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Abstract. In this paper, we introduce an indefinite Lorentzian para-Sasakian (LP-
Sasakian) statistical manifold and study lightlike submanifold of an indefinite LP-
Sasakian statistical manifold. We also introduce some relations among induced ge-
ometrical objects with respect to dual connections in a lightlike submanifold of an
indefinite LP-Sasakian statistical manifold. One example related to this concept is also
presented. Finally, we show that an invariant lightlike submanifold of an indefinite
LP-Sasakian statistical manifold is an indefinite LP-Sasakian statistical manifold.
Keywords: LP-Sasakian manifold, Lightlike submanifold, Statistical manifold.

1. Introduction

The study of lightlike submanifolds is one of the most important research area in
differential geometry, with many applications in physics and mathematics, such as
general relativity, electromagnetism and black hole theory (for detail see [12],[13],
[14],[17],[15]). The lightlike submanifolds were indroduced and studied by Duggal
and Bejancu ([17]). B. Sahin initiated the study of transversal lightlike submanifolds
of an indefinite Kaehlar manifold ([19]). Yildirim and Sahin ([18]) defined and
studied transversal lightlike submanifolds of an indefinite sasakian manifold. The
screen transversal submanifolds of indefinite Kaehlar manifolds were investigated
by B. Sahin ([19]).
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On the other hand, Matsumoto [6] introduced the notion of LP-Sasakian mani-
fold. Mihai and Rosca defined the same notion independently in [20]. LP-Sasakian
manifolds were studied by many authors (see [6],[7],[11],[23],[24],[25],[26],[27],[28]).

The geometry of statistical manifolds is an emerging branch of mathematics that
generalizes the Riemannian manifold. It uses the tools of differential geometry to
study statistical inference, information loss and estimation. Effron [16] first time
emphasize the role of differential geometry in statistics. Later, Amari ([1],[2]) used
differential geometry tools to develop this idea. Vos [22] initiated the geometry
of submanifolds of statistical manifolds. Furuhata [21] studied hypersurfaces of a
statistical manifold. Aydin et. al. [3] studied submanifolds of statistical manifolds
of constant curvature. Motivated by above circumstance, in the present paper,
we initiate the study of lightlike submanifolds of indefinite LP-Sasakian statistical
manifolds. The paper is organized as follows.

In Section 2, we define statistical manifolds from differential geometry point of
view. Further, an indefinite LP-Sasakian statistical manifold is defined and some
results are given for further use. We introduce indefinite LP-Sasakian statistical
manifolds and we obtain the characterization theorem of indefinite LP-Sasakian
statistical manifolds. Finally, an example is given.

In Section 3, we consider lightlike submanifolds of indefinite LP-Sasakian statis-
tical manifolds. We characterize the parallelness of some distributions, and example
is given on screen semi-invariant lightlike hypersurface.

In Section 4, we prove that invariant lightlike submanifolds of an indefinite LP-
Sasakian statistical manifold is an indefinite LP-Sasakian statistical manifold.

2. Definition and preliminaries

We follow [17] for the notation and fundamental equations for lightlike sub-
manifolds used in this paper. A submanifold Mm immersed in a semi-Riemannian

manifold (M
m+n

, g) is called a lightlike submanifold if it is a lightlike manifold
with respect to the metric g induced from g and the radical distribution Rad TM
is of rank r, where 1 ≤ r ≤ m. Let S(TM) be a screen distribution which is a
semi-Riemannian complementary distribution of Rad TM in TM , that is

TM = Rad TM⊥S(TM).

Consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian
complementary vector bundle of Rad TM in TM⊥. Since for any local basis {ξi} of
Rad TM , there exists a local null frame {Ni} of section with values in the orthogonal
complement of S(TM⊥) in [S(TM)]⊥ such that g(ξi, Nj) = δij , it follows that there
exist a lightlike transversal vector bundle ltr(TM) locally spanned by {Ni} [[17],
pg-144]. Let tr(TM) be a complementary (but not orthogonal) vector bundle to
TM in TM |M . Then

tr(TM) = ltr(TM)⊥S(TM⊥),

TM |M = S(TM)⊥[Rad (TM)⊕ ltr(TM)]⊥S(TM⊥).
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Following are four the subcases of a lightlike submanifold (M, g, S(TM), S(TM⊥)).

Case 1: r-lightlike if r < min{m,n}.
Case 2:Co-isotropic if r = n < m; S(TM⊥) = 0.

Case 3: Isotropic if r = m < n; S(TM) = 0.

Case 4: Totally lightlike if r = m = n; S(TM) = 0 = S(TM⊥).

The Gauss and Weingarten equations are

∇XY = ∇XY + h(X,Y ), ∀X, Y ∈ Γ(TM),(2.1)

∇XU = −AUX +∇t
XU, U ∈ Γ(tr(TM)),(2.2)

where {∇XY, AUX} and {h(X,Y ), ∇t
XU} belongs to Γ(TM) and Γ(tr(TM)),

respectively, ∇ and ∇t are linear connections on M and on the vector bundle
tr(TM), respectively. Moreover, we have

∇XY = ∇XY + hl(X,Y ) + hs(X,Y ),(2.3)

∇XN = −ANX +∇l
XN +Ds(X,N),(2.4)

∇XW = −AWX +∇s
XW +Dl(X,W ),(2.5)

∀X, Y ∈ Γ(TM) and N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Then, by using
(2.1), (2.3)-(2.5) and the fact that ∇ is a metric connection, we get

g(hs(X,Y ),W ) + g(Y,Dl(X,W )) = g(AWX,Y ).(2.6)

[4] In general, the induced connection ∇ on M is not a metric connection, by using
(2.3), we have

(∇Xg)(Y,Z) = g(hl(X,Y ), Z) + g(hl(X,Z), Y )(2.7)

for any X, Y ∈ Γ(TM), where {∇XY,ANX,AWX} ∈ Γ(TM), {hl(X,Y ),∇l
XN} ∈

Γ(ltr(TM)) and {hs(X,Y ),∇s
XN} ∈ Γ(S(TM⊥)).

If we setBl(X,Y ) = g(hl(X,Y ), ξ), Bs(X,Y ) = g(hs(X,Y ), ξ), τ l(X) = g(∇l
XN, ξ)

and τs(X) = g(∇s
XN, ξ). Then equation (2.3), (2.4) and (2.5) become

∇XY = ∇XY +Bl(X,Y )N +Bs(X,Y )N,(2.8)

∇XN = −ANX + τ l(X)N + Es(X,N),(2.9)

∇XW = −AWX + τs(X)W + El(X,W ),(2.10)

respectively. Here, B and A are called second fundamental form and shape operator
of the lightlike submanifold M . On the other hand, if we take the vector field
ξ ∈ Γ(Rad TM) and X ∈ Γ(TM), we have the following relation like Weingarten
formula

DXξ = −A∗
ξX +∇Xξ,(2.11)
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D∗
Xξ = −AξX +∇∗

Xξ,(2.12)

where {DXξ,D∗
Xξ} and {AξX, A∗

ξX} are the shape operators on Γ(S(TM)) and
linear connections on Γ(Rad(TM)), respectively [9].

Now we define some statistical basic concepts:

Definition 2.1. [21] Let M̃ be a smooth manifold. Let D̃ be an affine connection

with the torsion tensor T D̃ and g̃ a semi- Riemannian metric on M̃ . Then the pair
(D̃, g̃) is called statistical structure on M̃ if

(1) (D̃X g̃)(Y,Z)− (D̃Y g̃)(X,Z) = g̃(T D̃(X,Y ), Z)

for all X,Y, Z ∈ Γ(TM̃), and

(2) T D̃ = 0.

Definition 2.2. [21] Let (M̃, g̃) be a semi-Riemannian manifold. Two affine con-

nections D̃ and D̃∗ on M̃ are said to be dual with respect to the metric g̃, if

Zg̃(X,Y ) = g̃(D̃ZX,Y ) + g̃(X, D̃∗
ZY )(2.13)

for all X,Y, Z ∈ Γ(TM̃).

A statistical manifold will be represented by (M̃, g̃, D̃, D̃∗). If ∇̃ is Levi-Civita
connection of g̃, then

∇̃ =
1

2
(D̃ + D̃∗).(2.14)

In (2.13), if we choose D̃∗ = D̃, then Levi-Civita connection is obtained.

Lemma 2.1. For statistical manifold (M̃, g̃, D̃, D̃∗), we set

K = D̃ − ∇̃,(2.15)

then we have

K(X,Y ) = K(Y,X), g̃(K((X,Y ), Z) = g̃(K((X,Z), Y )(2.16)

for all X,Y, Z ∈ Γ(TM).

Conversely, for a Riemannian metric g, if K satisfies (2.21), the pair (D̃ = ∇̃+K, g̃)

is statistical structure on M̃ [9].

Let (M, g) be a submanifold of (M̃, g̃). If (M, g,D,D∗) is statistical manifold,

then (M, g,D,D∗) is called a statistical submanifold of (M̃, g̃, D̃, D̃∗), where D,

D∗ are affine dual connections on M and D̃, D̃∗ are affine dual connections on M̃
[1],[21],[22].

Let (M, g) be a lightlike submanifold of a statistical manifold (M̃, g̃, D̃, D̃∗) then
Gauss and Wiengarten formulas with respect to the dual connections are given by

D̃XY = DXY +Bl(X,Y )N +Bs(X,Y )N,(2.17)
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D̃XN = −ANX + τ l(X)N + Es(X,N),(2.18)

D̃XW = −AWX + τs(X)W + El(X,W ),(2.19)

D̃∗
XY = D∗

XY +Bl∗(X,Y )N +Bs∗(X,Y )N,(2.20)

D̃∗
XN = −A∗

NX + τ l
∗
(X)N + Es∗(X,N),(2.21)

D̃∗
XW = −A∗

WX + τs
∗
(X)W + El∗(X,W )(2.22)

for allX,Y ∈ Γ(TM), N ∈ Γ(ltrTM) andW ∈ Γ(S(TM⊥)), Here,D ,D∗, B, Bl∗ ,
Bs, Bs∗ , AN , and A∗

N are called the induced connections on M , the second funda-

mental forms and the Weingarten mappings with respect to D̃ and D̃∗, respectively.

Using Gauss formulas and the equation (2.13), we obtain

Xg(Y,Z) = g(D̃XY,Z) + g(Y, D̃∗
XZ) = g(DXY,Z) + g(X,D∗

XZ)(2.23)

+Bl(X,Y )η(Z) +Bl∗(X,Z)η(Y ) +Bs(X,Y )η(Z) +Bs∗(X,Z)η(Y ).

From the equation (2.23), we have the following results.

Proposition 2.1. [10] Let (M, g) be a lightlike submanifold of a statistical mani-

fold (M̃, g̃, D̃, D̃∗). Then the following assertions are true:

(i) Induced connection D and D∗ are symmetric connections.

(ii) The second fundamental forms Bl, Bs, B∗ and Bs∗ are symmetric.

Proof. We know that T D̃ = 0. Moreover,

T D̃(X,Y ) = D̃XY − D̃Y X − [X,Y ] = DXY −DY X − [X,Y ]+(2.24)

Bl(X,Y )N +Bs(X,Y )N −Bl(Y,X)N −Bs(Y,X)N = 0.

Comparing the tangential and transversal components of (2.24), we obtain

Bl(X,Y ) = Bs(X,Y ), Bl(Y,X) = Bs(Y,X), TD = 0,

where TD is the tensor field of D. Thus, second fundamental form B is symmetric
and the induced connection D is symmetric connection.

Similarly, it can be shown that the second fundamental form B∗ is symmetric and
the induced connection D∗ is a symmetric connection.

([10],[8],[9]) In order to call a differentiable semi-Riemannian manifold (M̃, g̃) of

dimension n = 2m + 1 as practically contact metric one, a (1,1) tensor field ϕ̃,
a contravariant vector field v, a 1-form η and a Lorentzian metric g̃ should be
admitted, which satisfy

ϕ̃v = 0, η(ϕ̃X) = 0, η(v) = ϵ,(2.25)

ϕ̃2(X) = X + η(X)v, g̃(X, v) = ϵη(X),(2.26)
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g̃(ϕ̃X, ϕ̃Y ) = g̃(X,Y )− ϵη(Y )η(X), ϵ = ∓1(2.27)

for all the vector field X, Y on M̃. When a Lorentzian metric manifold g̃ performs

(∇̃X ϕ̃)Y = −ϵη(Y )ϕ2X + g̃(ϕ̃X, ϕ̃Y )v,(2.28)

∇̃Xv = ϕ̃X,(2.29)

M̃ is regarded as an indefinite LP-Sasakian manifold [11]. In this study, we assume
that the vector field v is spacelike.

Definition 2.3. Let (g̃, ϕ̃, v) be an indefinite LP-Sasakian structure on M̃ . A

quadruplet (D̃ = ∇̃+K, g̃, ϕ̃, v) is called an indefinite LP-Sasakian statistical struc-

ture on M̃ if (D̃, g̃) is a statistical structure on M̃ and the formula

K(X, ϕ̃Y ) = −ϕ̃K(X,Y )(2.30)

holds for any X,Y ∈ Γ(TM̃). Then (M̃, D̃, g̃, ϕ̃, v) is said to be an indefinite LP-
Sasakian statistical manifold.

An indefinite LP-Sasakian statistical manifold will be represented by (M̃, D̃, g̃, ϕ̃, v).

Theorem 2.1. Let (M̃, D̃, g̃, ) be a statistical manifold and (g̃, ϕ̃, v) an almost

contact metric structure on M̃ . (D̃, g̃, ϕ̃, v) is an indefinite LP-Sasakian statistical
structure if and only if the following conditions hold:

D̃X ϕ̃Y − ϕ̃D̃∗
XY = g̃(ϕ̃X, ϕ̃Y )v − η(Y )ϕ2X,(2.31)

D̃Xv = ϕ̃X + g̃(D̃Xv, v)v(2.32)

for all the vector field X, Y on M̃ .

Proof. Using (2.20), we get

D̃X ϕ̃Y − ϕ̃D̃∗
XY = (∇̃X ϕ̃)Y +K(X, ϕ̃Y ) + ϕ̃K(X,Y )(2.33)

for all vector fields X, Y on M̃ . If we consider Definition 2. and the equation (2.28),

we have the formula (2.31). If we write D̃∗ instead of D̃ in (2.31), we have

D̃∗
X ϕ̃Y − ϕ̃D̃XY = g̃(ϕ̃X, ϕ̃Y )v − g̃(Y, v)ϕ̃2X.(2.34)

Substituting v for Y in (2.34), we have the equation (2.32).

ϕ̃(D̃X ϕ̃2Y − ϕ̃D̃∗
X ϕ̃Y ) = 0.

Assume (2.26) and (2.32) as well, we get

0 = −ϕ̃D̃XY + g̃(Y, v)ϕ̃2X + D̃∗
X ϕ̃Y − g̃(ϕ̃X, ϕ̃Y )v.

From (2.27), this equation gives us (2.34). Now, we will prove (2.28) and (2.30) by
using (2.31) and (2.34), we have the following equations

(∇̃X ϕ̃)Y + g̃(Y, v)ϕ̃2X − g̃(ϕ̃X, ϕ̃Y )v = K(X, ϕ̃Y ) + ϕ̃K(X,Y ).
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and

(∇̃X ϕ̃)Y + g̃(Y, v)ϕ̃2X − g̃(ϕ̃X, ϕ̃Y )v = −K(X, ϕ̃Y )− ϕ̃K(X,Y ).

The last two equations satisfy (2.28) and (2.30).

Example 2.1. Recall example 1 from [5] as follows:

Let R3 be 3-dimensional Euclidean space with rectangular coordinates (x, y, z). In
R3, we define

η = −dz − ydx, v =
∂

∂z

ϕ
∂

∂x
=

∂

∂y
, ϕ

∂

∂y
=

∂

∂x
− y

∂

∂z
, ϕ

∂

∂z
= 0.

The Lorentzian metric g̃ is defined by the matrix:

 −ϵy2 0 ϵy
0 0 0
ϵy 0 −ϵ

 .

Then it can be easily seen that (ϕ̃, v, η, g̃) forms an indefinite LP-Sasakian structure

in R3. If we choose difference tensor K(X,Y ) = g̃(Y, v)g̃(X, v)v, then (D̃, g̃, ϕ̃, v) is

an indefinite LP-Sasakian statistical structure on M̃.

3. Lightlike submanifolds of indefinite LP-Sasakian statistical
manifolds

Definition 3.1. Let (M, g,D,D∗) be a submanifold of indefinite LP-Sasakian

statistical manifold (M̃, D̃, g̃, ϕ̃, v). The quadruplet (M, g,D,D∗) is called lightlike

submanifolds of indefinite LP-Sasakian statistical manifold (M̃, D̃, g̃, ϕ̃, v) if the in-
duced metric g is degenerate.

Let (M̃, D̃, g̃, ϕ̃, v) be a (2m+1)- dimensional LP-Sasakian statistical manifold and

(M, g) be a lightlike submanifold of M̃ , such that the structure vector field v is
tangent to M . For any ξ ∈ Γ(Rad TM) and N ∈ Γ(ltr(TM)), in view of (2.25)-
(2.27), we have

g̃(ξ, v) = 0, g̃(N, v) = 0,(3.1)

ϕ̃2ξ = −ξ, ϕ̃2N = −N.(3.2)

Also, using (2.17) and (2.32), we obtain

B(ξ, v) = 0, B(v, v) = 0,(3.3)

B∗(ξ, v) = 0, B∗(v, v) = 0.(3.4)

S(TM) = {ϕ̃Rad TM ⊕ ϕ̃ltr(TM)}⊥L0⊥ < v >,(3.5)
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where L0 is non-degenerate and ϕ̃ - invariant distribution of rank 2m− 4 on M . If
we denote the following distributions on M

L = Rad TM⊥ϕ̃Rad TM⊥L0, L
′
= ϕ̃ltr(TM),(3.6)

then L is invariant and L
′
is anti-invariant distributions under ϕ̃. Also, we have

TM = L⊕ L
′
⊥ < v > .(3.7)

Now, we consider two null vector fields U and W and their 1-forms u and w as
follows:

U = −ϕ̃N, u(X) = g̃(X,W ),(3.8)

W = −ϕ̃ξ, w(X) = g̃(X,U).(3.9)

Then, for anyX ∈ Γ(TM̃), we have

X = SX + u(X)U,(3.10)

where S is projection morphism of TM̃ on the distribution L. Applying ϕ̃ to last
equation, we obtain

ϕ̃X = ϕ̃SX + u(X)ϕ̃U,

ϕ̃X = ϕX + u(X)N,(3.11)

where ϕ is a tensor field of type (1,1) defined on M by ϕX = ϕ̃SX. Again, applying

ϕ̃ to the equation (3.11) and using (2.25)-(2.27), we have

ϕ̃2X = ϕ̃ϕX + u(X)ϕ̃N,

X + g(X, v)v = ϕ2X − u(X)U,

which means that
ϕ2X = X + g(X, v)v + u(X)U.(3.12)

Now, applying ϕ to the equation (3.12) and then, since ϕU=0, we have ϕ3 − ϕ=0,
which gives that ϕ is an f -structure.

Definition 3.2. Let (M, g,D,D∗) be submanifolds of an indefinite LP-Sasakian

statistical manifold (M̃, D̃, g̃, ϕ̃, v). The quadruplet (M, g,D,D∗) is called screen
semi-invariant lightlike submanifolds of an indefinite LP-Sasakian statistical mani-
fold (M̃, D̃, g̃, ϕ̃, v) if

ϕ̃(ltrTM) ⊂ S(TM),

ϕ̃(RadTM) ⊂ S(TM).

We remark that a submanifold of indefinite LP-Sasakian statistical manifold is
screen semi-invariant lightlike submanifold.

Example 3.1. Let M̃ be the 9-dimensional manifold with respect to the canonical
basis { ∂

∂l1
, ∂
∂l2

, ∂
∂l3

, ∂
∂l4

, ∂
∂m1

, ∂
∂m2

, ∂
∂m3

, ∂
∂m4

, ∂
∂z}.
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Defining ϕ̃ ∂
∂li

= ∂
∂mi

, ϕ̃ ∂
∂mi

= ∂
∂li

, ϕ̃ ∂
∂z = 0, v = ∂

∂z , η = dz. By choosing

the difference tensor K̃(X,Y ) = g̃(Y, v)g̃(X, v)v, then (D̃ = ∇̃ + K̃, g̃, ϕ̃, v) is an

indefinite LP-Sasakian statistical manifold on M̃ .

Suppose M is a submanifold of M̃ defined by

l1 = m3

then Rad TM and ltr(TM) are spanned by

ξ =
∂

∂l1
+

∂

∂m3
, N =

1

2
{ ∂

∂l3
− ∂

∂m1
}.

Applying ϕ̃ to this vector field, we have

ϕ̃ξ =
∂

∂m1
+

∂

∂l3
, ϕ̃N =

1

2
{ ∂

∂m3
− ∂

∂l1
}.

This shows that M is a screen semi-invariant lightlike submanifold of an indfinite
LP-Sasakian statistical manifold.

Lemma 3.1. Let (M, g,D,D∗) be a lightlike submanifold of indefinite LP-Sasakian

statistical manifold (M̃, D̃, g̃, ϕ̃, v). For any X,Y ∈ Γ(TM), we have the following
identities:

DXϕY − ϕD∗
XY = −Bl∗(X,Y )U −Bs∗(X,Y )U + u(Y )ANX(3.13)

+g(ϕX, ϕY )v − g(Y, v)ϕ2(X),

DX(u(Y ))− u(D∗
XY ) = −Bl(X,ϕY )−Bs(X,ϕY )(3.14)

−u(Y )τ l(X)− u(Y )Es(X,N).

Proof. Using Gauss and Weingarten formulas in (2.31), we have

DXϕY +Bl(X,ϕY )N +Bs(X,ϕY )N − u(Y )ANX + u(Y )τ l(X)N(3.15)

+u(Y )Es(X,N) +DX(u(Y ))N − ϕD∗
XY − u(D∗

XY )N +Bl∗(X,Y )U

+Bs∗(X,Y )U = −g(Y, v)ϕ2X + g(ϕX, ϕY )v.

If we take the tangential and transversal parts of (3.15), we get (3.13) and (3.14).

Lemma 3.2. Let (M, g,D,D∗) be a lightlike submanifolds of indefinite LP-

Sasakian statistical manifold (M̃, D̃, g̃, ϕ̃, v). For any X,Y ∈ Γ(TM), we have
the following identities:

D∗
XϕY − ϕDXY = Bl(X,Y )U +Bs(X,Y )U + u(Y )A∗

NX(3.16)

−g(Y, v)ϕ(X)− g(X,ϕY )v,

D∗
X(u(Y ))− u(DXY ) = −Bl∗(X,ϕY )−Bs∗(X,ϕY )(3.17)
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−u(Y )τ l
∗
(X)− u(Y )Es∗(X,N).

Proof. Using Gauss and Weingarten formulas in (2.34), we have

D∗
XϕY +Bl∗(X,ϕY )N +Bs∗(X,ϕY )N − u(Y )A∗

NX + u(Y )τ l
∗
(X)N

+u(Y )Es∗(X,N) +D∗
X(u(Y ))N − u(DXY )N − ϕDXY −Bl(X,Y )U

−Bs(X,Y )U = g(ϕX, ϕY )v − g(Y, v)ϕ2X

If we take the tangential and transversal parts of last equation, we get (3.16) and
(3.17).

Proposition 3.1. Let (M, g,D,D∗) be a lightlike submanifolds of indefinite LP-

sasakian statistical manifold (M̃, D̃, g̃, ϕ̃, v). For any X,Y ∈ Γ(TM), we have the
following expressions:

(i) If the vector field U is parallel with respect to ∇, then

ANX = u(ANX)U − η(ANX)v, τ l(X) = 0 and Es(X,N) = 0.(3.18)

(ii) If the vector field U is parallel with respect to ∇∗, then

A∗
NX = u(A∗

NX)U − η(A∗
NX)v , τ l

∗
(X) = 0 and Es∗(X,N) = 0.(3.19)

Proof. On replacing Y in (3.13) by U , we have

−ϕD∗
XU = ANX −Bl∗(X,U)U −Bs∗(X,U)U.

Applying ϕ in last equation and using (3.12), we obtain

−{D∗
XU + g(D∗

XU, v)v + u(D∗
XU)U} = ϕ̃ANX.

If U is parallel to ∇∗, then ϕANX = 0. From (3.11), we have ϕ̃ANX = u(ANX)N.

Applying ϕ̃ on last equation and using (2.26), we obtain

ANX = u(ANX)U − η(ANX)v.

Now, if we take U instead of Y in the equation (3.14), we get

DX(u(U))− u(D∗
XU) = −Bl(X,ϕU)−Bs(X,ϕU)− u(U)τ l(X)− Es(X,N).

τ l(X) + Es(X,N) = 0,

this shows that
τ l(X) = 0, Es(X,N) = 0.

Similarly, we can also obtained (3.19) by same procedure.

Proposition 3.2. Let (M, g,D,D∗) be a lightlike submanifolds of indefinite LP-

Sasakian statistical manifold (M̃, D̃, g̃, ϕ̃, v). For any X,Y ∈ Γ(TM), we have the
following expressions:
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(i) If the vector field W is parallel with respect to ∇∗, then

Aξ
∗
X = −u(Aξ

∗
X)U − g(Aξ

∗
X, v)v, τ l

∗
(X) = 0.(3.20)

(ii) If the vector field W is parallel with respect to ∇, then

AξX = −u(AξX)U − g(AξX, v)v, τ l(X) = 0.(3.21)

Proof. If we take ξ instead of Y in (3.16), we get

DXϕξ−ϕD∗
Xξ = −Bl∗(X, ξ)U−Bs∗(X, ξ)U+u(ξ)ANX−g(ξ, v)ϕ2X+g(ϕX, ϕξ)v.

−ϕD∗
Xξ = −Bl∗(X, ξ)U −Bs∗(X, ξ)U.

The relation of induced dual objects on S(TM)

D∗
Xξ = −AξX − τ l

∗
(X)ξ + Es∗(X, ξ), ∀X, Y ∈ Γ(TM).(3.22)

If W is parallel with respect to D, using 3.22 and (3.12) in the above equation, we
get

−ϕ[−A
∗
ξX − τ l

∗
(X)ξ + Es∗(X, ξ)] = −Bl∗(X, ξ)U −Bs∗(X, ξ)U.

−ϕA
∗
ξX − τ l

∗
(X)ϕξ = −Bl∗(X, ξ)U −Bs∗(X, ξ)U.

Applying ϕ̃ and using (3.12), we get

A∗
ξX + u(A∗

ξX)U + g(A∗
ξX, v)v = τ l

∗
(X)ϕξ

Comparing screen and radical parts of last equation we obtain (3.20). Similarly, we
can obtain (3.21).

4. Invariant lightlike submanifolds

Let (M, g,D,D∗) be an invariant lightlike submanifolds of an indefinite LP-Sasa-

kian statistical manifold (M̃, D̃, g̃, ϕ̃, v). If M is tangent to the structure vector
field v, then v belongs to S(TM). For invariant lightlike submanifolds, we have the
following expressions:

ϕ̃(S(TM)) = S(TM), ϕ̃(RadTM) = RadTM.(4.1)

Proposition 4.1. Let (M, g,D,D∗) be an invariant lightlike submanifolds of in-

definite LP-Sasakian statistical manifold (M̃, D̃, g̃, ϕ̃, v). If M is tangent to the
structure vector field v, then v belongs to S(TM) for X,Y ∈ Γ(TM), we have the
following identities:

DXϕY − ϕD∗
XY = g(ϕX, ϕY )v + g(Y, v)ϕ2X,(4.2)

h(X, ϕ̃Y ) = ϕ̃h∗(X,Y ),(4.3)
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where h and h∗ are second fundamental forms for affine dual connections D̃ and
D̃∗, respectively.

Proof. In (2.31), using (3.11) and Gauss formula, we have

DXϕY − ϕD∗
XY + h(X, ϕ̃Y )− ϕ̃h∗(X,Y ) = g(ϕX, ϕY )v + g(Y, v)ϕ2X.

On taking tangential and transversal parts of the last equation, we get (4.2) and
(4.3), respectively.

Proposition 4.2. Let (M, g,D,D∗) be an invariant lightlike submanifold of an

indefinite LP-Sasakian statistical manifold (M̃, D̃, g̃, ϕ̃, v). If M is tangent to the
structure vector field v, then v belongs to S(TM) for X,Y ∈ Γ(TM), we have the
following identities:

D∗
XϕY − ϕDXY = g(ϕX, ϕY )v + g(Y, v)ϕ2X,(4.4)

h∗(X, ϕ̃Y ) = ϕ̃h(X,Y ),(4.5)

where h and h∗ are second fundamental forms for affine dual connections D̃ and
D̃∗, respectively.

Proof. In (2.34), using (3.11) and Gauss formula, we have

D∗
XϕY − ϕDXY + h∗(X, ϕ̃Y )− ϕ̃h(X,Y ) = g(ϕX, ϕY )v + g(Y, v)ϕ2X.

On taking tangential and transversal parts of this last equation, we get (4.4) and
(4.5).

Theorem 4.1. An invariant lightlike subnmanifold of an indefinite LP-Sasakian
statistical manifold is an indefinite LP-Sasakian statistical manifold.

Proof. For any X ∈ Γ(TM), u(X) = 0 in a invariant lightlike submanifold, then
from (3.11), we have

ϕ2(X) = X + g(X, v)v.

Since, ϕ̃X = ϕX, using (2.25), (2.26) and (2.27), we obtain

ϕv = 0, η(ϕX) = 0,

g̃(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ).

Then, (g, ϕ, v) is an almost contact metric structure.

Using(2.23), we get

Xg(ϕY, ϕZ) = g(DXϕY, ϕZ) + g(ϕY,D∗
XϕZ).

This equation says that D and D∗ are dual connections. Moreover, torsion tensor
of the connection D is equal to zero. Then, the equations (2.23) and definition 2.
tell us that (D, g) is a statistical structure, that is

T D̃ = 0,
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D̃XY − D̃Y X − [X,Y ] = 0,

DXY −DY X − [X,Y ] +B(X,Y )N −B(Y,X)N = 0.

Comparing tangential and transversal parts of last equation, we obtain

TD = 0.

If we consider Gauss formula and (2.32),

D̃Xv = ϕ̃X + g̃(D̃Xv, v)v,

DXv +B(X, v)N = ϕX + g(DXv +B(X, v)N, v)v,

we have

DXv = ϕX + g(DXv, v)v.

Our assertions is proved.

Example 4.1. Let M̃ be the 9-dimensional manifold with respect to the canonical
basis { ∂

∂p1
, ∂
∂p2

, ∂
∂p3

, ∂
∂p4

, ∂
∂q1

, ∂
∂q2

, ∂
∂q3

, ∂
∂q4

, ∂
∂z}.

Defining ϕ̃ ∂
∂pi

= ∂
∂qi

, ϕ̃ ∂
∂qi

= ∂
∂pi

, ϕ̃ ∂
∂z = 0, v = ∂

∂z , η = dz. By choosing

the difference tensor K̃(X,Y ) = g̃(Y, v)g̃(X, v)v, then (D̃ = ∇̃ + K̃, g̃, ϕ̃, v) is an

indefinite LP-Sasakian statistical manifold on M̃ .

Suppose M is a submanifold of M̃ defined by p1 = q3, p3 = q1, p2 = q4, p4 = q2
Then the tangent bundle TM of M is spanned by

ξ1 = ∂
∂p1

+ ∂
∂q3

, ξ2 = ∂
∂p3

+ ∂
∂q1

Z1 = ∂
∂p2

− ∂
∂q4

, Z2 = ∂
∂q2

− ∂
∂p4

.

Moreover, one can show that Rad (TM) = Span{ξ1, ξ2} and S(TM) = Span{Z1,

Z2, v}. Furthermore, we note that ϕ̃ξ2 = ξ1 and ϕ̃Z2 = Z1. It follows that that

Rad (TM) and S(TM) are invariant under ϕ̃. On the other hand, ltr(TM) is
spanned by N1 and N2, where

N1 = ∂
∂p1

− ∂
∂q3

, N2 = ∂
∂q1

− ∂
∂p3

. Note that ϕ̃N2 = N1; hence, ltr(TM) is

invariant under ϕ̃. Therefore, M is an invariant lightlike submanifold of indefinite
LP-Sasakian statistical manifold M̃ and M is an indefinite LP-Sasakian statistical
manifold.
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