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DOMINATION NUMBER AND WATCHING NUMBER OF
SUBDIVISION CONSTRUCTION OF GRAPHS

Kamran Mirasheh1, Ahmad Abbasi1 and Ebrahim Vatandoost2

Abstract. In light of the results of a domination number of the subdivision of a graph 
G, we determine an upper bound of the watching number of S(G). In addition, we 
obtain a condition with which the upper bound becomes sharp.
Keywords: Watching system, Dominating set, Subdivision.

1. Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will
often use the notation G = (V,E) to denote the graph with non-empty vertex set
V = V (G) and edge set E = E(G). ‘Order of ’ a graph G is the number of vertices
in the graph and is denoted by |G|. The degree of a vertex v is denoted deg(v).
By δ(G) we denote the minimum degree of G. An edge of G with end vertices u
and v is denoted by u − v. For every vertex x ∈ V (G), the open neighborhood
of vertex x is denoted by NG(x) and defined as NG(x) = {y ∈ V (G) : x − y},
and the close neighborhood of vertex x ∈ V (G), NG[x], is NG[x] = NG(x) ∪ {x}.
For a set T ⊆ V (G), the open neighborhood of T is NG(T ) = ∪x∈TNG(x) and the
closed neighborhood of T is NG[T ] = NG(T )∪T. For a set S ⊆ V (G), the subgraph
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induced by S is denoted by G[S]. ‘A complete bipartite graph ’ is a special kind of
bipartite graph where every vertex of the first set is connected to every vertex of
the second set. The complete bipartite graph is denoted by Kp,q, where p and q are
the order of bipartition. The ‘Cocktail party graph ’ denoted by CP (s) obtained
by removing s disjoint edges from complete graph K2s. A subset S of V (G) is a
dominating set of G if every vertex in V (G) \ S is adjacent to at least one vertex
in S. The domination number of a graph G, denoted by γ(G), is the minimum size
of a dominating set of G. A set C of vertices G is an identifying set of G if for
every two vertices x and y the sets NG[x] ∩ C and NG[y] ∩ C are non-empty and
different. Given a graph G, the smallest size of an identifying set of G is called
the identifying code number of G and denoted by γID(G). Two vertices x and y
are twins when NG[x] = NG[y]. Graphs with at least two twin vertices are not
an identifiable graph. Nowadays, identifying codes are a subject of active research
on their own, such as: the structural analysis of RNA proteins [6], error-detection
schemes [9] and routing [10], the location of threats in facilities using sensors[12], as
well as in networks, terrorist network monitoring [16]. For more details we refer the
reader to [3, 4, 8, 11, 15, 17]. are a subject of active research on their own, such as:
The Subdivision graph is the graph obtained by inserting an additional vertex in
to each edge of G, denoted by S(G). A ‘watching system ’ was introduced in[1], is
a generalization of identifying codes. A ‘watcher ’ ω of G is a couple of ω = (vi, Zi)
where vi is a vertex and Zi ⊆ NG[vi]. We will say that ω is located at vi and that
Zi is its watching area or watching zone. A watching system in a graph G is a finite
set W = {ω1, ω2, . . . , ωk} such that sets LW (v) = {ωi : v ∈ Zi , 1 ≤ i ≤ k} are
non-empty and distinct, for any v ∈ V . The ‘watching number ’ of G denoted by
ω(G) is the minimum size of watching systems of G.

In a watching system, the selection of neighbor vertices is favorite as watching
area from a watcher. We can place several watchers at the same location, with
distinct watching zones. Also watchers enable us to model a monitoring system
where monitors could simply tell where they detect a fault, but where the cost of a
monitor is proportional to the number of bits needed to send this information.

Auger et al. [2], gave an upper bound on ω(G) for connected graphs of order
n and characterized the trees attaining this bound. In 2014, Maimani et al. [13]
studied the watching systems of triangular graphs. They proved watching number
of triangular graph T (n) is equal to ⌈ 2n

3 ⌉. In 2017, Roozbayani et al. [14] studied
identifying codes and watching systems of Keneser graphs.

In this paper, we study the watching number of subdivision of some graphs. Our
main results are the following.
Theorem A: Let G be a graph of order n ≥ 3, of size m and δ(G) ≥ n− 2. Then
γ(S(G)) = n− 1. (Theorem 1 in Section 2.)
Theorem B: LetG be isomorphic to complete bipartite graphKp,q. Then γ(S(G)) =
p+ q − 1. (Theorem 5 in Section 2.)
Theorem C: Let G be a graph of order n. Then ω(S(G)) ≤ n. (Theorem 13 in
Section 4.)
Theorem D: Let G be a connected graph of order n ≥ 2. If γ(S(G)) = n− 1, then
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ω(S(G)) = n. (Theorem 16 in Section 4.)
We end this paper by the following conjecture.
Conjecture: If G is a graph of order n, then ω(S(G)) = n.

2. Domination number of S(G)

In this section, we give some results about dominating number of subdivision of
some graphs.

Theorem 2.1. Let G be a graph of order n ≥ 3, of size m and δ(G) ≥ n−2. Then
γ(S(G)) = n− 1.

Proof. Let V (G) = {v1, v2, · · · , vn} and V (S(G)) = V (G)∪B, whereB = {vij : 1 ≤
i < j ≤ n,NS(G)(vij) = {vi, vj}}. Without loss of generality, we may assume that
v1 adjacent to v2 in G. Also let D = {v3, v4, · · · , vn} ∪ {v12}. Then the vertices v1
and v2 are dominated by v12. The other vertices vij(i ̸= j) are dominated by vi or
vj(i ̸= 1, j ̸= 2). So γ(S(G)) ≤ n − 1. Let n = 3. Then γ(S(G)) ≤ 2. Since S(G)
does not have universal vertex, γ(S(G)) = 2. Let n ≥ 4 and D0 be a dominating
set for S(G) with | D0 | = n− 2. Since n ≥ 4 and δ(G) ≥ n− 2, so m ≥ n. Hence,
D0 ∩ V (G) ̸= Ø and D0 ∩ B ̸= Ø. Let | V (G) ∩ D0 | = ℓ and n − ℓ = 2. Then
D0 ∩B = Ø, which is not true. So n− ℓ ≥ 3.
We claim that, there exist {vi, vj , vt} ⊆ V (G)\D0, (i < j < t) such that |NS(G)[vi]∩
D0 | = | NS(G)[vj ] ∩D0 | = | NS(G)[vt] ∩D0 | = 1.
For this suppose that H = S(G)[(B ∩D0) ∪ (V (G) \D0)]. It is clear that∑

x∈D0∩B

deg
H
(x) =

∑
y∈V (G)\D0

deg
H
(y) and

∑
x∈D0∩B

deg
H
(x) ≤ 2| D0 ∩B |.

If for every vi ∈ V (G) \D0, | NS(G)[vi] ∩D0 | ≥ 2, then∑
y∈V (G)\D0

deg
H
(y) ≥ 2| V (G) \D0 |.

Hence, 2| V (G) \D0 | ≤ 2| D0 ∩B | that is false.
If for every vi ∈ V (G)\(D0∪{vj}), | NS(G)[vi]∩D0 | ≥ 2 and | NS(G)[vj ]∩D0 | = 1,
(vj /∈ D0), then∑

y∈V (G)\D0

deg
H
(y) =

∑
y∈V (G)\(D0∪{vj})

deg
H
(y) + deg

H
(vj)

≥ 2| V (G) \ (D0 ∪ {vj}) |+ 1.

Hence, 2(n− ℓ− 1) + 1 ≤ 2| D0 ∩B | = 2(n− ℓ− 2) that is not true.
If for every vi ∈ V (G)\(D0∪{vj , vt}), | NS(G)[vi]∩D0 | ≥ 2 and | NS(G)[vj ]∩D0 | =
| NS(G)[vt] ∩D0 | = 1, then∑

y∈V (G)\D0

deg
H
(y) =

∑
y∈V (G)\(D0∪{vj ,vt})

deg
H
(y) + deg

H
(vj) + deg

H
(vt)
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≥ 2| V (G) \ (D0 ∪ {vj , vt}) |+ 2.

Hence, 2(n − ℓ − 2) + 2 ≤ 2| D0 ∩ B | = 2(n − ℓ − 2), which is a contradiction.
So we can assume that there exist i < j < t such that {vi, vj , vt} ⊆ V (G) \ D0,
NS(G)[vi] ∩D0 = {viα}, NS(G)[vj ] ∩D0 = {vjβ} and NS(G)[vt] ∩D0 = {vtσ}.
We have two following cases.
Case 1. Let |{viα, vjβ , vtσ}| = 3. Since δ(G) ≥ n− 2, so vi adjacent to vj or vt in
G. Let vj ∈ NG(vi). Then NS(G)[vij ] = {vi, vj} and NS(G)[vij ] ∩D0 = Ø. This is a
contradiction with this fact that D0 is a dominating set for S(G).
Case 2. Let | {viα, vjβ , vtσ}| = 2. Without loss of generality, suppose that
NS(G)[vi] ∩ D0 = NS(G)[vj ] ∩ D0 and NS(G)[vi] ∩ D0 ̸= NS(G)[vt] ∩ D0. Then
NS(G)[vi] ∩ D0 = NS(G)[vj ] ∩ D0 = {vij}. Since δ(G) ≥ n − 2, vt is adjacent to
vi or vj . If vt ∈ NG(vi), then NS(G)[vit]∩D0 = Ø and similarly if vt ∈ NG(vj), then
NS(G)[vjt] ∩D0 = Ø.
However, it is a contradiction whit this fact thatD0 is a dominating set for S(G).

Corollary 2.1. If n ≥ 3, then γ(S(Kn)) = n− 1.

Proof. By Theorem 2.1, the proof is straightforward.

Corollary 2.2. If s ≥ 2, then γ(S(CP (s))) = 2s− 1.

Proof. By Theorem 2.1, the proof is straightforward.

Example 2.1. In this example we show that the graph S(Cp(2)) has domination number
of 3.(see Figure 2.1).

Fig. 2.1

Theorem 2.2. Let G be isomorphic to the complete bipartite graph Kp,q. Then
γ(S(G)) = p+ q − 1.

Proof. Let Y1 = {v1, v2, · · · , vp} and Y2 = {u1, u2, · · · , uq}. Let V (S(G)) = Y1 ∪
Y2 ∪ {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ q, NS(G)(xij) = {vi, uj}}, where Y1 and Y2

are partitions of graph G. Let D = (V (G) ∪ {x11}) \ {v1, u1}. Then v1 and u1 are
dominated by x11. All of the vertices in V (S(G))\ (V (G)∪{x11}) are dominated by
D \ {x11}. So D is a dominating set for S(G). Hence γ(S(G)) ≤ | D | = p+ q − 1.
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Let γ(S(G)) = p+q−2.We define set L = {| D∩V (G) | : | D |= p+q−2, NS(G)[D] =
V (S(G))}. Let D0 is a dominating set of S(G) such that |D0| = p + q − 2 and
|D0 ∩ V (G)| = Max(L). If xij ∈ D0 for some 1 ≤ i ≤ p, 1 ≤ j ≤ q, then
{vi, uj} ∩ D0 = Ø, because |D0 ∩ V (G)| is the maximum of L ( if vi ∈ D0, then
(D0 ∪ {uj}) \ {xij} is a dominating set for S(G) ). Let {xij , xrs} ⊆ D0 and j = s.
Then {vi, vr, us = uj} ∩ D0 = Ø. It is easy to see that (D0 ∪ {vi}) \ {xij} is a
dominating set for S(G), this is contradiction with this fact that | D0∩V (G) | is the
maximum of L. Similarly, if {xij , xrs} ⊆ D0, and i = r, then we have a contradiction.
Now let | D0 ∩ {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ q, NS(G)(xij) = {vi, uj}} | = t ≥ 2.
Then | V (G) \ D0 | = 2t and so t = 2. Let D0 ∩ {xij : 1 ≤ i ≤ p, 1 ≤ j ≤
q, NS(G)(xij) = {vi, uj}} = {xij , xrs}, where i, r and j, s are distinct. Since
NS(G)[xrj ] = {vr, uj , xrj} and {vr, uj , xrj} ∩ D0 = Ø, so xij is not dominated by
any vertex in D0., which is a contradiction. Therefore, γ(S(G)) = p+ q − 1.

Example 2.2. In this example we show that the graph S(K2,6) has domination number
of 7.(see figure 2.2).

Fig. 2.2

It is well known, that for each n ⩾ 2, γ(Pn) = ⌈n
3 ⌉. It seem that if the graph G is

of order of n, then the domination number of S(G) = n − 1. But this is not true,
because S(P5) ∼= P9 and γ(S(P5)) = 3.

3. Watching number of some special graphs

In this Section, we obtain the watching number of Complete graphs, Star graph
K1,n−1 and Cocktail party graphs.

Theorem 3.1. [1] Let G be a graph of order n. Then

i) If G is twin free graph, then γ(G) ⩽ ω(G) ⩽ γID(G),

ii) ⌈log2(n+ 1)⌉ ⩽ ω(G) ⩽ γ(G)⌈log2(∆(G) + 2)⌉.

Lemma 3.1. If n ≥ 3, then ω(Kn) = ω(K1,n−1) = ⌈log2(n+ 1)⌉.

Proof. By Theorem 3.1 (ii), the proof is straightforward.
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Theorem 3.2. If s ≥ 2, then ω(CP (s)) = ⌈log2(2s+ 1)⌉.

Proof. Let V (G) = {v1, v2, · · · , vn}, X = {v2, v3, · · · , vs} and Y = {vs+2, vs+3, · · · ,
v2s}. LetX1 be induced subgraph onX∪{v1}. By Theorem 3.1, ω(X1) = ⌈log(s+1)

2 ⌉.
Let W1 = {(v1 , Zi) : 1 ≤ i ≤ ⌈log2(s+ 1)⌉, Zi ⊆ NG[v1]} be a watching system
for X1 and Zi+s = {vt+s : vt ∈ Zi}. Also let

W2 = {(v1 , Zi ∪ Zi+s) : 1 ≤ i ≤ ⌈log2(s+ 1)⌉}

and

W = W2 ∪ {ωs+1 = (vs+1 , Y ∪ {vs+1}) }.

We have:

LW (vi) = LW1(vi) 1 ≤ i ≤ s

LW (vi) = LW1
(vi) ∪ {ωs+1} s+ 1 ≤ i ≤ 2s.

Thus W is a watching system for CP (s). Hence

ω(CP (s)) ≤ | W | = ⌈log2(s+ 1)⌉+ 1 = ⌈log2(2s+ 2)⌉ = ⌈log2(2s+ 1)⌉.

By Theorem 3.1, we have

⌈log2(2s+ 1)⌉ ≤ ω(CP (s)).

So ⌈log2(2s+ 1)⌉ = ω(CP (s)).

Example 3.1. We use this example to consider the graph CP (4)(see figure 3.1). Watch-
ers’ locations are written down inside squares and labels nearby vertices, in italics. The
watching number of CP (4) is 3.

Let ω1 = (v1, {v1, v2, v6}), ω2 = (v1, {v1, v3, v7}), ω3 = (v1, {v1, v4, v8}) and ω4 =
(v5, {v5, v6, v7, v8}). Then W = {ω1, ω2, ω3, ω4} is a watching system of CP (4). So
we have ω(CP (4)) ≤ 4. On the other hand by Theorem 3.1, ⌈log29⌉ ≤ ω(CP (4)).
Therefore ω(CP (4)) = 4.
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1,2,3 1

2

3

44,1

4,2

4,3

1 2 3

4

CP (4)

Fig. 3.1

4. Watching number for some of S(G)

In this section, we obtain an upper bound for subdivision of a graph. Also we
show that this upper bound is sharp. Specially, the watching number of graphs
Pn, Cn, Kp,q, Kn, Cp(s) and watching number of their subdivision is calculated.

Theorem 4.1. [7] Let n ⩾ 2 be a positive integer. Then

i ) ω(Pn) = ⌈n+1
2 ⌉

ii ) ω(Cn) =

{
3 if n = 4

⌈n
2 ⌉ if n ̸= 4

Corollary 4.1. If n ≥ 2, then ω(S(Pn)) = ω(S(Cn)) = n.

Proof. Since S(Pn) ∼= P2n−1 and S(Cn) ∼= C2n, by Theorem 4.1, ω(S(Pn)) =
ω(P2n−1) = ⌈ 2n

2 ⌉ = n also ω(S(Cn)) = ω(C2n) = ⌈ 2n
2 ⌉ = n.

Theorem 4.2. Let G be a graph of order n. Then ω(S(G)) ≤ n.

Proof. Let V (G) = {v1, v2, · · · , vn} and V (S(G)) = V (G)∪{vij : vi ∈ NG(v(j)), 1 ≤
i < j ≤ n, NS(G))(vij) = {vi, vj}}. Also let ωi = (vi , NS(G)(vi)) for 1 ≤ i ≤ n and
W = {ω1, ω2, · · · , ωn}. It is clear that LW (vi) = {ωi}, LW (vij) = {ωi, ωj} where
1 ≤ i ̸= j ≤ n. Thus W is a watching system for S(G). Hence, ω(S(G)) ≤ n.

Theorem 4.3. Let n ≥ 2 and G be isomorphic to K1,n−1. Then ω(S(G)) = n.
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Proof. Let V (G) = {v1, v2, · · · , vn} and V (S(G)) = V (G) ∪ {vin : 1 ≤ i < n},
where degG(vn) = n−1 and NS(G)(vin) = {vi, vn}. By Theorem 4.2, ω(S(G)) ≤ n.
Let ω(S(G)) < n and W = {ωi = (xi, Zi) : Zi ⊆ NS(G)[xi], 1 ≤ i ≤ n − 1} be a
watching system for S(G) with minimum cardinality. Since D = {x1, x2, · · · , xn−1}
is a dominating set of S(G), |D ∩ {vi, vin}| = 1 for 1 ≤ i ≤ n − 1. Also there is
1 ≤ j ≤ n− 1 such that vjn ∈ D. It is easy to see that LW (vj) = {ωj} = LW (vjn),
which is a contradiction. Hence, ω(S(G)) = n.

Example 4.1. Consider the graph S(K1,4) (see figure 4.1). Watchers’ locations are
written down inside squares, hence by Theorem 4.3, the watching number of S(K1,4) is 5.

1,52,5

3,5 4,5

5

12

3 4

S(K1,4)

Fig. 4.1

Theorem 4.4. Let G be a connected graph of order n ≥ 2. If γ(S(G)) = n − 1,
then ω(S(G)) = n.

Proof. Let V (G) = {v1, · · · , vn} and V (S(G)) = V (G) ∪B, where B = {vij : 1 ≤
i < j ≤ n , vivj ∈ E(G)}. By Theorems 4.2 and 3.1, γ(S(G)) ≤ ω(S(G)) ≤ n. So
ω(S(G)) ∈ {n−1, n}. On the contrary, we assume that ω(S(G)) = n−1 and W is a
watching system for S(G) with | W | = n− 1. Also let VW = {xi : ωi = (xi, Zi) ∈
W}. Since γ(S(G)) = n−1 and VW is a minimum dominating set for S(G), so there
is at most one watcher on each vertex of S(G). Suppose that VW ∩ V (G) = C1 and
VW ∩B = C2.
Since C1 ∪ C2 is a dominating set for bipartite graph S(G), so C2 ̸= Ø.
If C1 = Ø, then C2 = B. Since γ(S(G)) = n − 1 and VW is a dominating set for
S(G), so | B | = n−1. Hence, the size of G is n−1. Thus G is a tree. Hence, G has
a vertex vt of degree 1. Let vj be adjacent to vt in G. Without loss of generality,
we assume that j < t. Then LW (vjt) = LW (vt) = {ωjt}. This is not true.
Since C1 ∪ C2 is a minimum dominating set for S(G), for every vi ∈ V (G) \ C1

there exist vj ∈ V (G) such that vij ∈ C2. It is clear that |C2| = |V (G) \C1|− 1 and
|NS(G)(x) ∩ C1| ≤ 1 for x ∈ C2. We define T = {x ∈ C2 : |NS(G)(x) ∩ C1| = 1}.
We now consider the cases T = Ø and T ̸= Ø separately.
Case 1. T = Ø. Let induced subgraph on C2 ∪ (V (G) \ C1) in S(G) be H. It is
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clear that | E(H) | = 2| C2 |. On the contrary, let every vertex in H has degree at
least two. Then we have

2|E(H)| =
∑
x∈C2

deg
H
(x) +

∑
y∈V (G)\C1

deg
H
(y) ≥ 2| C2 |+2(| C2 |+1) = 4| C2 |+1.

Which is a contradiction.Thus there exist vi ∈ V (G) \ C1 such that | NS(G)(vi) ∩
C2 | = 1. Suppose that NS(G)(vi) ∩ C2 = {viℓ}, where vℓ ∈ V (G) \ C1. Hence
LW (vi) = LW (viℓ) = {ωiℓ}. Which is false.
Case 2. Let T ̸= Ø, | T | = t and NS(G)(T ) \ C1 = F. Then | F | = t and so
| V (G) \ (C1 ∪ F ) | > | C2 \ T |. Hence, there exist vi ∈ V (G) \ (C1 ∪ F ) such that
| NS(G)(vi) ∩ (C2 \ T ) | = 1. Suppose that NS(G)(vi) ∩ (C2 \ T ) = {viℓ}, where
vℓ ∈ V (G) \ (C1 ∪ F ). Hence, LW (vi) = LW (viℓ) = {ωiℓ}. Which is false.
Therefore ω(S(G)) ̸= n− 1, and the theorem is proved.

Corollary 4.2. If n ≥ 3, then ω(S(Kn)) = n.

Proof. By Corollary 2.1, γ(S(Kn)) = n− 1. By Theorem 4.4, ω(S(Kn)) = n.

Corollary 4.3. If s ≥ 2, then ω(S(CP (s))) = 2s.

Proof. By Corollary 2.2, γ(S(CP (s))) = 2s − 1. By Theorem 4.4, ω(S(CP (s))) =
2s.

Corollary 4.4. Let p ≥ 2 and q ≥ 2 be two integers. Then γ(S(Kp,q)) = p+ q.

Proof. By Theorem 2.2, γ(S(Kp,q)) = p + q − 1. By Theorem 4.4, ω(S(Kp,q)) =
p+ q.

We end this section by the following conjecture.

Conjecture 1. If G is a graph of order n, then ω(S(G)) = n.

5. Conclusion

The subdivision operation of G is an operation that replaces any edge by a path
of order at least two. If each edge is replaced by a path of order three (and length
two), then the subdivision graph is denoted by S(G). In Sec. 2, the domination num-
ber of S(G) have been investigated. The results showed that γ(S(G)) ≤ |G|−1 and
this bound is sharp. It is shown that γ(S(G)) = |G|−1, for G ∈ {Kn,Kp,q, CP (s)}.
But there exist graph G such that γ(S(G)) ̸= |G| − 1.
In Sec. 3, the watching number of S(G) have been investigated. We have shown that
for every graph G, the watching number of S(G) is at most |G| and this bound is
sharp. It is shown that ω(S(G)) = |G|, for G ∈ {Pn, Cn,Kn,Kp,q, CP (s)}. Finally,
we conjecture that for each graph G, ω(S(G)) = |G|.
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