subadditive and y ≤ x, then

ϑ(x)− ϑ(y) ≤ ϑ(x− y).

3) If ϑ : R+ → R+ is subadditive, then

|ϑ(x)− ϑ(y)| ≤ ϑ(|x− y|), for any x, y ∈ R+.

4) If ϑ : R+ → R+ is a concave function and ϑ(0) = 0. Then ϑ is subadditive.

Remark 4.1. It’s clear that the positive value functions ϑ1, ϑ2 and σ defined on R+ by:
ϑ1(t) = ln(1 + t), ϑ2(t) = tanh t and σ(t) = arctan t are concave.
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Since ln(1 + t) < t, tanh t < t and arctan t < t for t > 0 and ϑ1(t) = ln(1 + t),
ϑ2(t) = tanh t, and σ(t) = arctan t are continuous. From Lemma 2.7 we obtain
lim

n→∞
ϑn
1 (t) = lim

n→∞
ϑn
2 (t) = lim

n→∞
σn(t) = 0 for any t ∈ R+. Moreover, ϑ1(t) =

ln(1 + t), ϑ2(t) = tanh t, and σ(t) = arctan t are nondecreasing and, therefore,
ϑ1, ϑ2, σ ∈ Λ.
Now, we are ready to show that our functions verify hypothesis (H2). Let x1, x2,
y1 and y2 be in R and t ∈ R+,

|h(t, x1, y1)− h(t, x2, y2)| = 10−2
∣∣∣ arctan |x1 + y1| − arctan |x2 + y2|

∣∣∣
≤ 10−2 arctan

∣∣∣ |x1 + y1| − |x2 + y2|
∣∣∣

≤ 10−2 arctan (|x1 − x2|+ |y1 − y2|)
≤ σ

(
x1 − x2|+ |y1 − y2|

)
,

where we have used the nondecreasing character of the inverse tangent function

with the fact that
∣∣∣|x1 + y1| − |x2 + y2|

∣∣∣ ≤ |x1 − x2|+ |y1 − y2|. From Remark 3.1,

we deduce that 10−2 arctan t is also in Λ.
Also, let x1, x2, y1 and y2 in R and t ∈ R+. Assume that |x1+y1| > |x2+y2| (same
argument works for |x2 + y2| > |x1 + y1|), then

|f1(t, x1, y1)− f1(t, x2, y2)| =
∣∣∣ ln |1 + x1 + y1| − ln |1 + x2 + y2|

∣∣∣
=
∣∣∣ln(1+|x1+y1|

1+|x2+y2|

)∣∣∣ = ∣∣∣ln(1+|x2+y2|
1+|x2+y2| +

|x1+y1|−|x2+y2|
1+|x2+y2|

)∣∣∣
=
∣∣∣ln(1 + |x1+y1|−|x2+y2|

1+|x2+y2|

)∣∣∣ ≤ ln
(
1 + |x1 + y1| − |x2 + y2|

)
≤ ln

(
1 + |x1 − x2|+ |y1 − y2|

)
≤ ϑ1

(
|x1 − x2|+ |y1 − y2|

)
,

where we have used the nondecreasing character of ϑ1(t) = ln(1+ t) for t ∈ R+ and
the fact that

|x1 + y1| − |x2 + y2| ≤ |x1 − x2|+ |y1 − y2|.

Also for x1, x2, y1 and y2 be in R and t ∈ R+ then

|f2(t, x1, y1)− f2(t, x2, y2)| =
∣∣∣ tanh |x1 + y1| − tanh |x2 + y2|

∣∣∣
≤ tanh

∣∣∣|x1 + y1| − |x2 + y2|
∣∣∣ ≤ tanh

(
|x1 − x2|+ |y1 − y2|

)
≤ ϑ2

(
|x1 − x2|+ |y1 − y2|

)
.

This proves that assumption (H2) of our main result is satisfied. To end the proof,
it siffices to prove that the assumption (H3) is satisfied.

M1 = M2 =
7

6
.

Condition (H3) becomes
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
28

6
√
π
+ 4√

π
+ 28

6
√
π
≤ r

2(ln(1+r)+ 1
2 )
(
10−2 arctan(r)

) ,
28

6
√
π
+ 4√

π
+ 28

6
√
π.

≤ r

2(tanh(r)+1/4)
(
10−2 arctan(r)

) ,
which implies


80

6
√
π
≤ r

2(ln(1+r)+ 1
2 )
(
10−2 arctan(r)

) ,
80

6
√
π
≤ r

2(tanh(r)+1/4)
(
10−2 arctan(r)

) .
The assumption (H3) is equivalent then to{ (

ln(1 + r) + 1
2

)
10−2 arctan(r) ≤ 6

√
π

80
r
2 ,

(tanh(r) + 1/4) 10−2 arctan(r) ≤ 6
√
π

80
r
2 .

It is easy to see that these inequalities are satisfied by r = 1, moreover,

80

6
√
π
(10−2 arctan(r)) =

80

6
√
π
(10−2 arctan(1)) = 0.0598 <

1

2
.

The condition (H3) is then satisfied, which shows that all assumptions of the The-
orem 3.1 hold. Consequently the hybrid fractional differential coupled system (4.1)
has at least one solution (x, y) in C([0, 1],R)× C([0, 1],R) such that ∥(x, y)∥ ≤ 1.

5. Conclusion

In this work, we deal with the problem concerning the existence of solution for a
hybrid fractional differential coupled system modeled by the problem (1.1) with
Erdélyi-Kober integral boundary conditions. Our contribution in this paper is to
make use of the measure of non-compactness combined with a generalization of
Darbo’s fixed point theorem in contrary to a standard fixed point theorem due to
Dhage for hybrid differential equation in Banach algebra, we show then that the Ku-
ratowski measure of non-compactness satisfies a condition denoted (2.2) throughout
the paper, we are the first who have proved this property.
The assumed hypotheses have the following goals:
i) In this paper we have assumed a condition (H1) to ensure the continuity of the
operator solution N .
ii) Hypothesis (H2) being supposed to prove the boundedness and equi-continuity
to make use of Lemma 2.6.
iii) Condition (H3) guaranteed that N maps Dr into itself.
These conditions are optimal in the sense that no condition implies the other. We
deal in our approach with a generalization of Darbo’s fixed point theorem combined
with tools from classical functional analysis and measure of non-compactness.
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