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Abstract. In this paper, we establish the analog of Abilov’s theorems and the analog
of Titchmarsh’s theorems for the canonical linear Fourier-Bessel transform in a class of
functions in the space LP(RT,22*"'dz) where 1 < p < 2 and a > _71 The proof of
the theorems is based on the algebraic properties associated with the canonical linear
Fourier-Bessel transform.
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1. Introduction and preliminaries

Consider the operator (see [5],[9])
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where a > _71,

(1.2) m:(z Z)

is a matrix in SLy(R) with b # 0

If
(1.3) m = ( (1) _01 >

we obtain the classical Bessel operator

?  (20+1) d

1.4 By=—+—-—"2—.
(1.4) dx? T dx

Let LP(RT, 222t 1dx) the space of measurable functions f on R* such that

+oo %
(15) ||f||p,a=(/0 |f<x>|%2a+ldx) < too

The chirp multiplication operat2or L, and the dilatation operator D, are defined,

respectively by L,(f)(x) = €'2% f(x); a € R and D, f(z) = wﬁf(%), a € R*.
The inverse of L, and the inverse of D, are given, respectively, by

(1.6) (L)™' =L_4;(Dy) ' =D_1.

In case f is even we have D,f = D)y f.
Let m € SLy(R). The canonical Fourier-Bessel transform of a function f €
LY (RT, 222t 1dx) is defined by (see [5],[8])

+o00o
m Ca m «
(1.7) FENO) = Ggarr |, Ka'Qua)f (e Tide
where ¢, = m§
(20,2 A
(1.8) K (@) = 20 E5,(30).
and
- oo (_1)n Z\ 2n
1. =M+ v TarD \2
(1.9) Ja(2) =L(a+ )T;)nll“(n—i—a—kl) (2) et

For A € R, the kernel K7'(., A) of the canonical Fourier-Bessel transform F7 is the
unique solution of:

)\2
(110) Ba,m’C;n(w)‘) = _ﬁKg(7A)
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2

with initial conditions K™ (0, \) = e2 5" and LKm0,)) =0

Let m € SLy(R) such that b # 0. For f € C, .(R), we define the generalized
translation operators associated with the operator By, by ([9]):

d.2
b

1(9)] (@

(1'11) Ta,m,hf(x) = e%(%h2+%12)7a7h {67%

where 7, 5, is the translation operator associated with the operator B, and C, .(R)
is the space of the even continuous functions with support compact.

2. Main results

Our main results are inspired from the work realised by V.A. Abilov, F. V. Abilova,
M.K. Kerimov and E. C. Titchmarsh (see [1], [2], [3],[4], [5], [7], [8], [11]). Briefly, we
give new estimates for the canonical Fourier-Bessel transform of a class of function
f in a Sobolev space that we will define later.

Lemma 2.1. (see [6],[10])
We have the formulas

i) L—a oB%moL% = B,.
b

i) FI' = eﬂ'(o‘*l)%sg"bL% oDpoFyoLs where F,, is the classical Bessel trans-
form.

idp?

i41) Tom,p = €2 oh

LaoTy poL_a, where 1o is the translation operator associated
b ’ b ’
to the classical Bessel operator.

Definition 2.1. ([7])
Let k € N. The k*" order modulus of continuity of a function f € LP(R*, x2*+1dz)
is defined as

(2.1) Qe p.a(f.8) = supocn<sllAG 1 f lp.a

where,
Aonf =1

A(x,hf = (Ta,h - I)f

A f=(Tan—D)Ff

and 7 is the identity operator.
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Definition 2.2. Let k € N. The k** order generalized modulus of continuity of a
function f € L2 (R™) is defined as

(2.2) Qe prasm—1 () = supocn<sl| Ak 1 p flip.a-
where,

(23) A(o)z,mfl,hf = f7

(24) Aoz,m*l,hf = (Toz,mfl,h - eié%hzz)f
(2.5) A S = (Tameip — e 2ET)E S,

We denote in the classical Bessel harmonic analysis by W, (B, ) the class of func-
tions f belongs to LP(R*, 22%+1dx) that have generalized derivatives in the sense
of Levi (see [9])such that for all j € {1,...,r} we have B f € LP(RT, 22" 1dxz).
And by W;:’E,(Ba) where, r € N*, k € N* and ¥ is a nonnegative function on R,
the class of functions f belongs to W, (B,) satisfying the estimate
Q.o ((Ba)" f,0) = O(¥(6%) as § — 0.

We denote in the canonical Bessel harmonic analysis by W) (B, 1) the class
of functions f belongs to LP(R*,z?***!dz) that have generalized derivatives in
the sense of Levi (see [9]) such that for all j € {1,...,r} we have Bi,mflf €
LP(RT, 2?0t 1dy).

And by W;:]E,(Ba77n—1) where, r € N* k € N* and ¥ is a nonnegative function on
R, the class of functions f belongs to Wy (Ba,m~1) satisfying the estimate
Qe pam—1 (Bam-1)"f8) = O(¥(8%) as § — 0.

Lemma 2.2. Let f € LP(R*, 22 1dx) we have

Z) Qk,p,a,m*1 (f> 6) = Qk,p,a(L% fa 6)

1) W By 1) = Lo (W (Ba).

i) Wb (Bom1) = L (WT@(BQ)).
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Proof. i) Let f € LP(R*, 2> 1dz)

Qe p,a,m-1(f,0) = supo<n<s HAlocc,m*17hf P,

. k
iap2
= SUPo<h<§ (Ta,mfl,h —e 2 ol I) f‘

= SUPo<h<§ H (L_aorgpola— I)k f‘
= supo<n<s ||L—g 0 AL}, 0 L%pr@
= supo<n<s || A% (Le f)

= Qk,p,a(L%f7 5).

Iy

ii)
fE W} (Bagns) & f € L7 (RY 2 da) and ¥j € {1t} B, .f € LP (R, 2% da)
o felP (R+71‘2a+1d£€) and Vj€{l,...,r} L_% o ng OL%(f) e LP (R+,1‘2a+1dz)
& fe P (RY, 2% dx) and Laf € Wy (Ba)

& feL g (WI(Ba).

iii) fe W;”é (B(Lm—l) s fe W;(Bmmfl) and Qk,p,a,nl*1(327m71f7 5) = O(\I}(ék)
& Laf € WI(By) and Qppa(Ls f,6) = O(B(5%) as § — 0
& Laf € Wie(Ba)

& fe Ly (Wh(B).
0

Theorem 2.1. Let 1 < p <2, m € SLy(R) and ¥ be a nonnegative function on
R*. Forall f € W;:];,(Ba,m—l) we have,

/ IFI(FN)]INH N = O (N-W(\I/)q ((ﬁ)k)) as N = + 00
[A>N N
where ¢ is a positive constant, r € N; k € N*; q is the conjugate exponent of p.

Proof. We have f € W;:@(Ba,mq) & Laf e W;@(Ba) Then by [7] we have

/MZN |]:a(L%f)()\>|q)\2a+1d)\ =0 (N—v"q(\y)q ((%)k)) as N — 400

where c is a positive constant, r € N; k € N*; ¢ is the conjugate exponent of p. By
relations (see[6],[10])

(2.6) Dyf = Dy f for all beR" and f is is even function.
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(2.7) Fit = e 0TE0 Ly 0 Dyo Fuo Ly
we deduce the result. [
Corollary 2.1. Let U (t) =t° and f € W;:fﬁ (By,m-1) where >0 and1 < p < 2.

Then,
/ |]:Z¥”(f)()\)|q)\2a+1d)\: O(N—rq—qkﬂ) as N = + 00
[A=N

where, q is the conjugate exponent of p.

Theorem 2.2. Let U(t) =t° and 0 < B < 2 this conditions are equivalents

Z) fE W;:fﬁ(Ba,m—l)

i) fiysn Fa (HRPIHAN = O (N72725) as N = + o0

Proof. i) = ii). By corollary (2.1) we deduce easily the result.
ii) = 14). Let f € L? (R+, ;U2O‘+1) such that

Jaon FRHMPAZHAN = O (N-2r-258) a5 N = 4o

by lemma (2.1) we have the formula

Fm = e Hat)3sgnb , o Dyo Fpo L
b
where F, is the classical Bessel transform. Then

flMZN |[FI ()N PAZettdN = f\MZN |e‘i(a+1)%89nbLgOD\blo}"aoL%(f)(/\)|2)\2a+1d)\
- f\,\|21v |D|b\ o ]-"a(L%f)(,\)|2)\2a+1d)\
- f\)\|>N |“’|+H’7:O‘(L%f)(\%|)|2)\2a+ld)\

by change of variables we put A = |b|u. we have d\ = |b|dp and |A| > N equivalent
to || > %‘. Then,

Sz n IFE N PAZFAN = gt [ o [ FaLg 1) ()P ([bl)* bl dp

A |]:a(L%f)(N)|2H2a+1dN-
Since,

f“@% |Fa(La f)(p) P2t rdp = O (N~272k8) as N — +o0

and by [4] we have La f € W;tkﬁ (By). Thus

e Loy (Wyk(Ba)) = Wyh(Bom).
|
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Theorem 2.3. Let0 <~y <k and f € W, (Bq,m-1) such that
HAZ,m*l,h(Ba,m*l)Tpr,a = O(h") as h — 0,

then
F(f) e LP(RY, 2% dx)

for
2ap + 2p

<
2+ 2a(p—1)—2+yp+7rp “p—1

Proof. Let f € Wy (Bg,m-1) and 1 < p <2 we have

. k
”Az,m—l,h(Ba,m—l)TfHPﬂ = ” (Tmm—l,h - €7§§h2"z) ((Ba,m_l)rf) ||p,a
=|L-g 0 AR h oLz ((Baym—1)"f) lp.a
= ||A];’h ((Ba)TL%f) ||p,a
=0O(Y) as h—0
Therefore by the result in [5] and lemma (2.1) and lemma (2.2) we deduce F7*(f) €
LY (RT)
20p + 2p <3 P
2p+2a(p—1)=2+yp+rp = T p-1

O

Definition 2.3. Let 0 <y < 1. A function f € W3 (B, m-1) is said to be in the
k-m~'-Bessel Lipschitz class, denoted by DLip(v,2,k,m~1), if

(2.8) | Ak (Bam-1)"fll2,a = O(hY) as h — 0.

a,m~1h
Lemma 2.3. Let 0 <y <1 and k € N we have
(2.9) DLip(7,2,km™") = Ly (DLip(7,2,k))

Proof. We have

f € DLip(1,2,k,m™Y) & f € Wi(Bopr) and [|AR . (Bymes)" fllz =
O(hY) as h — 0
& La f € W3 (B,) and HAgm_l’h(Ba’m—l)Tng,a =0O(h") as h =0
& Laf € W3(B,) and \|AZ7;L(BQ)TL%f||2,a =0OM") as h—=0
& Laf € Dsz('Iy, 2,k)
S) f € L_a(DLip(y,2,k)).

Theorem 2.4. Let f € W3 (B, m-1). The following are equivalents
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1) f € DLip(v,2,k,m™")
2) [ixzs PPTIFR(HNPNFAN = O(s77) as s — +oo

Proof. By lemma (2.3) we have
f € Dlip(v,2,k,m™") & La f € DLip(v,2, k)

O

Corollary 2.2. Let f € DLip(v,2,k,m™t). Then

(2.10) / FRHOPAZHIN = O(s~212) a5 s — +o0
Al>s

3. Conclusion

In this work, via the chirp multiplication from LP(R*, 22**1dx) into LP(RT, z2*F1dz)
and by the algebraic relations:

i) L%d OBgLOL% ZBQ.
i) Fm = e‘i(o‘“)%sg"L% oDyoFyo0La where F, is the classical Bessel transform.

id 2 . . .
i) Tom,p = €20 M La OTa’hOIQ% , where 7, 5, is the translation operator associated
to the classical Bessel operator.

we were able to establish, without using calculations, the first and the second gen-
eralized Abilov’s theorems and generalized Titchmarsh’s theorems.
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