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Abstract. In this study, we consider the concept of Mannheim partner trajectories re-
lated to the Positional Adapted Frame on Regular Surfaces (PAFORS) for the particles
moving on the different regular surfaces in Euclidean 3-space. We give the relations
between the PAFORS elements of these aforementioned trajectories. Also, we obtain
the relations between Darboux basis vectors of these trajectories. Furthermore, some
special cases of these trajectories are written.
Keywords: Mannheim partner trajectories, Positional Adapted Frame on Regular
Surfaces, Darboux basis vectors.

1. Introduction

The surface theory is one of the most popular fundamental areas in differential
geometry although its history is very long. The well-known moving frame Frenet-
Serret frame has played an important role in the development of this theory. The
steps which are performed by Frenet and Serret helped to adapt the moving frames
to the curves on regular surfaces. This success was achieved by French mathemati-
cian Darboux [3]. He constructed a moving frame that is called today as Darboux
frame for surface curves. Darboux frame is well-defined at every non-umbilic point
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kahramanesenozen@karatekin.edu.tr (K. E. Özen), tosun@sakarya.edu.tr (M. Tosun)
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of a surface. Therefore, it exists at every point of a regular surface curve [3,15,22].
Darboux frame has been used as a convenient tool for discussing many topics in the
surface theory. Until today, a lot of researchers have performed many significant
studies on the surface theory by means of Darboux frame. In [6, 11, 20, 26, 27], one
can easily find some of these studies.

Another popular area in differential geometry is the curve theory. The concept
of the special curves is an important part of this theory. In Euclidean 3-space E3,
curve pairs like Mannheim curve pairs are well-known examples of special curves.
The topic of moving frames has an important place in the investigation of the local
theory of these kinds of curve pairs. Developing new moving frames has always
been an important effort for mathematicians. The groundbreaking discovery in this
regard is the discovery of the Frenet-Serret frame, as everyone will agree. Most of
the moving frames developed later include one of the basis vectors of the Frenet-
Serret frame in common. Bishop frame [1], type 2-Bishop frame [29], type 3-Bishop
frame [25], q-frame [5], Flc-frame [4], N -C-W frame [23], N -Bishop frame [10] can
be given as examples to them. Similar to these moving frames, recently, Özen and
Tosun have introduced a new moving frame on regular surfaces in Euclidean 3-space
which is shortly called PAFORS by using the Darboux frame for the trajectories
with non-vanishing angular momentum [17]. The authors have followed similar
steps followed in the study [18] to construct this frame. The same authors also
give some characterizations on asymptotic, slant helical, and geodesic trajectories
with respect to PAFORS in the study [19]. Then, the idea of this new frame has
been expanded to the Minkowski 3-space by Gürbüz in the study [8]. Gürbüz has
taken into consideration the evolution of an electric field according to PAFORS in
Minkowski 3-space in the aforementioned study.

Mannheim partner curves (according to Frenet-Serret frame) are interesting and
popular special curves. The principal normal line of one of these partners matches
up with the binormal line of the other partner at the corresponding points of them.
Mannheim carried out the first study in 1878 on this topic [2, 13]. In the early
2000s, Mannheim partner curves were studied by Liu and Wang [12, 28]. In [12],
the authors specified the necessary and sufficient conditions for a curve to possess
a Mannheim partner curve in Euclidean 3-space and Minkowski 3-space. Then,
Mannheim offsets of ruled surfaces were defined in [16]. On the other hand, dual
Mannheim curves were discussed [7] and [21]. Another thing that can be of impor-
tance is that this topic was expanded to different frames such as Darboux frame and
Bishop frame. Kazaz et al. [9] determined the Mannheim partner D-curves taking
into consideration the Darboux frames of the curves on surfaces. Similar to this
study, Masal and Azak investigated the Mannheim B-curves utilizing the Bishop
frame [14].

In this paper, we investigate Mannheim partner trajectories related to PAFORS.
Firstly, in Section 2, we mention the necessary information to understand the en-
suing sections. In Section 3, Mannheim partner trajectories related to PAFORS
are defined, and the relations between the PAFORS elements of these trajectories
are given. Also, the relations between Darboux basis vectors of these trajectories
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are obtained. Moreover, some special cases of these trajectories are characterized
according to PAFORS curvatures of these trajectories. Then, we give conclusions
in Section 4.

2. Preliminaries

In this section, we remind some required terminology used throughout this pa-
per.

In E3, the standard inner product of any two vectors W = (w1, w2, w3) and
X = (x1, x2, x3) are expressed as 〈W,X〉 = w1x1+w2x2+w3x3. Based on this equal-
ity, the norm of the vector W is given by ‖W‖ =

√
〈W,W〉 =

√
w2

1 + w2
2 + w2

3.
On the other hand, for a differentiable curve α = α (s) : I ⊂ R → E3, if the
condition ‖dα/ds‖ = 1 for all s ∈ I is satisfied, α is called a unit speed curve.
In such a case, the parameter s is said to be an arc-length parameter of α. Also,
if the derivative of a differentiable curve does not equal to zero everywhere along
this curve, it is called a regular curve. Any regular curve always has a unit speed
parameterization [24]. We must emphasize that the symbol prime ′ will be used to
show the differentiation with respect to the arc-length parameter s in the rest of
this study.

The researchers generally make use of the Frenet-Serret frame to investigate
many properties of regular curves. However, if these regular curves lie on regular
surfaces, then using the Darboux frame offers more possibilities than the Frenet-
Serret frame.

Let us suppose that a particle R moves on a regular surface M in the Euclidean
3-space along the trajectory α = α(s) that is a unit speed curve. Thus, we can
express α as α : I ⊂ R → M ⊂ E3. The base vectors of the Darboux frame of
the trajectory α are presented as {T (s) ,Y (s) ,U (s)} along α where T is called
the unit tangent vector, U is called the unit normal vector. The remaining basis
vector Y of the Darboux frame is found by means of the equality Y = U ×T. It
should be specified that the second-order derivatives of the curves, which we will
consider in this article, are always non-zero (it means that α′′(s) is zero nowhere).
For Darboux frame, the derivative formulas are constructed as follows:T′(s)

Y′(s)
U′(s)

 =

 0 kg(s) kn(s)
−kg(s) 0 τg(s)
−kn(s) −τg(s) 0

T(s)
Y(s)
U(s)

 ,

where kg is geodesic curvature, kn is normal curvature and τg is geodesic torsion of
the curve α [6, 15].

Assume that the angular momentum vector of the aforesaid particle R about the
origin does not vanish during the motion. In that case, PAFORS {T(s),G(s),H(s)}
is well defined along the trajectory α = α (s). The base vectors of PAFORS are
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given as follows:

T(s) = T(s),

G(s) =
〈α(s),U(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s) +

〈α(s),Y(s)〉√
〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2

U(s),

H(s) =
〈−α(s),Y(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s) +

〈α(s),U(s)〉√
〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2

U(s).

The relation between the Darboux frame and PAFORS exists as follows:

(2.1)

T (s)
G(s)
H(s)

 =

1 0 0
0 cosϕ(s) − sinϕ(s)
0 sinϕ(s) cosϕ(s)

T(s)
Y(s)
U(s)

 .

Here, ϕ(s) is the angle between the vectors Y(s) and G(s) that is positively oriented
from Y(s) to G(s) [17].
Furthermore, the derivative formulas of PAFORS are given as in the following [17]:

(2.2)

T′(s)
G′(s)
H′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
G(s)
H(s)

 ,

where 
k1(s) = kg(s) cosϕ(s)− kn(s) sinϕ(s),

k2(s) = kg(s) sinϕ(s) + kn(s) cosϕ(s),

k3(s) = τg(s)− ϕ′(s).

Additionally, the rotation angle ϕ(s) is calculated by using the following equation
[17]:

ϕ(s) =



arctan
(
− 〈α(s),Y(s)〉

〈α(s),U(s)〉

)
if 〈α(s), U(s)〉 > 0,

arctan
(
− 〈α(s),Y(s)〉

〈α(s),U(s)〉

)
+ π if 〈α(s), U(s)〉 < 0,

−π2 if 〈α(s),U(s)〉 = 0 , 〈α(s), Y(s)〉 > 0,

π
2 if 〈α(s), U(s)〉 = 0 , 〈α(s), Y(s)〉 < 0.

Also, the elements of the set {T(s),G(s),H(s), k1(s), k2(s), k3(s)} are called as
PAFORS apparatuses of the trajectory α = α (s) [17].

In order to remind the asymptotic curve and geodesic curve, we can present the
following conditions [15]:

1. kn = 0 if and only if α = α(s) is an asymptotic curve.

2. kg = 0 if and only if α = α(s) is a geodesic curve.



Mannheim Partner Trajectories Related to PAFORS 237

Theorem 2.1. [19] Suppose that α = α(s) is an asymptotic curve on the regular
surface M with the condition kg 6= 0. Then, α = α(s) is a curve whose position
vector lies on the corresponding plane Sp{T(s),U(s)} if and only if k2 = 0.

Theorem 2.2. [19] Assume that α = α(s) is an asymptotic curve on the regular
surface M with the condition kg 6= 0. Then, α = α(s) is a curve whose position
vector lies on the corresponding plane Sp{T(s),Y(s)} if and only if k1 = 0.

Theorem 2.3. [19] Suppose that α = α(s) is a geodesic curve on the regular surface
M with the condition kn 6= 0. Then, α = α(s) is a curve whose position vector lies
on the corresponding plane Sp{T(s),U(s)} if and only if k1 = 0.

Theorem 2.4. [19] Assume that α = α(s) is a geodesic curve on the regular surface
M with the condition kn 6= 0. Then, α = α(s) is a curve whose position vector lies
on the corresponding plane Sp{T(s),Y(s)} if and only if k2 = 0.

For more detailed and comprehensive information about PAFORS, see [8, 17,19].

3. Mannheim Partner Trajectories Related to PAFORS Lying on
Different Regular Surfaces

In this section of this study, we introduce the Mannheim partner trajectories related
to PAFORS and obtain some characterizations and geometric interpretations of
them.

Definition 3.1. Let R and R̂ be the moving point particles on regular surfaces
M and M̂ in Euclidean 3-space E3. Let us show the unit speed parametrization
of the trajectories of R and R̂ with α = α (s) and α̂ = α̂ (ŝ), respectively. Let

{T, G, H, k1, k2, k3} and
{

T̂, Ĝ, Ĥ, k̂1, k̂2, k̂3

}
represent the PAFORS appara-

tus of the trajectories α and α̂, respectively. If the PAFORS base vector G coincides
with the PAFORS base vector Ĥ at the corresponding points of the trajectories α
and α̂, α̂ is said to be a Mannheim partner trajectory of α related to PAFORS.
Additionally, the pair {α, α̂} is called a Mannheim pair related to PAFORS.

With the help of the definition of Mannheim pair related to PAFORS, we can give
the following equation:T

G
H

 =

 cosψ sinψ 0
0 0 1

− sinψ cosψ 0


T̂

Ĝ

Ĥ

 ,(3.1)

where ψ is the angle between the tangent vectors T and T̂.

Theorem 3.1. Suppose that {α = α (s) , α̂ = α̂ (ŝ)} is any Mannheim pair related
to PAFORS. Then, the distance between the corresponding points of α and α̂ is
constant.
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Fig. 3.1: Mannheim partner trajectories related to PAFORS

Proof. According to the definition of Mannheim trajectories related to PAFORS,
the following equation can be given:

α (s) = α̂ (ŝ) + η (ŝ) Ĥ (ŝ) ,(3.2)

where η is a real valued smooth function of ŝ (cf. Figure 3.1). Differentiating the
equation (3.2) with respect to ŝ and using the equation (2.2), we have:

T
ds

dŝ
=
(

1− ηk̂2
)

T̂− ηk̂3Ĝ + η′Ĥ.(3.3)

Since T, T̂ and Ĝ are orthogonal to Ĥ, we have η′ = 0 with the help of the inner
product. Thus, η is a non-zero constant and then we can rewrite the equation (3.3)
as follows:

T
ds

dŝ
=
(

1− ηk̂2
)

T̂− ηk̂3Ĝ.(3.4)

Hence, the distance between the corresponding points of α and α̂ can be written as
follows:

d (α (s) , α̂ (ŝ)) = ‖α (s)− α̂ (ŝ)‖ =
∥∥∥ηĤ∥∥∥ =| η | .

Therefore, we obtain the distance between each corresponding points of α and α̂ as
non-zero constant.

Theorem 3.2. Let {α = α (s) , α̂ = α̂ (ŝ)} be any Mannheim pair related to PAFORS.
In that case, the following equation is satisfied.

d

ds
(cosψ) = k2

〈
H, T̂

〉
+ k̂1

dŝ

ds

〈
T, Ĝ

〉
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Proof. Since ψ is the angle between the tangent vectors T and T̂, we can write〈
T, T̂

〉
= ‖T‖

∥∥∥T̂∥∥∥ cosψ = cosψ. If this equation is differentiated with respect to

the parameter s, we obtain:

d

ds
(cosψ) =

d

ds

〈
T, T̂

〉
=
〈
k1G + k2H, T̂

〉
+

〈
T, (k̂1Ĝ + k̂2Ĥ)

dŝ

ds

〉
.

Then, the last equation yields the desired result.

Corollary 3.1. The angles between the tangent vectors at the corresponding points
of a Mannheim pair (related to PAFORS) are generally not constant.

Theorem 3.3. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
Then, the following equation is satisfied:T

G
H

 =


(

1− ηk̂2
)
dŝ
ds −ηk̂3 dŝds 0

0 0 1

ηk̂3
dŝ
ds

(
1− ηk̂2

)
dŝ
ds 0


T̂

Ĝ

Ĥ

 .(3.5)

Proof. Let {α, α̂} be a Mannheim pair related to PAFORS. With the help of the
equations (3.1) and (3.4), we get:

cosψ
ds

dŝ
T̂ + sinψ

ds

dŝ
Ĝ =

(
1− ηk̂2

)
T̂− ηk̂3Ĝ.

From the previous equation, we can write:
cosψ =

(
1− ηk̂2

) dŝ
ds

,

sinψ = −ηk̂3
dŝ

ds
.

(3.6)

Substituting the equation (3.6) in the equation (3.1), we have the equation (3.5).

Corollary 3.2. The tangent of the angle between the unit tangent vectors of the
Mannheim partner trajectories (related to PAFORS) α = α (s) and α̂ = α̂ (ŝ) is
given as follows:

tanψ =
−ηk̂3

1− ηk̂2
.(3.7)

Corollary 3.3. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).
In that case, the following equation is satisfied∫

cosψds+ η

∫
k̂2dŝ = ŝ+ c1,

where c1 shows the integration constant.
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Corollary 3.4. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).
Then, the following equation is satisfied.∫

sinψds+ η

∫
k̂3dŝ = 0

Theorem 3.4. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS

and their Darboux frame be denoted by {T, Y, U} and
{

T̂, Ŷ, Û
}

, respectively.

In that case, the relations between the Darboux base vectors of this pair are given by

T̂ =
(

1− ηk̂2
) dŝ
ds

T− ηk̂3 sinϕ
dŝ

ds
Y − ηk̂3 cosϕ

dŝ

ds
U,

Ŷ =ηk̂3 sin ϕ̂
dŝ

ds
T +

(
cos ϕ̂ cosϕ+

(
1− ηk̂2

)
sin ϕ̂ sinϕ

dŝ

ds

)
Y

+

(
− cos ϕ̂ sinϕ+

(
1− ηk̂2

)
sin ϕ̂ cosϕ

dŝ

ds

)
U,

Û =ηk̂3 cos ϕ̂
dŝ

ds
T +

(
− sin ϕ̂ cosϕ+

(
1− ηk̂2

)
cos ϕ̂ sinϕ

dŝ

ds

)
Y

+

(
sin ϕ̂ sinϕ+

(
1− ηk̂2

)
cos ϕ̂ cosϕ

dŝ

ds

)
U,

where ϕ is the angle between the vectors U and H and also, ϕ̂ is the angle between
the vectors Û and Ĥ.

Proof. With the help of the equation (2.1), the following equationsT
G
H

 =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

T
Y
U

(3.8)

and T̂

Ŷ

Û

 =

1 0 0
0 cos ϕ̂ sin ϕ̂
0 − sin ϕ̂ cos ϕ̂


T̂

Ĝ

Ĥ

(3.9)

can be seen easily. Also, we can write the following equation according to the
equation (3.5):T̂

Ĝ

Ĥ

 =


(

1− ηk̂2
)
dŝ
ds 0 ηk̂3

dŝ
ds

−ηk̂3 dŝds 0
(

1− ηk̂2
)
dŝ
ds

0 1 0


T

G
H

 .(3.10)

Substituting the equation (3.10) in the equation (3.9) gives us the following:T̂

Ŷ

Û

 =


(

1− ηk̂2
)
dŝ
ds 0 ηk̂3

dŝ
ds

−ηk̂3 cosϕdŝds sin ϕ̂
(

1− ηk̂2
)

cos ϕ̂dŝds

ηk̂3 sin ϕ̂dŝds cos ϕ̂ −
(

1− ηk̂2
)

sin ϕ̂dŝds


T

G
H

 .(3.11)
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If the equation (3.8) is considered in the equation (3.11), the desired equations are
found.

Theorem 3.5. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
In that case, the following relations can be given:

1. k1 =
k̂2 − ηk̂2

2
− ηk̂3

2

1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
)

2. k̂2 =
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)

where ξ is a constant satisfying | ξ |=| η |.

Proof. 1. Assume that {α, α̂} is a Mannheim pair related to PAFORS. With the
help of the well-known identity cos2ψ + sin2ψ = 1, we get:(

dŝ

ds

)2((
1− ηk̂2

)2
+ η2k̂3

2
)

= 1

using the equation (3.6). Then, we can write:(
ds

dŝ

)2

= 1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
)
.(3.12)

By differentiating the equation (3.4) according to the parameter ŝ and by
using the equation (2.2), we have:

d2s

dŝ2
T + k1

(
ds

dŝ

)2

G + k2

(
ds

dŝ

)2

H =

(
−η
(
k̂2

)′
+ ηk̂1k̂3

)
T̂

+
(
k̂1

(
1− ηk̂2

)
− ηk̂3

′)
Ĝ

+
(
k̂2

(
1− ηk̂2

)
− ηk̂3

2
)

Ĥ.

(3.13)

The last equation yields:

k1

(
ds

dŝ

)2

=
(

1− ηk̂2
)
k̂2 − ηk̂3

2
.(3.14)

If we substitute the equation (3.12) in the equation (3.14), we get the desired
result.

2. We can easily see the equality:

α̂ (ŝ) = α (s) + ξG (s)
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where ξ is a constant satisfying | η |=| ξ | (cf. Figure 3.1). Derivating this
equation according to the s twice, we get:

T̂
dŝ

ds
= (1− ξk1) T + ξk3H(3.15)

and

d2ŝ

ds2
T̂ + k̂1

(
dŝ

ds

)2

Ĝ + k̂2

(
dŝ

ds

)2

Ĥ = (−ξk′1 − ξk2k3) T

+
(
k1 (1− ξk1)− ξk23

)
G

+ (k2 (1− ξk1) + ξk′3) H.

(3.16)

By the equation (3.1), it can be seen that T̂ = cosψT − sinψH. Thus, we
get:

dŝ

ds
cosψT− dŝ

ds
sinψH = (1− ξk1) T + ξk3H

and also dŝ
ds cosψ = 1− ξk1, −dŝds sinψ = ξk3. From here we can write:(

dŝ

ds

)2

= 1− 2ξk1 + ξ2
(
k21 + k23

)
.(3.17)

The inner product of the vectors at the right and left sides of the equation
(3.16) with the vector G gives us the following:

k̂2

(
dŝ

ds

)2

= k1 − ξk21 − ξk23.(3.18)

Consequently, by using the equation (3.17), we have:

k̂2 =
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)

and the proof is completed.

With the help of the Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4 and
Theorem 3.5, we can give the following corollaries.

Corollary 3.5. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).

If k̂2 = k̂3 = 0, then k1 = 0.

Corollary 3.6. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).

If k1 = k3 = 0, then k̂2 = 0.
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Corollary 3.7. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
Then, the followings are satisfied:

1. Suppose that the geodesic curvature of α never equals to zero. Then, α = α(s)
is an asymptotic curve whose position vector lies on the corresponding plane

Sp{T(s),Y(s)} if and only if
k̂2 − ηk̂2

2
− ηk̂3

2

1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
) = 0.

2. Assume that the geodesic curvature of α̂ never equals to zero. Then, α̂ = α̂ (ŝ)
is an asymptotic curve whose position vector lies on the corresponding plane

Sp{T̂(ŝ), Û(ŝ)} if and only if
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)
= 0.

Corollary 3.8. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
Then, the followings are satisfied:

1. Suppose that the normal curvature of α never equals to zero. Then,
α = α(s) is a geodesic curve whose position vector lies on the correspond-

ing plane Sp{T(s),U(s)} if and only if
k̂2 − ηk̂2

2
− ηk̂3

2

1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
) = 0.

2. Assume that the normal curvature of α̂ never equals to zero. Then,
α̂ = α̂ (ŝ) is a geodesic curve whose position vector lies on the correspond-

ing plane Sp{T̂(ŝ), Ŷ(ŝ)} if and only if
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)
= 0.

4. Conclusions

The main purpose of this study is to lead the studies investigating the special
classes of regular surface curves (traced out by a moving particle) by means of the
new and convenient moving frame PAFORS. In accordance with this purpose, we
choose the Mannheim partner curves which are well-known and preferred widely.
We think this choice makes the study more remarkable.

In this study, Mannheim partner trajectories related to PAFORS are defined
for the particles moving along the different regular surfaces in Euclidean 3-space.
Also, the relations are given between the PAFORS elements of these aforementioned
trajectories. Moreover, the relations are obtained between Darboux basis vectors
of these trajectories, and some special cases of these trajectories are characterized.

We state that we plan to discuss the Bertrand partner trajectories related to
PAFORS in the future study.
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