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Abstract. The subject of the present paper is to introduce a type of non-flat Rieman-
nian manifold called an almost pseudo Schouten symmetric manifold A(PSS)n. Some
geometric properties have been studied of this manifold. Also, the existence of such a
manifold is ensured by a non-trivial example. Finally, we have studied about hypersur-
face of an A(PSS)n.
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1. Introduction

Let (Mn, g) be a Riemannian manifold of dimension n with the Riemannian metric
g and ∇ be the Levi-Civita connection with respect to the metric tensor g. Let
X(M) be the set of differentiable vector fields on M. That is, X,Y, Z, U ∈ X(M).
A non-flat Riemannian manifold (Mn, g), (n ≥ 3) is said to be an almost pseudo
symmetric manifold A(PS)n [6] if its curvature tensor K satisfies the following
condition:

(∇UK)(X,Y, Z) =[α(U) + β(U)]K(X,Y, Z) + α(X)K(U, Y, Z)

+ α(Y )K(X,U,Z) + α(Z)K(X,Y, U)

+ g(K(X,Y, Z), U)ρ,

(1.1)
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where α and β are called the associated 1-forms defined by

(1.2) g(X,σ) = α(X) and g(X,Q) = β(X),

for all X.

A non-flat Riemannian manifold (Mn, g) is called an almost pseudo Ricci sym-
metric manifold A(PRS)n [3] if its Ricci tensor Ric of type (0, 2) satisfies the fol-
lowing condition:

(1.3) (∇XRic)(Y,Z) = [α(X)+β(X)]Ric(Y,Z)+α(Y )Ric(X,Z)+α(Z)Ric(Y,X),

where α and β are two non-zero 1-forms which are defined earlier.

A non-flat Riemannian manifold is said to be a quasi-Einstein manifold (QE)n
[7] if its Ricci tensor Ric of type (0, 2) satisfies the following condition:

(1.4) Ric(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions and η is a non-zero 1-form such that

(1.5) g(X, ξ) = η(X),

for all vector fields X.

A quadratic Killing tensor [10] is a generalization of a Killing vector and is
defined as a second order symmetric tensor A satisfying the condition

(1.6) (∇XA)(Y,Z) + (∇YA)(Z,X) + (∇ZA)(X,Y ) = 0.

A Riemannian manifold is said to be Codazzi type [8] of Ricci tensor if its Ricci
tensor Ric of type (0, 2) satisfies the following condition:

(1.7) (∇XRic)(Y, Z) = (∇Y Ric)(X,Z).

On an n-dimensional Riemannian (semi-Riemannian) manifold (Mn, g), n ≥ 3, the
Schouten tensor [1] is defined by

(1.8) P(Y,Z) =
1

n− 2

(
Ric(Y, Z)− r

2(n− 1)
g(Y, Z)

)
,

where r is the scalar curvature. Also, the Ricci tensor L of type (1, 1) is defined by

(1.9) g(L(X), Y ) = Ric(X,Y ),

for any vector fields X, Y . There is a decomposition formula in which the Rieman-
nian curvature tensor decomposes into non-conformally invariant part, the Schouten
tensor ([2], [9]) and a conformally invariant part, the conformal curvature tensor [9]

(1.10) K = P� g + C
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where C is the conformal curvature tensor of g and � denotes the Kulkarni-Nomizu
product. The scalar P̄ is obtained by putting Y = Z = ei in (1.8), where {ei, 1 ≤
i ≤ n} is an orthonormal basis of the tangent space at each point of the manifold

(1.11) P̄ =
r

2(n− 1)
.

From (1.8), we have

(1.12) P(X,Y ) = P(Y,X),

and

P(X,Q) =
1

n− 2

[
Ric(X,Q)− r

2n− 1
g(X,Q)

]
,

or

(1.13) P(X,Q) =
1

n− 2

[
β(L(X))− r

2(n− 1)
β(X)

]
.

In the present paper, we have introduced a type of non-flat Riemannian manifold
(Mn, g), (n > 3) whose Schouten tensor P satisfies the condition

(1.14) (∇XP)(Y, Z) = [α(X) + β(X)]P(Y,Z) + α(Y )P(Z,X) + α(Z)P(X,Y ),

where α and β are called associated 1-forms of the manifold defined by

(1.15) g(X,σ) = α(X) and g(X,Q) = β(X),

for all X. σ and Q are called the basic vector fields of the manifold corresponding
to the associated 1-forms α and β, respectively. Such an n-dimensional manifold is
called an almost pseudo Schouten symmetric manifold and denoted by A(PSS)n.
An A(PRS)n is a particular case of an A(PSS)n.

The object of the present paper is to study A(PSS)n. The paper is presented
as follows:

Section 2, is devoted to the study of some properties of A(PSS)n and proved
remarkable theorems on it. In section 3, we have proved that the Sufficient condition
for an A(PSS)n to be quasi Einstein manifold. After that in Section 4, the existence
of A(PSS)n has been shown by a non-trivial example. Last section of this paper,
deals with the hypersurface of A(PSS)n. It is proved that the totally geodesic
hypersurface of this manifold is also A(PSS). Again, it is discovered in this section
that a necessary and sufficient condition for totally umbilical hypersurface of this
manifold to be also A(PSS)n is that the mean curvature be constant.

2. Almost Pseudo Schouten Symmetric Manifolds

In this section, using the definitions and the concepts given in Section 1, we will
prove some results on A(PSS)n satisfying certain curvature conditions.
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Replacing Y and Z by X in (1.14), we get

(∇XP)(X,X) = [α(X) + β(X)]P(X,X) + α(X)P(X,X) + α(X)P(X,X),

or

(2.1) (∇XP)(X,X) = [3α(X) + β(X)]P(X,X).

By hypothesis the Schouten tensor is non-zero, then from (2.1) it follows that

(∇XP)(X,X) = 0 if and only if 3α(X) + β(X) = 0.

Thus we can state the following:

Theorem 2.1. In an A(PSS)n, the Schouten tensor is covariantly constant in
the direction of X if and only if 3α+ β = 0.

Taking cyclic sum of (1.14) over X, Y and Z, we get

(∇XP)(Y,Z) + (∇Y P)(Z,X) + (∇ZP)(X,Y )

= [α(X) + β(X)]P(Y,Z) + [α(Y ) + β(Y )]P(Z,X) + [α(Z) + β(Z)]P(X,Y )

+ α(Y )P(Z,X) + α(Z)P(X,Y ) + α(X)P(Y,Z) + α(Z)P(X,Y )

+ α(X)P(Y, Z) + α(Y )P(Z,X),

which implies

(∇XP)(Y,Z) + (∇Y P)(Z,X) + (∇ZP)(X,Y )

= [3α(X) + β(X)]P(Y,Z) + [3α(Y ) + β(Y )]P(Z,X) + [3α(Z) + β(Z)]P(X,Y )

or,

(∇XP)(Y,Z) + (∇Y P)(Z,X) + (∇ZP)(X,Y )

= H(X)P(Y,Z) +H(Y )P(Z,X) +H(Z)P(X,Y ),
(2.2)

where H(X) = 3α(X) + β(X). If the Schouten tensor of the manifold is quadratic
Killing then from (1.6), we have

(2.3) (∇XP)(Y,Z) + (∇Y P)(Z,X) + (∇ZP)(X,Y ) = 0.

By virtue of (2.3) the relation (2.2) reduces to

(2.4) H(X)P(Y,Z) +H(Y )P(Z,X) +H(Z)P(X,Y ) = 0.

According to Walker’s Lemma [11] “If a(X,Y ), b(X) are numbers satisfying a(X,Y ) =
a(Y,X), and a(X,Y )b(Z) +a(Y,Z)b(X) +a(Z,X)b(Y ) = 0, then either all a(X,Y )
are zero or all b(X) are zero”, then from (2.4) we conclude that either H(X) = 0
or P(X,Y ) = 0 for all X, Y . Since P(X,Y ) 6= 0. Therefore,

H(X) = 0 for all X,
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which implies that

(2.5) 3α(X) + β(X) = 0.

Conversely, if 3α(X) + β(X) = 0, then from (2.2) we obtain

(2.6) (∇XP)(Y, Z) + (∇Y P)(Z,X) + (∇ZP)(X,Y ) = 0,

which shows that the Schouten tensor is quadratic Killing tensor.

Thus we can state the following:

Theorem 2.2. In an A(PSS)n, (n > 2) the Schouten tensor is quadratic Killing
if and only if the associated 1-forms α and β satisfy the relation 3α+ β = 0.

Let the Schouten tensor of the manifold be quadratic Killing. Then the associ-
ated 1-forms α and β satisfy the relation (2.5) from which we get

(2.7) α(X) = −1

3
β(X).

Taking covariant derivative of (2.7) over V , we get

(2.8) (∇V α)(X) = −1

3
(∇V β)(X).

Interchanging X and V in (2.8) and then subtracting them, we get

(2.9) (∇V α)(X)− (∇Xα)(V ) = −1

3

[
(∇V β)(X)− (∇Xβ)(V )

]
which shows that if the 1-form α is closed, then 1-form β is also closed and vice-
versa.

This leads to the following result:

Theorem 2.3. In an A(PSS)n, (n > 2) if the Schouten tensor is quadratic
Killing, then the 1-form α is closed if and only if the 1-form β is closed.

Interchanging X and Z in (1.14) and then subtracting them, we get

(2.10) (∇XP)(Y, Z)− (∇ZP)(X,Y ) = β(X)P(Y, Z)− β(Z)P(X,Y )

which in view of (1.8), the relation (2.10) gives(
(∇XRic)(Y,Z)− dr(X)

2(n− 1)
g(Y, Z)− (∇ZRic)(X,Y ) +

dr(Z)

2(n− 1)
g(X,Y )

)
= (n− 2)[β(X)P(Y,Z)− β(Z)P(X,Y )].

(2.11)

Let us suppose that the scalar curvature of A(PSS)n is constant. Taking Y = Z =
ei in (2.11) and using (1.11) and (1.13), we get

(2.12) β(L(X)) =
r

2
β(X)
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which in view of (1.15), the relation (2.12) gives

(2.13) Ric(X,Q) =
r

2
g(X,Q).

This leads to the following:

Theorem 2.4. If the scalar curvature of an A(PSS)n is constant then the vector
field Q corresponding to the 1-form β is an eigenvector of the Ricci tensor Ric
corresponding to the eigenvalue r

2 .

If the Schouten tensor P is of Codazzi type, then from (1.7), we find

(2.14) (∇XP)(Y, Z) = (∇ZP)(X,Y ).

Interchanging X and Z in (1.14) and then subtracting them, we get

(2.15) (∇XP)(Y,Z)− (∇ZP)(X,Y ) = β(X)P(Y,Z)− β(Z)P(X,Y ),

which in view of (2.14), the relation (2.15) yields

(2.16) β(X)P(Y,Z)− β(Z)P(X,Y ) = 0.

Putting X = Q in (2.16), we get

(2.17) β(Q)P(Y, Z) = β(Z)P(Q,Y ).

Putting Y = Z = ei in (2.16), we get

(2.18)
r

2(n− 1)
β(X)− 1

n− 2

[
β(L(X))− r

2(n− 1)
β(X)

]
= 0.

By virtue of (1.13), the relation (2.18) reduces to

(2.19) P(X,Q) =
r

2(n− 1)
β(X),

Using (2.19) in (2.17), we get

(2.20) P(Y,Z) =
r

2(n− 1)

β(Y )β(Z)

β(Q)
.

From (1.8), we can find

(2.21) Ric(Y,Z) =
r

2(n− 1)
g(Y,Z) + (n− 2)P(Y,Z).

Now, using (2.20) in (2.21), we get

(2.22) Ric(Y, Z) =
r

2(n− 1)
g(Y, Z) +

(n− 2)r

2(n− 1)

β(Y )β(Z)

β(Q)
.
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Equation (2.22) can be written in the following form

Ric(Y,Z) = ag(Y,Z) + bβ(Y )β(Z),

where a = r
2(n−1) and b = (n−2)r

2(n−1)β(Q) are non-zero scalars. Hence the manifold

under consideration is a quasi-Einstein manifold.

This leads to the following theorem:

Theorem 2.5. If the Schouten tensor of an A(PSS)n is of Codazzi type, then the
manifold reduces to a quasi-Einstein manifold.

3. Sufficient condition for an A(PSS)n to be a quasi-Einstein manifold

In an A(PSS)n, the Schouten tensor satisfies the following condition

(3.1) (∇UP)(X,Y ) = [α(U) + β(U)]P(X,Y ) + β(X)P(U, Y ) + β(Y )P(X,U).

In a Riemannian manifold a vector field ρ defined by g(X, ρ) = α(X) for all vector
fields X is said to be a concircular vector field [9] if

(3.2) (∇Xα)(Y ) = λg(X,Y ) + ω(X)α(Y ),

where λ is a smooth function and ω is a closed 1-form. If ρ is a unit one then the
equation (3.2) can be written as

(3.3) (∇Xα)(Y ) = λ
(
g(X,Y )− α(X)α(Y )

)
.

We assume that A(PSS)n admits the associated vector field ρ defined by (3.2),
with a non-zero constant λ. Applying Ricci identity to (3.3), we obtain

(3.4) α(K(X,Y, Z)) = λ2
(
g(X,Z)α(Y )− g(Y,Z)α(X)

)
.

Putting Y = Z = ei in (3.4), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

(3.5) α(L(X)) = (n− 1)λ2α(X),

where L is the Ricci tensor of type (1, 1) defined by g(L(X), Y ) = Ric(X,Y ), which
implies that

(3.6) Ric(X, ρ) = (n− 1)λ2α(X).

Now,

(3.7) (∇Y Ric)(X, ρ) = ∇Y Ric(X, ρ)− Ric(∇YX, ρ)− Ric(X,∇Y ρ).

Applying (3.6) and (3.3) in (3.7), we get

(3.8) (∇Y Ric)(X, ρ) = (n− 1)λ3[g(X,Y )− α(X)α(Y )]− Ric(X,∇Y ρ).
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Since (∇Xg)(Y, ρ) = 0, we have

(3.9) (∇Y α)(X) = g(X,∇Y ρ).

Using (3.3) in (3.9) yields

λ[g(X,Y )− α(X)α(Y )] = g(X,∇Y ρ),

which implies

(3.10) ∇Y ρ = λY − λα(Y )ρ = λ[Y − α(Y )ρ].

Hence

(3.11) Ric(X,∇Y ρ) = λ[Ric(X,Y )− α(Y )Ric(X, ρ)].

Applying (3.11) in (3.8), we get

(∇Y Ric)(X, ρ) =(n− 1)λ3[g(X,Y )− α(X)α(Y )]

− λRic(X,Y ) + λα(Y )Ric(X, ρ).
(3.12)

Again using (3.6) in (3.12), we get

(3.13) (∇Y Ric)(X, ρ) = (n− 1)λ3g(X,Y )− λRic(X,Y ).

By virtue of (1.8) the relation (3.1) becomes

(∇URic)(X,Y )− dr(U)

2(n− 1)
g(X,Y )

= [α(U) + β(U)]
[
Ric(X,Y )− r

2(n− 1)
g(X,Y )

]
+ β(X)

[
Ric(U, Y )− r

2(n− 1)
g(U, Y )

]
+ β(Y )

[
Ric(X,U)− r

2(n− 1)
g(X,U)

]
.

(3.14)

Putting Y = ρ in (3.14) and then using (3.13), we get[
(n− 1)λ3g(X,U)− λRic(X,U)− dr(U)

2(n− 1)
g(X, ρ)

]
= [α(U) + β(U)]

{
Ric(X, ρ)− r

2(n− 1)
g(X, ρ)

}
+ β(X)

{
Ric(U, ρ)− r

2(n− 1)
g(U, ρ)

}
+ β(ρ)

{
Ric(X,U)− r

2(n− 1)
g(X,U)

}
,

(3.15)
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which in view of (3.6) the relation (3.15) reduces to

[λ+ β(ρ)]Ric(X,U)

=
r

2(n− 1)
β(ρ)g(X,U)− dr(U)

2(n− 1)
α(X)

− [α(U) + β(U)]
{

(n− 1)λ2 − r

2(n− 1)

}
α(X)

− β(X)α(U)
{

(n− 1)λ2 − r

2(n− 1)

}
+ (n− 1)λ3g(X,U).

(3.16)

Putting X = ρ in (3.16) then using (3.6), we get

[λ+ β(ρ)](n− 1)λ2α(U) =
r

2(n− 1)
β(ρ)α(U)− dr(U)

2(n− 1)
α(ρ)

− [α(U) + β(U)]
{

(n− 1)λ2 − r

2(n− 1)

}
α(ρ)

−
{

(n− 1)λ2 − r

2(n− 1)

}
α(U)β(ρ) + (n− 1)λ3α(U),

which implies that

(3.17) β(U) = −
{2β(ρ)

α(ρ)
+ 1
}
α(U)− dr(U)

{2λ2(n− 1)2 − r}
.

We suppose that λ + β(ρ) 6= 0 and the scalar curvature r is constant. Then from
(3.16) and (3.17), we find

Ric(X,U) =
(n− 1)λ3 + r

2(n−1)β(ρ)

λ+ β(ρ)
g(X,U)

+

(
4β(ρ)
α(ρ) + 1

){
(n− 1)λ2 − r

2(n−1)

}
λ+ β(ρ)

α(X)α(U).

Since λ is non-zero constant then the above relation can be written as

Ric(X,U) = ag(X,U) + bα(X)α(U),

where a = 1
λ+β(ρ)

[
(n− 1)λ3 + r

2(n−1)β(ρ)
]

and b = 1
λ+β(ρ)

(
4β(ρ)
α(P ) + 1

){
(n− 1)λ2 −

r
2(n−1)

}
are two non-zero scalars. Hence the manifold under consideration is a

quasi-Einstein manifold.

Thus we are in the position to state the following:

Theorem 3.1. If the scalar curvature of an A(PSS)n is constant and the basic
vector field ρ is a unit concircular vector field whose associated scalar is a non-zero
constant, then the manifold reduces to a quasi-Einstein manifold provided λ+β(ρ) 6=
0.
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4. Existence of an A(PSS)n

We define a Riemannian metric g on the 4-dimensional real number space R4 by
the formula:

(4.1) ds2 = gijdx
idxj =

3
√
t4 [(dx)2 + (dy)2 + (dz)2] + (dt)2,

where 0 < t <∞; x, y, z, t are the standard coordinates of R4. Then the only non-
vanishing components of Christoffel symbols (see [5]), and the curvature tensors are
as follows: {

1
14

}
=

{
2
24

}
=

{
3
34

}
=

2

3t
,{

4
11

}
=

{
4
22

}
=

{
4
33

}
= −2 3

√
t

3
.

(4.2)

The non-zero derivatives of equation (4.2), we get

∂

∂t

{
1
14

}
=

∂

∂t

{
2
24

}
=

∂

∂t

{
3
34

}
= − 2

3t2
,

∂

∂t

{
4
11

}
=

∂

∂t

{
4
22

}
=

∂

∂t

{
4
33

}
= − 2

9t
2
3

.

For the Riemannian curvature tensor

(4.3) Kl
ijk =

∣∣∣∣∣∣∣∣
∂
∂xj

∂
∂xk{

l
ij

} {
l
ik

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=I

+

∣∣∣∣∣∣∣∣
{
m
ik

} {
m
ij

}
{

l
mk

} {
l
mj

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=II

The non-zero components of (I) in (4.3) are:

K1
441 =

∂

∂t

{
1
14

}
= − 2

3t2
, K2

442 =
∂

∂t

{
2
42

}
= − 2

3t2
, K4

334 = − ∂

∂t

{
4
33

}
=

2

9t
2
3

,

and the non-zero components of (II) in (4.3) are:

K1
441 =

{
m
14

}{
1
m4

}
−
{
m
44

}{
1
m1

}
=

{
1
14

}{
1
14

}
−
{

1
44

}{
1
11

}
=

4

9t2

K2
442 =

{
m
42

}{
2
m4

}
−
{
m
44

}{
2
m2

}
=

{
2
42

}{
2
24

}
−
{

2
44

}{
2
22

}
=

4

9t2

K4
334 =

{
m
34

}{
4
m3

}
−
{
m
33

}{
4
m4

}
=

{
3
34

}{
4
33

}
−
{

3
33

}{
4
34

}
= − 4

9t
2
3

K2
112 =

{
m
12

}{
2
m1

}
−
{
m
11

}{
2
m2

}
=

{
4
12

}{
2
14

}
−
{

4
11

}{
2
42

}
=

4

9t
2
3
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K3
113 =

{
m
13

}{
3
m1

}
−
{
m
11

}{
3
m3

}
=

{
4
13

}{
3
41

}
−
{

4
11

}{
3
43

}
=

4

9t
2
3

K2
332 =

{
m
32

}{
2
m3

}
−
{
m
33

}{
2
m2

}
=

{
4
32

}{
2
43

}
−
{

4
33

}{
2
42

}
=

4

9t
2
3

.

Adding components corresponding (I) and (II), we get

K1
441 = K2

442 = − 2

9t2
, K4

334 = − 2

9t
2
3

K2
112 = K2

332 = K3
113 =

4

9t
2
3

.

Thus, the non-zero components of curvature tensor of type (0, 4), up to symmetry
are

(4.4) K̃1441 = K̃2442 = K̃4334 = − 2

9
3
√
t2
, K̃2112 = K̃3113 = K̃2332 =

4
3
√
t2

9
.

Now, we can find the non-vanishing components of the Ricci tensor are as follows:

Ric11 = gjhK̃1j1h = g22K̃2112 + g33K̃3113 + g44K̃1441 =
2

3
3
√
t2

Ric22 = gjhK̃2j2h = g11K̃2112 + g33K̃2323 + g44K̃2424 =
2

3
3
√
t2

Ric33 = gjhK̃3j3h = g11K̃3131 + g22K̃3232 + g44K̃3434 =
2

3
3
√
t2

Ric44 = gjhK̃4j4h = g11K̃4141 + g22K̃4242 + g33K̃4343 = − 2

3t2
,

(4.5)

and the scalar curvature as follows:

r = g11Ric11 + g22Ric22 + g33Ric33 + g44Ric44 =
4

3t2
.

. The components of the Schouten tensor and scalar P̄ are as follows:

(4.6) P11 = P22 = P33 =
2

9
3
√
t2
, P44 = − 4

9t2
, P̄ =

2

9t2
.

Thus from (4.5) and (4.6), we show that the relation (1.11) holds, that is r =
2(n− 1)P̄. It shows that the Schouten tensor in R4 endowed with the metric given
by (4.1) can be defined as in (1.8).

We shall now show that R4 is an A(PSS)n. Let us choose the associated 1-forms
are as follows:

(4.7) αi(t) =

{
− 2

3t , if i=4

0, otherwise,
βi(t) =

{
1
t , if i=1

0, otherwise
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at any point of R4. Now the relation (1.14) reduces to the following:

(4.8) P11,4 = [α4 + β4]P11 + α1P41 + α1P14,

(4.9) P22,4 = [α4 + β4]P22 + α2P42 + α2P24,

(4.10) P33,4 = [α4 + β4]P33 + α3P43 + α3P34,

(4.11) P44,4 = [α4 + β4]P44 + α4P44 + α4P44

since for the other cases (1.14) holds trivially. By (4.7) we get the following relation
for the right hand side (R.H.S) and left hand side (L.H.S.) of (4.8)

R.H.S. of (4.8) = [α4 + β4]P11 + α1P41 + α1P14

= [α4 + β4]P11

=
(
− 2

3t
+ 0
) 2

9
3
√
t2

= − 4

27
3
√
t5

= L.H.S. of (4.8).

By similar argument it can be shown that (4.9), (4.10) and (4.11) are also true.
Therefore, (R4, g) is an A(PSS)n whose scalar curvature is non-zero and non-
constant.

Thus the following theorem holds:

Theorem 4.1. Let (R4, g) be a 4-dimensional Lorentzian manifold with the Lorentzian
metric g given by

(4.12) ds2 = gijdx
idxj =

3
√
t4[(dx)2 + (dy)2 + (dz)2] + (dt)2,

where 0 < t <∞. Then (R4, g) is an almost pseudo Schouten symmetric manifold.

We shall now show that this (R4, g) is a quasi-Einstein manifold. Let us choose the
scalar functions a and b (the associated scalars) and the 1-form η as follows:

(4.13) a =
4

3t2
, b = − 4

t2
, ηi(t) =


3
√
t2√
6
, if i=1,2,3

1√
2
, otherwise,

at any point R4. We can easily check that (R4, g) is a quasi-Einstein manifold.
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5. On the hypersurface of an A(PSS)n

In local coordinates the Schouten tensor P of an A(PSS)n satisfies the following
condition

(5.1) Pij,k = [Ak +Bk]Pij +BiPjk +BjPik

where A and B denote the 1-forms of the manifold A(PSS)n.

Let (V̄ , ḡ) be an (n+1)−dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {U, xα}. Let (V, g) be a hypersurface of (V̄ , ḡ) defined
in a locally coordinate system by means of a system of parametric equation xα =
xα(ti), where Greek indices take values 1, 2, ..., n and Latin indices take values
1, 2, ..., (n + 1). Let nα be the components of a local unit normal to (V, g). Then
we have

(5.2) gij = ḡαβx
α
i x

β
j

(5.3) ḡαβn
αxβj = 0, ḡαβn

αnβ = e = 1.

(5.4) xαi x
β
j g
ij = gαβ , gαβn

αxβj = 0, xα =
∂xα

∂ti
.

The hypersurface (V, g) is called a totally umbilical [4] of (V̄ , ḡ) if its second funda-
mental form Ωij satisfies

(5.5) Ωij = Hgij , xαi,j = gijHn
α

where the scalar H is called the mean curvature of (V, g) given by the equation
H = 1

n

∑
gijΩij . If, in particular, H = 0, that is,

(5.6) Ωij = 0

then the totally umbilical hypersurface is called a totally geodesic hypersurface of
(V̄ , ḡ).

The equation of Weingarten for (V, g) can be written as nα,j = −Hn x
α
j . The

structure equations of Gauss and Codazzi [4] for (V, g) and (V̄ , ḡ) are respectively
given by

(5.7) Kijkl = K̄αβγδA
αβγδ
ijkl +H2Gijkl

(5.8) K̄αβγδA
αβγ
ijk n

δ = H,igjk −H,jgik

where Kijkl and K̄αβγδ are the curvature tensors of (V, g) and (V̄ , ḡ), respectively,
and

(5.9) Aαβγδijkl = Aαi A
β
jA

γ
kA

δ
l , Aαi = xαi , Gijkl = gilgjk − gikgjl.
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Also we have [4]

(5.10) RicαβA
α
i A

β
j = Ricij −H2gij

(5.11) Ricαβn
αAβi = (n− 1)Hi

(5.12) r̄ = r − n(n− 1)H2

where Ricij and R̄icαβ are the Ricci tensors and r and r̄ are the scalar curvatures
of (V, g) and (V̄ , ḡ), respectively.

Now we prove the following theorem:

Theorem 5.1. The totally geodesic hypersurface of an A(PSS)n is also a A(PSS)n.

Proof. Let us consider the totally geodesic hypersurface of an A(PSS)n. Then from
(5.6) and (5.10), we have

(5.13) Ricij = RicαβAαi A
β
j .

By virtue of (5.2) and (5.13) in (5.13), we get

(5.14) Pij = P̄αβA
α
i A

β
j .

Since (V̄ , ḡ) be an A(PSS)n, then from (5.1) we find

(5.15) P̄αβ,γ = [Aγ +Bγ ]P̄αβ +BαP̄γβ +BβP̄γα.

Multiplying both sides of (5.15) by Aαβγijk and using (5.14), we finally get

(5.16) Pij,k = [Ak +Bk]Pij +BiPjk +BjPik.

Hence the froof is completed.

Now we assume that our manifold is A(PSS)n. Multiplying (3.13) by Aαβγijk , we
obtain

(5.17) Aαβγijk P̄αβ,γ = [Ak +Bk]Pij +BiPjk +BjPik.

Let the scalar curvature r be constant. Then, from (1.8), for A(PSS)n, we find

(5.18) P̄αβ,γ =
1

n− 2
Ricαβ,γ .

Combining the equations (5.17) and (5.18), we have

(5.19)
1

n− 2
Ricαβ,γA

αβγ
ijk = [Ak +Bk]Pij +BiPjk +BjPik.



On Almost Pseudo Schouten Symmetric Manifolds 123

We consider that the hypersurface is totally umbilical then by taking the covariant
derivative of (5.10), it can be seen that

(5.20) Ricαβ,γA
αβγ
ijk = Ricij,k − 2(n− 1)H H,kgij .

From (5.19) and (5.20), we conclude that

(5.21)
1

n− 2
Ricij,k − (n− 1)H H,kgij = [Ak +Bk]Pij +BiPjk +AjPik.

If this hypersurface of A(PSS)n is also A(PSS)n then by virtue of (5.1) and (1.8)
the equation (5.21) reduces to

(5.22) H H,kgij = 0.

This means that either H = 0 or H,k = 0, that is, H is constant. Conversely, if
H = 0 or H is constant from (1.8) and (5.21), we get (5.1). In this case, the totally
umbilical hypersurface of this manifold is also A(PSS)n.

Hence, we conclude the following:

Theorem 5.2. If the scalar curvature of an A(PSS)n is constant then the totally
umbilical hypersurface of an A(PSS)n be also A(PSS)n, provided that the mean
curvature be constant.
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Bd X, Springer-Verlag, Berlin, 1954.

10. R. M. Wald: General relativity. Chicago IL: University of Chicago Press, 1984.

11. A. G. Walker: On Ruse’s space of recurrent curvature. Proc. London Math.
Soc. 52 (1950), 36–54.

12. K. Yano, M. Kon: Structures on manifolds, Series in pure Mathematics 3. World
Scientific Publishing Co, Singapore, 1984.
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