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Abstract. This paper deals with a Timoshenko type equation with strong damping and
logarithmic source terms. The global existence and the decay estimate of the solutions
have been obtained. We reproduce the finite time blow up results of weak solutions by
the combining of the concavity method, perturbation energy method and differential–
integral inequality technique. These results extend and improve some recent results in
logarithmic nonlinearity.
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1. Introduction

We study the following Timoshenko type equation with strong damping and
logarithmic source terms

(1.1)


utt −M

(
∥∇u∥2

)
∆u+∆2u−∆ut = |u|p−2

u ln |u| , x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = ∂

∂νu (x, t) = 0, x ∈ ∂Ω, t ≥ 0,
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c⃝ 2025 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND

261

ORCID IDs:   Yavuz Dinç
Nazlı Irkıl
Erhan Pişkin
Cemil Tunç

https://orcid.org/0000-0003-0897-4101
https://orcid.org/0000-0002-9130-2893
https://orcid.org/0000-0001-6587-4479
https://orcid.org/0000-0003-2909-8753
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where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, M (s) =
1 + sγ , γ > 0; ν is the outer normal, and{

2γ + 2 ≤ p <∞, n ≤ 4,
2γ + 2 ≤ p ≤ 2n

n−4 , n ≥ 5.

This type of equation is derived from the extensible beam equation of Woinowsky-
Krieger [30],

utt + uxxxx −

(
α1 + β1

∫ L

0

|ut| dτ

)
uxx + g (ut) = 0,

for g = 0, where u (x, t) is the deflection of the point x of the beam at the time t
and α1, β1 > 0 are constants.

Many authors have considered the following equation

(1.2) utt +∆2u−M
(
∥∇u∥2

)
∆u+ |ut|p−2

ut = |u|q−2
u.

In [7, 8], Esquivel-Avila studied the attractor, unboundedness and convergence of
solutions for the equation (1.2). In [23], Pişkin investigated the existence, nonex-
istence and decay estimates of solutions for the equation (1.2). Also, we note that
many authors [10,22,24,26–28] have considered (1.2).

In absent the ∆2u term the equation (1.1) can be named Kirchhoff type equation.
This type equation is introduced by Kirchhoff [14]. The following form of Kirchhoff
type equation

(1.3) utt −M
(
∥∇u∥2

)
∆u+ f (ut) = g (u) ,

was studied by a lot of authors [2, 20,31,32].

If we ser g (u) = u ln |u| and M(s) = 1, equation (1.3) becomes the classical
wave equation with a logarithmic source term. This type of problems have many
applications in many branches physics, such as quantum mechanics, nuclear physics,
supersymmetric field theories, optics [3, 4].

In [5], Cazenave and Haraux considered the following equation

(1.4) utt −∆u+ u = u ln |u|k ,

and they showed the existence of solutions in R3. Numerous studies related to
logarithmic nonlinearity can be found in the literature [1, 6, 9, 11,12,25].

Yang et. al [34] investigated the equation

(1.5) utt −M
(
∥∇u∥2

)
∆u+ |ut|p−1

ut −∆ut = uk−1 ln |u| .

They studied the local existence, decay and finite time blow up of solutions. In
[25], Pişkin and Irkıl discussed the problem (1.5) without strong damping term for
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negative initial energy by using modified energy functional method. In [12], the
same authors considered the following equation

utt +M
(
∥∆u∥2

)
∆2u+ a0ut + a1 |ut|r−1

ut = |u|p−1
ln |u|k ,

where a0, a1, k are a positive real number. They proved that the solution exists
globally. Furthermore, they studied decay estimates result of the solutions.

On the other hand, problems involving the Kirchhoff term (M
(
∥∆u∥2

)
) or the

logarithmic source term (ln |u|) have drawn significant interest [16–19,21,29,33].

Upon examining the existing literature, although many studies address Kirchhoff-
type equations with logarithmic source terms, very few studies focus on Timoshenko-
type equations with such terms. Therefore, we considered the Timoshenko equation
with a logarithmic source term.

This paper is organized as follows: In Section 2, we present some notations and
lemmas that will be used in our proofs. In Section 3, we prove the global existence
of the solution to problem (1.1) using the Faedo-Galerkin method. In Sections 4
and 5, we establish decay estimates and determine the upper and lower bounds for
the blow-up time, respectively.

2. Preliminaries

In this work, we denote

W 2,2 (Ω) = H2 (Ω) ,
W 0,p (Ω) = Lp (Ω) ,∫
Ω

uvdx = ⟨u, v⟩ ,

∥u∥ = ∥u∥L2(Ω) =
(∫

Ω
|u|2 dx

) 1
2

,

∥.∥p = ∥.∥Lp(Ω) =
(∫

Ω
|u|p dx

) 1
p .

Moreover, Ci (i = 1, 2, ...) are arbitrary constants.

We define the energy functional E(t) of problem (1.1) as:

E(t) =
1

2
∥ut∥2 +

1

2
∥∆u∥2 + 1

2
∥∇u∥2 + 1

2γ + 2
∥∇u∥2γ+2

−1

p

∫
Ω

up ln |u| dx+
1

p2
∥u∥pp .(2.1)

Lemma 2.1. E(t) is non-increasing function for t ≥ 0 and

(2.2) E′ (t) = −∥∇ut∥2 ≤ 0.
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Proof. Multiplying the equation in (1.1) by ut and integrating on Ω, we have

⟨utt, ut⟩ −
⟨
M
(
∥∇u∥2

)
∆u, ut

⟩
+
⟨
∆2u, ut

⟩
− ⟨∆ut, ut⟩ =

⟨
|u|p−2

u ln |u| , ut
⟩
,

∫
Ω

uttutdx+

∫
Ω

M
(
∥∇u∥2

)
∇u∇utdx+

∫
Ω

∆u∆utdx+

∫
Ω

∇ut∇utdx

=

∫
Ω

|u|p−2
u ln |u|utdx,

d

dt

(
1

2
∥ut∥2 +

1

2
∥∆u∥2 + 1

2
∥∇u∥2 + 1

2γ + 2
∥∇u∥2γ+2

)
+
d

dt

(
−1

p

∫
Ω

up ln |u| dx+
1

p2
∥u∥pp

)
= −∥∇ut∥2

and

(2.3) E′ (t) = −∥∇ut∥2 ≤ 0,

E (t) +

t∫
0

∫
Ω

|∇ut|2 dxdt = E (0) ,

E (t) ≤ E (0) .(2.4)

where

E (0) =
1

2
∥u1∥2 +

1

2
∥∆u0∥2 +

1

2
∥∇u0∥2 +

1

2γ + 2
∥∇u0∥2γ+2

−1

p

∫
Ω

up0 ln |u0| dx+
1

p2
∥u0∥pp .(2.5)

3. Global existence

In this part, we prove the global existence of solutions for problem (1.1).

First, we define the following functionals

(3.1)
J(u) = 1

2 ∥∆u∥
2
+ 1

2 ∥∇u∥
2
+ 1

2γ+2 ∥∇u∥
2γ+2

− 1
p

∫
Ω
up ln |u| dx+ 1

p2 ∥u∥pp

and

(3.2) I (u) = ∥∆u∥2 + ∥∇u∥2 + ∥∇u∥2γ+2 −
∫
Ω

up ln |u| dx.
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Clearly, we have

J (u) =
1

p
I (u) +

(
p− 2

2p

)
∥∆u∥2 +

(
p− 2

2p

)
∥∇u∥2

+

(
p− 2γ − 2

p (2γ + 2)

)
∥∇u∥2γ+2

+
1

p2
∥u∥pp

>

(
p− 2

2p

)
∥∇u∥2(3.3)

and

(3.4) E (t) =
1

2
∥ut∥2 + J (u) .

The depth of the potential well is defined by

(3.5) W =
{
u ∈ H2

0 (Ω) | J (u) < d, I (u) > 0
}
∪ {0}

and

(3.6) V =
{
u ∈ H2

0 (Ω) | J (u) < d, I (u) < 0
}
.

Now, we state some properties of I(u) and J(u).

Lemma 3.1. For any u ∈ H2
0 (Ω) , ∥∇u∥ ̸= 0 and let g (λ) = J (λu). Then, we

get

i) lim
λ→0

g (λ) = 0, lim
λ→∞

g (λ) = −∞,

ii) there exists a unique λ1 such that g′ (λ) = 0,

iii) g (λ) is strictly decreasing on λ1 < λ, strictly increasing on 0 ≤ λ ≤ λ1 and
takes the maximum at λ = λ1; I (λu) = λg′ (λ) and I (λu) = λ d

dλJ (λu).

I (λu)

 > 0, 0 ≤ λ ≤ λ1,
= 0, λ = λ1,
< 0, λ1 ≤ λ.

Proof. i) By the definition of J (u) , we get

g (λ) = J (λu)

=
1

2
∥λ∆u∥2 + 1

2
∥λ∇u∥2 + 1

2γ + 2
∥λ∇u∥2γ+2

−1

p

∫
Ω

(λu)
p
ln |λu| dx+

1

p2

∫
Ω

|λu|p dx

=
1

2
λ2 ∥∆u∥2 + 1

2
λ2 ∥∇u∥2 + 1

2γ + 2
λ2γ+2 ∥∇u∥2γ+2

−1

p
λp
∫
Ω

up ln |u| dx− 1

p
λp lnλ

∫
Ω

updx+
1

p2
λp ∥u∥pp ,(3.7)
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which means
λ→0

limg (λ) = 0, lim
λ→∞

g (λ) = −∞.

ii) Now, differentiating g (λ) with respect to λ,
we have

d

dλ
J (λu)

= g′ (λ) = λ ∥∆u∥2 + λ ∥∇u∥2 + λ2γ+1 ∥∇u∥2γ+2

−λp−1

∫
Ω

up ln |u| dx− λp−1 lnλ ∥u∥pp

= λ
(
∥∆u∥2 + ∥∇u∥2 + λ2γ ∥∇u∥2γ+2

− λp−2

∫
Ω

up ln |u| dx− λp−2 lnλ ∥u∥pp

)
= λ

(
∥∆u∥2 + ∥∇u∥2 + ψ (λ)

)
,(3.8)

where

ψ (λ) = λ2γ ∥∇u∥2γ+2 − λp−2

∫
Ω

up ln |u| dx− λp−2 lnλ ∥u∥pp

= λp−2
(
kλ2γ−p+2 −m− n ln |λ|

)
,

where k = ∥∇u∥2γ+2 ≥ 0, m =
∫
Ω

up ln |u| dx, n = ∥u∥pp. We observe from 2γ ≤ p−2

and γ > 0 that lim
λ→∞

ψ (λ) = −∞, lim
λ→0

ψ (λ) = 0.

ψ′ (λ) = (p− 2)λp−3
(
kλ2γ+2−p −m− n ln |λ|

)
+λp−2

(
k (2γ + 2− p)λ2γ+1−p − n

λ

)
= (p− 2)λp−3

(
kλ2γ+2−p −m− n ln |λ|

)
+λp−3

(
k (2γ + 2− p)λ2γ+2−p − n

)
= λp−3

(
2kγλ2γ+2−p − (p− 2)m− (p− 2)n ln |λ| − n

)
.

Where g (λ) = 2kγλ2γ+2−p − (p− 2)m− (p− 2)n ln |λ| − n.

lim
λ→∞

g (λ) = −∞, lim
λ→0

g (λ) = 0

and

g′ (λ) =
2kγ (2γ + 2− p)λ2γ+2−p − (p− 2)m− (p− 2)n

λ
< 0.

When λ = λ∗ and there exists a unique λ∗ such that g (λ∗) = 0. Consequently
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ψ′ (λ)

 > 0, 0 ≤ λ < λ1,
= 0, λ = λ1,
< 0, λ1 < λ.

Then we can see ψ (λ) is monotone decreasing when λ > λ∗ and there exists a
unique λ∗ such that ψ (λ∗) = 0. Then we have there is a λ1 > λ∗ such that

λ
[
∥∆u∥2 + ∥∇u∥2 + ψ (λ)

]
= 0, which means g′ (λ1) = 0.

iii) The result (ii) and from the definition of I (u),

I (λu) = ∥λ∆u∥2 + ∥λ∇u∥2 + ∥λ∇u∥2γ+2 −
∫
Ω

|λu|p ln |λu| dx

= λ2 ∥∆u∥2 + λ2 ∥∇u∥2 + λ
2γ+2

∥∇u∥2γ+2

−λp
∫
Ω

up ln |u| dx− λp ln |λ|
∫
Ω

updx

= λ
(
λ ∥∆u∥2 + λ ∥∇u∥2 + λ

2γ+1

∥∇u∥2γ+2
)

+

(
−λp−1

∫
Ω

up ln |u| dx− λp−1 ln |λ| ∥u∥pp

)
= λ

dJ (λu)

dλ
(3.9)

Lemma 3.2. i) The definition the depth of potential well

(3.10) d = inf
u∈N

J (u) , N =
{
u ∈ H2

0 (Ω) \ {0} : I (u) = 0
}
,

is equivalent to

(3.11) d = inf

{
sup
λ≥0

J (λu) | u ∈ H2
0 (Ω) , ∥∆u∥2 ̸= 0

}
.

ii) d is defined as

d =

(
p− 2

2p

)(
1

Cp+1
∗

) 2
p−1

.

Proof. i) On one hand from (iii) of Lemma 3.1 it means that for any u ∈ H2
0 (Ω) ,

there exist a λ1 such that I (λ1u) = 0, that is λ1u ∈ N. By the definition of d we
obtain

(3.12) J (λ1u) ≥ d foranyu ∈ H2
0 (Ω) \ {0} ,
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and because of Lemma 3.1 of property (iii), this λ1 is also the maximizer of J (λu)
such that

sup
λ≥0

J (λu) = J (λ1u) ,

which by virtue of (3.12) means

(3.13) inf
u∈H2

0 (Ω)
sup
λ≥0

J (λu) = inf
u∈H2

0 (Ω)
J (λ1u) ≥ d.

As u ∈ H2
0 (Ω) \ {0} , we obtain d is not equivalent to 0, which gives (3.11). But

then, from (3.11) it means that there exists λ∗ such that

sup
λ≥0

J (λu) = J (λ∗u) .

Then from Lemma 3.1 we can deduce λ∗ = λ1. Again from Lemma 3.1 of property
(iii) it shows that

I (λ∗u) = I (λ1u) = 0,

which means λ∗u ∈ N. By the definition of d we get

d = inf
λ∗u∈N

J (λ∗u) ,

that is

(3.14) d = inf
u∈N

J (u) .

This complete our proof for (i).

ii) By virtue of I (u) = 0, definition of I (u) and embedding theorems, we obtain

∥∇u∥2 ≤ ∥∆u∥2 + ∥∇u∥2 + ∥∇u∥2γ+2

=

∫
Ω

up ln |u| dx

≤ ∥u∥p+1
p+1

≤ Cp+1
∗ ∥∇u∥p+1

,(3.15)

(3.16) ∥∇u∥ ≥
(

1

Cp+1
∗

) 1
p−1

.
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From the definition of d, we have u ∈ N. By (3.16) and I (u) = 0, we have

J (u) =
1

p
I (u) +

(
p− 2

2p

)
∥∆u∥2 +

(
p− 2

2p

)
∥∇u∥2

+

(
p− 2γ − 2

p (2γ + 2)

)
∥∇u∥2γ+2

+
1

p2
∥u∥pp

≥
(
p− 2

2p

)
∥∆u∥2

≥
(
p− 2

2p

)(
1

Cp+1
∗

) 2
p−1

≥ d.

we take 2γ ≤ p− 2 . Combining of (3.14) and (3.16), we can see clearly that

d =

(
p− 2

2p

)(
1

Cp+1
∗

) 2
p−1

Definition 3.1. A function u (x, t) is called a weak solution to problem (1.1) on
Ω× [0, T ) , if

u ∈ C
(
(0, T ) ;H2

0 (Ω)
)
∩ C1

(
(0, T ) ;H1

0 (Ω)
)
,

satisfy
∫
Ω

utt (x, t)w (x) dx+
∫
Ω

∆u∆w (x) dx+
∫
Ω

M
(
∥∇u∥2

)
∇u∇w (x) dx

+
∫
Ω

∇ut∇w (x) dx =
∫
Ω

u (x, t) lnu (x, t) |u|p−2
(x, t)w (x) dx.

Where u ∈ H2
0 (Ω).

Lemma 3.3. Let u (t) be a weak solution problem of (1.1) and u0 ∈ H2
0 (Ω) ,

u1 ∈ H1
0 (Ω). Suppose that 0 < E (0) < d.

i) If I (u0) > 0, u ∈W ,

ii) If I (u0) < 0, u ∈ V.

Proof. i) If u (t) is a weak solution problem of (1.1) satisfying 0 < E (0) < d, and
for t ∈ [0, T )

1

2
∥ut∥2 + J (u) =

1

2
∥u1∥2 + J (u0) < d

under the conditions u (t), E (0) < d, u1 ∈ H1
0 (Ω) then by (2.4) says that

E (u (t)) < E (0) < d.
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We shall prove I (u (t)) > 0 for 0 < t < T.We will use conradiction and we suppose
that; there is a t1 ∈ (0, T ) such that I (u (t1)) < 0. Observe by the continuity of
I (u (t)) in t that there exists a t∗ ∈ (0, T ) such that I (u (t∗)) = 0. Then by (3.10),
we get

d > E (0) ≥ E (u (t∗)) ≥ J (u (t∗)) ≥ d,

which is a contradiction.

ii) The proof of case (ii) is similar.

Lemma 3.4. Under the conditions of Lemma 3.3 in (i) , we obtain

E (0) ≥ E (u) ≥ J (u) >

(
p− 2

2p

)
∥∇u∥2 .

Proof. By definition of J (u), I (u) and I (u) > 0, we get

J (u) =
1

p
I (u) +

(
p− 2

2p

)
∥∆u∥2 +

(
p− 2

2p

)
∥∇u∥2

+

(
p− 2γ − 2

p (2γ + 2)

)
∥∇u∥2γ+2

+
1

p2
∥u∥pp

>

(
p− 2

2p

)
∥∆u∥2 +

(
p− 2

2p

)
∥∇u∥2

+

(
p− 2γ − 2

p (2γ + 2)

)
∥∇u∥2γ+2

+
1

p2
∥u∥pp

>

(
p− 2

2p

)
∥∇u∥2 .

Because of (3.4) and (2.4) we can see clearly that

E (0) ≥ E (u) ≥ J (u) >

(
p− 2

2p

)
∥∇u∥2 .

Theorem 3.1. Let u0 ∈ H2
0 (Ω) , u1 ∈ H1

0 (Ω). If I (u0) > 0 and E (0) < d or
∥∇u0∥ = 0, then problem (1.1) admits a global weak solution u (t) ∈
L∞ (0,∞;H2

0 (Ω)
)
, ut (t) ∈ L∞ (0,∞;H1

0 (Ω)
)
.

Proof. Let {wj}∞j=1 be a basis in space H2
0 (Ω) .

um0 (x, 0) =
m∑
j=1

amj wj (x) → u0 in H2
0 (Ω) ,

um1 (x) =
m∑
j=1

bmj wj (x) → u1 in H1
0 (Ω) ,
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for j = 1, 2, ...,m.

We look for the approximate solutions

um (x, t) =

m∑
j=1

hmj (t)wj (x) ,

m = 1, 2, ...

(3.17)

{ ∫
Ω

(
umttwk +∆um∆wk +M

(
∥∇u∥2

)
∇um∇wk +∇umt ∇wk

)
dx

=
∫
Ω
um |um|p−2

ln |um|wkdx, k = 1, 2, ...,m.

(3.17) multiplying hmj (t) and if gathers for k. According to the standard exis-
tence theory for ordinary differantial equation, one can obtain functions

hj : [0, tm) → R, j = 1, 2, ...,m,

which satisfy (3.17) in a maximal interval [0, tm) , 0 < tm ≤ T. Now, we show
that tm = T and that the local solution is uniformly bounded independent of m
and t. For this purpose, let us replace w by umt in (3.17) and integrate by parts, we
have

(3.18)
d

dt
Em(t) = −∥∇umt ∥2 ≤ 0,

where

d

dt

(
1

2
∥umt ∥2 + 1

2
∥∆um∥2 + 1

2
∥∇um∥2 + 1

2γ + 2
∥∇um∥2γ+2

)

+
d

dt

−1

p

∫
Ω

|um|p ln |um| dx+
1

p2
∥um∥pp


= −∥∇umt ∥2(3.19)

Integrating (3.18) from 0 to t, and using of (3.4), we obtain

(3.20)
1

2
∥umt ∥2 + J(um) +

∫ t

0

∥∇ums ∥2 ds = Em(0).

By virtue problem of (3.17) initial data, while m → ∞ we obtain Em(0) → E(0).
By choosing of large m we have

(3.21)
1

2
∥umt ∥2 + J(um) +

∫ t

0

∥∇ums ∥2 ds < d.

From Lemma 3.4

J (um) =
1

p
I (um) +

(
p− 2

2p

)
∥∆um∥2 +

(
p− 2

2p

)
∥∇um∥2

+

(
p− 2γ − 2

p (2γ + 2)

)
∥∇um∥2γ+2

+
1

p2
∥um∥pp .
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Then, we have

1

2
∥umt (0)∥2 + J(um(0)) = E(0)

and initial data, for choosing large m and 0 ≤ t <∞, we get um (0) ∈W. By (3.21)
and an argument similar to Lemma 3.3, by choosing large m and 0 ≤ t < ∞, we
have um (t) ∈W. Therefore, by virtue of (3.21) and (3.1) we get

1

2
∥umt ∥2 + 1

2
∥∆um∥2 + 1

2
∥∇um∥2

+
1

2γ + 2
∥∇um∥2γ+2 − 1

p

∫
Ω

|um|p ln |um| dx

+
1

p2
∥um∥pp +

t∫
0

∥∇ums ∥2 ds

< d(3.22)

where 0 ≤ t < ∞ and p ≥ 2γ + 2. For a sufficiently large m and 0 ≤ t < ∞, (3.22)
gives

∥umt ∥2 < 2d,

∥∆um∥2 < 2p

p− 2
d,

∥∇um∥2 < 2p

p− 2
d,

∥∇um∥2γ+2
<

p (2γ + 2)

p− 2γ − 2
d,

∥um∥pp < p2d,

and
t∫

0

∥∇ums ∥2 ds < d.

Then, we obtain


um, is uniformly bounded in L∞ (0,∞;H2

0 (Ω)
)
,

umt , is uniformly bounded in L∞ (0,∞;L2 (Ω)
)
,

|um|p , is uniformly bounded in L∞ (0,∞;Lp (Ω)) ,

|umt |p+1
, is uniformly bounded in Lp+1

(
0,∞;Lp+1 (Ω)

)
.
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By using the Sobolev embedding inequality, (3.21) and (3.22), we get∫
Ω

|um|p ln |um| dx ≤ ∥um∥p+1
p+1

≤ Cp ∥∇um∥p+1
2

<

(
2pd

C1 (p− 2)

) p+1
2

,

so that we obtain

|um|p+1
, is uniformly bounded in L∞ (0,∞;Lp+1 (Ω)

)
.

Then integrating (3.17) with respect to t , for 0 ≤ t <∞, we have

(umt , wk) + (∇um,∇wk) +

∫ t

0

(△um,∆wk) dk

−
∫ t

0

M
(
∥∇um∥2

)
(∇um,∇wk) dk

= (u1, wk) + (△u0,∆wk) +

∫ t

0

(
ln |um| |um|p−1

, wk

)
dk.(3.23)

Therefore, up to a subsequence, we may pass to the limit in (3.23), and get a
weak solution (u) to problem (1.1) with the above regularity. On the other hand,
initial data conditions in (3.17) we may conclude (u (x, 0)) = (u0) in H2

0 (Ω) and
(ut (x, 0)) = (u1) in H

1
0 (Ω) .

4. Decay Estimates

In this part, we study the decay estimates for the solutions of problem (1.1).

Theorem 4.1. Let u0 (x) ∈ H2
0 (Ω) , u1 (x) ∈ H1

0 (Ω) . Suppose that E (0) < d,
I (u0) > 0 or ∥∇u0∥ = 0. Then

E (t) ≤ Ne−nt, t ≥ 0,

where N and n are positive constants.

Proof. Small enough for ϵ > 0. Let

(4.1) L (t) = E (t) + ε

∫
Ω

uut +
ε

2
∥∇u∥2 ,

then we observe for sufficient small ε that there exist positive constants λ1, λ2, such
that

(4.2) λ1E (t) ≤ L (t) ≤ λ2E (t) ,
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and L (t) > 0 for any t ≥ 0.

By multiplying the (1.1) by u and integrating on Ω, we obtain∫
Ω

uttudx =

∫
Ω

u2 |u|p−2
ln |u| dx

−
∫
Ω

M
(
∥∇u∥2

)
∇u∇udx−

∫
Ω

∆u∆udx−
∫
Ω

∇ut∇udx.(4.3)

By derivative of (4.1) and using of (2.3) and (2.1) we obtain

L′ (t) = E′ (t) + ε

∥ut∥2 +
∫
Ω

uuttdx+

∫
Ω

∇ut∇udx


≤ −∥∇ut∥2 + ε ∥ut∥2 + ε

∫
Ω

|u|p ln |u| dx

−ε ∥∇u∥2 − ε ∥∇u∥2γ+2 − ε ∥∆u∥2

≤ −∥∇ut∥2 + ε ∥ut∥2 + ε ∥u∥p+1
p+1

−ε ∥∇u∥2 − ε ∥∇u∥2γ+2 − ε ∥∆u∥2(4.4)

Now, our aim is to estimate every term of (4.4) severally.

∥∇u∥2 < 2p

p− 2
J (u) ≤ 2p

p− 2
E (t) ≤ 2p

p− 2
E (0) .

Thanks to Sobolev embedding inequality and Lemma 3.4, we conclude∫
Ω

|u|p ln |u| dx ≤ ∥u∥p+1
p+1

≤ Cp+1
∗ ∥∇u∥p+1

≤ Cp+1
∗

(
2p

p− 2
E (0)

) p−1
2

∥∇u∥2

= α ∥∇u∥2 ,(4.5)

where α = Cp+1
∗

(
2p
p−2E (0)

) p−1
2

. E (0) < d and from Lemma 3.2

(4.6) d =

(
p− 2

2p

)(
1

Cp+1
∗

) 2
p−1

> E (0) ,

(4.7) α = Cp+1
∗

(
2p

p− 2
E (0)

) p−1
2

< 1.
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From (2.5), (4.5) and taking 0 ≤ k ≤ 1, we get

∥u∥p+1
p+1 = (1− k) ∥u∥p+1

p+1 + k ∥u∥p+1
p+1

< (1− k)α ∥∇u∥2 + k ∥u∥p+1
p+1

≤ (1− k)α ∥∇u∥2 − kpE (t)

+kp

(
1

2
∥ut∥2 +

1

2
∥∇u∥2 + 1

2γ + 2
∥∇u∥2γ+2

)
+kp

(
1

2
∥∆u∥2 + 1

p2
∥u∥pp

)
(4.8)

substituting (4.8) for (4.4),

L′ (t) ≤
(
kεp

2
+ ε

)
∥ut∥2 − ε

(
1− kp

2
− (1− k)α

)
∥∇u∥2

−ε
(
1− kp

2γ + 2

)
∥∇u∥2γ+2 − ε

(
1− kp

2

)
∥∆u∥2

−∥∇ut∥2 +
kε

p
∥u∥pp − kpϵE (t)(4.9)

From the Sobolev embedding we have

∥u∥pp ≤ Cp
1 ∥∇u∥

p
2

≤ Cp
1

(
2p

p− 2
E (0)

) p−2
2 2p

p− 2
E (t) ,(4.10)

(4.11) ∥ut∥2 ≤ C2
2 ∥∇ut∥

2
,

∥u∥p+1
p+1 ≤ Cp+1

3 ∥∇u∥p+1

< Cp+1
3

(
2p

p− 2
E (0)

) p−2
2 2p

p− 2
E (t) .(4.12)

If choosing k < 2
p , 1 − kp

2 − (1− k)α < 0 and using together (4.7), (4.10), (4.11)
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and (4.12),

L′ (t) ≤ ϵ

(
C2

2

(
kp

2
+ 1

)
− 1

)
∥∇ut∥2 + ε

(
−1 +

kp

2
+ (1− k)α

)
2p

p− 2
E (t)

−ε
(
1− kp

2γ + 2

)
∥∇u∥2γ+2 − ε

(
1− kp

2

)
∥∆u∥2 + βε

p2
∥u∥pp

+
kε

p
Cp

1

(
2p

p− 2
E (0)

) p−2
2 2p

p− 2
E (t)− kεpE (t)

+εCp+1
3

(
2p

p− 2
E (0)

) p−2
2 2p

p− 2
E (t)

≤ ϵ

(
C2

2

(
kp

2
+ 1

)
− 1

)
∥∇ut∥2 − ε

(
1− kp

2

)
∥∆u∥2

+ϵ

(
−1 +

kp

2
+ (1− k)α

)
2p

p− 2
E (t)

−ε
(
1− kp

2γ + 2

)
∥∇u∥2γ+2

+
kε

p
Cp

1

(
2p

p− 2
E (0)

) p−2
2 2p

p− 2
E (t)

−kεpE (t) + εCp+1
3

(
2p

p− 2
E (0)

) p−2
2 2p

p− 2
E (t)

= h1 ∥∇ut∥2 + h2 ∥∇u∥2γ+2
+ h3

2p

p− 2
E (t) + h4 ∥∆u∥2 ,(4.13)

where

h1 = ϵ

(
C2

2

(
kp

2
+ 1

)
− 1

)
,

h2 = −ε
(
1− kp

2γ + 2

)
,

h3 = ε

(
−1 +

kp

2
+ (1− k)α

)
+
kε

p
Cp

1

(
2p

p− 2
E (0)

) p−2
2

+εCp+1
3

(
2p

p− 2
E (0)

) p−2
2

− kϵ

(
p− 2

2

)
,

h4 = −ε
(
1− kp

2

)
.

k → 0 and we choose ϵ small enough so that, 2γ + 2 < p, 0 ≤ k ≤ 2
p ≤ 2γ+2

p ≤ 1,

using (4.7)

L′ (t) ≤ h3
2p

p− 2
E (t)

≤ h3
2p

p− 2

L (t)

λ1
(4.14)
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Finally, a simple integration of (4.14) over (0, t) then yields

E (t) ≤ Ne−nt.

where N = L(0)
λ1

and n = −h3 2p
λ2(p−2) . This completed our proof.

5. Blow up

In this section, we establish the upper and lower bounds for the blow-up time.

5.1. Upper bound for the blow up time

In this part, we prove an upper bound for the blow up time.

Lemma 5.1. [13, 15]. Let Φ (t) be a positive C2 function, which satisfies, for
t > 0, inequality

(5.1) Φ (t) Φ′′ (t)− (1 + β) [Φ′ (t)]
2 ≥ 0,

with some β > 0. If Φ(0) > 0 and Φ′ (0) > 0, then there exist a time T ∗ ≤ Φ(0)
βΦ′(0)

such that

(5.2) lim
t→T∗−

Φ(t) = ∞.

Theorem 5.1. Assume that u0 (x) ∈ V, u1 (x) ∈ H1
0 (Ω) . Suppose that 2 < p <

2n
n−4 , then the solution u of problem (1.1) blow up in finite time; that is the maximum
existence time T ∗ of u is finite and

(5.3) lim
t→T∗

(
∥u∥2 +

∫
Ω

∥∇u∥2 dτ
)

= +∞.

Moreover, the upper bound for blow up time T ∗ is given by

(5.4) T ∗ ≤ 2bT 2
0 + 2 ∥u0∥2

(p− 2) bT0 + (p− 2)
∫
Ω
u0u1dx− 2 ∥∇u0∥2

,

where b and T0 will be chosen in (5.14) and (5.15).

Proof. By contradiction, we assume that u is global, then T ∗ = +∞. For any T > 0,
we assume that Φ : [0, T ] → R+ defined by

(5.5) Φ (t) = ∥u∥2 +
∫ t

0

∥∇u∥2 dτ + (T − t) ∥∇u0∥2 + b (T0 + t)
2
,

where b and T0 are positive fixed which will be specified later.
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Firstly, we compute the first order differential and second order differential of
Φ (t) , respectively, as follows

Φ′ (t) = 2

∫
Ω

utudx+ ∥∇u∥2 − ∥∇u0∥2 + 2b (T0 + t)

= 2

∫
Ω

utudx+ 2

∫ t

0

∫
Ω

∇u∇utdxdτ + 2b (T0 + t) ,(5.6)

and

Φ′′ (t) = 2

∫
Ω

|ut|2 dx+ 2

∫
Ω

uttudx+ 2

∫
Ω

∇u∇utdx+ 2b

= 2

∫
Ω

|ut|2 dx+ 2

∫
Ω

uttudx− 2

∫
Ω

u∆utdx+ 2b

= 2

∫
Ω

|ut|2 dx+ 2

∫
Ω

u [utt −∆ut] dx+ 2b

= 2

∫
Ω

|ut|2 dx+ 2

∫
Ω

u
[(

1 + ∥∇u∥2γ
)
∆u−∆2u+ |u|p−2

u ln |u|
]
dx+ 2b

= 2

∫
Ω

|ut|2 dx+ 2b

−2

[∫
Ω

(
1 + ∥∇u∥2γ

)
|∇u|2 dx+

∫
Ω

|∆u|2 dx−
∫
Ω

|u|p ln |u| dx
]

= 2

∫
Ω

|ut|2 dx− 2

[
∥∇u∥2 + ∥∇u∥2(γ+1)

+ ∥∆u∥2−
∫
Ω

|u|p ln |u| dx
]
+ 2b

= 2 ∥ut∥2 − 2I (u) + 2b,(5.7)

where

I (u) = ∥∇u∥2 + ∥∇u∥2(γ+1)
+ ∥∆u∥2 −

∫
Ω

|u|p ln |u| dx.

Through a direct calculation, we have

Φ (t) Φ′′ (t)− p+ 2

4
[Φ′ (t)]

2

= 2Φ (t)

(
∥ut∥2 − ∥∇u∥2 − ∥∇u∥2(γ+1) − ∥∆u∥2 +

∫
Ω

|u|p ln |u| dx+ b

)
+(p+ 2)

[
B (t)−

(
Φ(t)− (T − t) ∥∇u0∥2

)(
∥ut∥2 +

∫ t

0

∥∇ut∥2 dτ + b

)]
,(5.8)

where

B (t) =

(
∥u∥2 +

∫ t

0

∥∇u∥2 dτ + b (T0 + t)
2

)(
∥ut∥2 +

∫ t

0

∥∇ut∥2 dτ + b

)
−
(∫

Ω

utudx+

∫ t

0

∫
Ω

∇u∇utdxdτ + 2b (T0 + t)

)2

.(5.9)
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Using Schwarz inequality and Young inequality, it is not difficult to verify that
B (t) ≥ 0 for any t ∈ [0, T ] . As a consequence, from (5.8) we arrive that

(5.10) Φ (t)Φ′′ (t)− p+ 2

4
[Φ′ (t)]

2 ≥ Φ(t) ξ (t) ,

where ξ (t) : [0, T ] → R is defined by

ξ (t) = −p ∥ut∥2 − 2 ∥∇u∥2 − 2 ∥∆u∥2 − 2p2 − (p− 2γ − 2)

2p (γ + 1)
∥∇u∥2(γ+1)

+2

∫
Ω

|u|p ln |u| dx+ (p− 2)

∫ t

0

∥∇ut∥2 dτ − pb.(5.11)

Furthermore, by the definition of E (t) and Lemma 3.3, it follows that

ξ (t) = −2pE (t) + (p− 2) ∥∇u∥2 + (p− 2) ∥∆u∥2 + (p− 2γ − 2)

2p (γ + 1)
∥∇u∥2(γ+1)

+
2

p
∥u∥pp + (p− 2)

t∫
0

∥∇ut∥2 dτ − pb

≥ −2pd+ (p− 2) ∥∇u∥2 + (p− 2) ∥∆u∥2 +
(
p− 2γ − 2

p (2γ + 2)

)
∥∇u∥2(γ+1)

+
2

p
∥u∥pp + (p− 2)

t∫
0

∥∇ut∥2 dτ − pb.(5.12)

From u0 (x) ∈ V, u1 (x) ∈ H1
0 (Ω) and Lemma 3.3, we obtain u (x) ∈ V, u (x) ∈

H1
0 (Ω) for all t ≥ 0, which implies that I (u) < 0. Hence there exists a λ∗ ∈ (0, 1)

such that I (λ∗u) = 0. Thus by the definition of d and (3.3), we get that

p− 2

2p
∥∇u∥2 + p− 2

2p
∥∆u∥2

+

(
p− 2γ − 2

2p2 (2γ + 2)

)
∥∇u∥2γ+2

+
1

p2
∥u∥pp

≥ (p− 2)λ2∗
2p

∥∇u∥2 + (p− 2)λ2∗
2p

∥∆u∥2

+

(
p− 2γ − 2

2p2 (2γ + 2)

)
λ2γ+2
∗ ∥∇u∥2γ+2

+
λp∗
p2

∥u∥pp

≥ J (λ∗u)

≥ d.(5.13)

Choosing b small enough shuch that

0 < b ≤ 1

p

[
(p− 2) ∥∇u∥2 + (p− 2) ∥∆u∥2 + 2

p
∥u∥pp

]
+
1

p

[(
p− 2γ − 2

p (2γ + 2)

)
∥∇u∥2(γ+1)

+ (p− 2)

∫ t

0

∥∇ut∥2 dτ − 2pd

]
(5.14)
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The combination of (5.12)-(5.14) implies that ξ (t) ≥ 0. Hence, by the above dis-
cussion, we have

Φ (t)Φ′′ (t)− p+ 2

4
[Φ′ (t)]

2 ≥ 0.

From the definition of B (t) , it is easy to know that Φ (0) = ∥u0∥2+T ∥∇u0∥2 dτ +
bT 2

0 > 0. We choose T0 large enough shuch that

(5.15) T0 >
(p− 2)

(
∥u0∥2 + ∥u1∥2

)
+ 4 ∥∇u0∥2

2 (p− 2) b
,

which fulfills the requirement of

Φ′ (0) = 2

∫
Ω

u0u1dx+ 2bT0

≥ 2bT0 − ∥u0∥2 − ∥u1∥2 −
4 ∥∇u0∥2

p− 2

≥ 0.(5.16)

Then, according to Lemma 5.1, we obtain that Φ (t) goes to ∞ as t tends to some
T ∗ satisfying

T ∗ ≤ 4Φ (0)

(p− 2)Φ′ (0)
=

2bT 2
0 + 2 ∥u0∥2 + 2T ∥∇u0∥2

(p− 2) bT0 + (p− 2)
∫
Ω
u0u1dx

,

which means that

(5.17) T ∗ ≤
4
(
bT 2

0 + ∥u0∥2
)

(p− 2) bT0 + (p− 2)
∫
Ω
u0u1dx− 2 ∥∇u0∥2

.

Finally, for fixed T0, choose T as

(5.18) T >
4bT 2

0 + 4 ∥u0∥2

(p− 2) bT0 − 4 ∥∇u0∥2 − (p− 2)
(
∥u0∥2 + ∥u1∥2

) .
The combination of (5.17) and (5.18), we see that T > T ∗. This contradicts to our
assumption, which finished the proof.

5.2. Lower bound for the blow up time

Our aim is to state a lower bound for the blow up time of problem (1.1).

Theorem 5.2. Under the conditions of Theorem 5.1 and 2 < p < 2
(
1 + 2

n−4

)
,

then the solutions u of the problem (1.1) become unbounded at finite time t = T ∗

with

(5.19) lim
t→T∗−

∥ut∥2 + ∥∇u∥2 + ∥∆u∥2 + 1

γ + 1
∥∇u∥2γ+2

= +∞.
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Moreover, the lower bound for blow up time T ∗ is given by

(5.20)

∫ ∞

Ψ(0)

dθ

θ + (e (p− 1))
−2 |Ω|+ (eµ)

−2
C

2(p−1+µ)
2 θp−1+µ

≤ T ∗.

where 0 < µ < 2n−2
n−2 − p and

Ψ(0) = ∥u1∥2 + ∥∇u0∥2 + ∥∆u0∥2 +
1

γ + 1
∥∇u0∥2γ+2

.

Proof. Let us define the function

(5.21) Ψ (t) = ∥ut∥2 + ∥∇u∥2 + ∥∆u∥2 + 1

γ + 1
∥∇u∥2γ+2

.

By differentiating Ψ (t) with respect to t and using of the (1.1), we get

Ψ′ (t) = 2

∫
Ω

ututtdx+ 2

∫
Ω

∇u∇utdx+ 2

∫
Ω

∆u∆utdx+ 2 ∥∇u∥2γ
∫
Ω

∇u∇utdx

= 2

∫
Ω

ututtdx− 2

∫
Ω

ut∆udx+ 2

∫
Ω

ut∆
2udx− 2 ∥∇u∥2γ

∫
Ω

ut∆udx

= 2

∫
Ω

ut

[
utt −M

(
∥∇u∥2

)
∆u+∆2u

]
dx

= 2

∫
Ω

ut

[
∆ut + |u|p−2

u ln |u|
]
dx

= −2

∫
Ω

|∇ut|2 dx+ 2

∫
Ω

ut |u|p−2
u ln |u| dx

= −2 ∥∇ut∥2 dx+ 2

∫
Ω

ut |u|p−2
u ln |u| dx,(5.22)

since 2 < p <
(
1 + n

n−2

)
, we chose µ > 0 small enough such that (p− 1 + µ) <
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n
n−2 . Hence, by the Young’s and Sobolev inequalities, we have from (5.21) that

2

∫
Ω

utu
p−2u ln |u| dx

≤ 2

[∫
Ω

|ut|
2

2

dx+

∫
Ω

∣∣up−2u ln |u|
∣∣2

2
dx

]

=

∫
Ω

|ut|2 dx+

∫
Ω

∣∣up−2u ln |u|
∣∣2 dx

= ∥ut∥2 +
∫
Ω

∣∣up−2u ln |u|
∣∣2 dx

= ∥ut∥2 +
∫
x∈Ω:|u|<1

∣∣up−2u ln |u|
∣∣2 dx+

∫
x∈Ω:|u|≥1

∣∣up−2u ln |u|
∣∣2 dx

≤ ∥ut∥2 + (e (p− 1))
−2 |Ω|+ (eµ)

−2
∫

x∈Ω:|u|≥1

|u|2(p−1+µ)
dx

≤ ∥ut∥2 + (e (p− 1))
−2 |Ω|+ (eµ)

−2
C

2(p−1+µ)
2 ∥∇u∥2(p−1+µ)

2

≤ Ψ(t) + (e (p− 1))
−2 |Ω|+ (eµ)

−2
C

2(p−1+µ)
2 Ψ(t)

p−1+µ
,(5.23)

where we used
∣∣xp−1 log x

∣∣ ≤ (e (p− 1))
−1

for 0 < x < 1, while x−µ log x ≤ (eµ)
−1

for x ≥ 1, µ > 0, and C2 is the Sobolev constant satisfying ∥u∥p−1+µ ≤ C2 ∥∇u∥2 .
The combination of (5.22) and (5.23), it follows that

(5.24) Ψ′ (t) ≤ Ψ(t) + (e (p− 1))
−2 |Ω|+ (eµ)

−2
C

2(p−1+µ)
2 Ψ(t)

2(p−1+µ)

integrating the inequality (5.24) from 0 to t, we have

Ψ(t)∫
Ψ(0)

dθ

θ + (e (p− 1))
−2 |Ω|+ (eµ)

−2
C

2(p−1+µ)
2 θp−1+µ

≤ t,

where 0 < µ < 2n−2
n−2 − p.

From the results of Theorem 5.1. It is easy to see that there exists a finite time
T ∗ such that the solutions u blow up with lim

t→T∗−
Ψ(t) = +∞. Therefore, we obtain

a lower bound for T ∗ given by

∞∫
Ψ(0)

dθ

θ + (e (p− 1))
−2 |Ω|+ (eµ)

−2
C

2(p−1+µ)
2 θp−1+µ

≤ T ∗.

Clearly, the integral is bound since exponent p− 1 + µ > 1. This completes the
proof of Theorem 5.2.
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40 (2022), 1–13.

13. V. K. Kalantarov and O. A. Ladyzhenskaya: The occurrence of collapse for
quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 10 (1978),
53–70.

14. G. Kirchhoff: Mechanik. Teubner, (1883).

15. H. A. Levine: Instability and nonexistence of global solutions of nonlinear wave equa-
tions of the form Putt = Au+ F (u). Trans. Amer. Math. Soc. 192 (1974), 1–21.
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27. E. Pişkin and H. Yüksekkaya: Blow up solutions for a Timoshenko equation with
damping terms. Middle East Journal of Science 4(2) (2018), 70–80.
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