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Abstract. In this paper, we investigate the existence and Ulam stability results for
a class of boundary value problems for implicit Riesz-Caputo fractional differential
equations with non-instantaneous impulses involving both retarded and advanced ar-
guments. The result are based on Moénch fixed point theorem associated with the
technique of measure of noncompactness. An illustrative example is given to validate
our main results.
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1. Introduction

Because of its importance in the modeling and scientific understanding of nat-
ural processes, fractional calculus has long been an essential study topic in func-
tional space theory. Several applications in viscoelasticity and electrochemistry have
been studied. Non-integer derivatives of fractional order have been utilized success-
fully to generalize fundamental natural principles. For more details, we recommend
[1, 2, 3,4, 9, 10, 11, 24].
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There are numerous fractional derivatives, each with its own set of characteris-
tics and uses. The Riemann-Liouville fractional derivative, introduced in 1847, and
the Caputo derivative, created later in 1967, are two notable examples. Among the
other notable derivatives are the Hilfer derivative (2000), the Hadamard derivative
(1892), and the Caputo-Fabrizio derivative (2015). In many instances, the current
condition of a process is determined by its past and future evolution. Stock price
options, for example, depend on forecasting future market patterns. Similarly, frac-
tional derivatives are used to describe the concentration of diffusion on a specific
route in the anomalous diffusion problem. The Riesz derivative, a two-sided frac-
tional operator, is especially helpful in this situation because it can capture both
past and future memory effects. This property is particularly useful when describing
fractional processes on a finite area. The Riemann-Liouville and Caputo fractional
derivatives, which are one-sided fractional operators that only reflect past or fu-
ture memory effects, are currently the center of much work on fractional differential
equations. The flexibility of the Riesz derivative, on the other hand, has attracted
notice and is garnering favor in the field. For further information, interested readers
may refer to the works cited in [9, 10, 11].

In many cases, determining the exact solution of differential equations is diffi-
cult, if not unattainable. It is usual in such situations to investigate approximate
solutions. It is essential to observe, however, that only steady approximations are
accepted. As a consequence, different stability analysis techniques are used. S.
M. Ulam, a mathematician, first raised the stability issue in functional equations
in a 1940 lecture at Wisconsin University. In his presentation, Ulam posed the
following challenge: ”Under what conditions does an additive mapping exist near
an approximately additive mapping?” [30]. The following year, Hyers provided an
answer to Ulam’s problem for additive functions defined on Banach spaces [13].
In 1978, Rassias further expanded upon Hyers’ work, demonstrating the existence
of unique linear mappings near approximate additive mappings [22]. Since then,
numerous research articles in the literature have addressed the stabilities of var-
ious types of differential and integral equations. Interested readers may refer to
[17, 26, 28, 15, 31, 8, 21] and their respective references for further details.

E. Hernandez and D. O’Regan [12], studied the existence of solutions to the
novel class of abstract differential equations with noninstantaneous impulses. The
papes [6, 32, 34, 25, 26, 27, 20] can be consulted for fundamental results and recent
developments on differential equations with instantaneous and non-instantaneous
impulses.

The authors of [9] studied the existence of solution for the following boundary
value problem:

FEDy(0) = g(0,y(0)), 0€O:=10,],
y(0) = 5o, y(5) =y,
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where ¢ D2 is a Riesz-Caputo derivative of order 0 < a« <1, g: © xR — R a
continuous function and yg € R. Their arguments are based on Leray-Schauder
fixed point theorem, and Schauder fixed point theorem.

In [16], Li and Wang discussed the following fractional problem:
0 CDYy(t) = f(ty(1), te[0,1], 0<vy<1,
y(0) =a, y(1) =by(n),
where ¢ D] is the Riesz Caputo derivative, f € C(]0,1]x [0,+0c0), [0, +00)),0 <

n<1l,a>0,0<b< 2. They found the positive solutions by applying the technique
of monotone iterative.

Naas et al. [19] investigated the existence and uniqueness results of the following
fractional differential equation with the Riesz-Caputo derivative:

{ FODYx(t) + F (t, 2(t), O D5yxe(t)) = 0,t € T :=1[0,T],
#(0) + »(T) =0, p(0)+ 05 (T) =0,

where 1 < ¥ < 2 and ,0 < ¢ < l,g"/CD’j: is the Riesz-Caputo fractional derivative
of order k € {¥,¢}, §: J xR xR — R, is a continuous function, and p,o are
nonnegative constants with u > o. The existence and uniqueness of solutions for
their problem are demonstrated with the Riesz-Caputo derivatives via Banach’s,
Schaefer’s, and Krasnoselskii’s fixed point theorems.

The authors of [25] established existence and stability results, with relevant fixed
point theorems, to the boundary value problem:

(Clmi}v%) W) = f (19,33(19), (Clmiliﬁx) (19)) S 9e, i=0,...,m,

z(9) =0 (%,x()); $€Q;, i=1,...,m,

o (G1,7%0) (@) + 02 (T 8) (0) = s,

where ClDi1f2,<1 «]](11:@ are the generalized Hilfer fractional derivative of order ¢; €

(0,1) and t}lfpe (2 € [0,1] and generalized fractional integral of order 1 — (3 respec-

tively, ¢17¢2)¢3 c Rv Qsl 7é 07 Q’i = (%1719L+1]7Z = 07"'7m7 Qz = (1927%1]32 =

1,...,m,a:190:%0<191 <o < V9 <og <o < spq <19m§%m<19m+1:

b < oo, z(¥]) = lirél+ z(¥; +€) and z(¥; ) = 11%1 z(W;+e), f:(a,b) x RxR—-R
€E—r e—0—

is a given function and ¥, : Q; xR — R; ¢ =1, ..., m are given continuous functions.

Motivated by the above-mentioned papers, first, we present some existence,
uniqueness and Ulam stability results for the following fractional problem:

(L) (5905, 0) @) =@ (0.5°C), (BD§ _y) @)5 9 €0y g=0,...m,
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(1.2) y(8) = 0,0, y(07)); D€ Ry g =1,...,m,
(1.3) 01y(0) + d2y(3¢) = 03,

(1.4) y(9) =m ), ¥€[-w,0], w>0,

(1.5) y(9) = ha (), ¥ €[5, x4+ @], @ >0,

where ZCDgJH represent the Riesz-Caputo derivative of order 0 < ( < 1, © :=

[~07%], 61,09 € R, §3 € =, where §; 75 0, Qo := [0,’[91}, Q] = (%J,ﬂj+1];j =1,...,m,

Q=070 =1,....m 0=2"90 =39 < V1 <01 <V <300 < ... <1 <
O < s < Uy1 = 2 < 00, y(¥F) = lim y(9, +€) and y(9;) = lim y(J, + €)
e—0+t e—0—
represent the right and left hand limits of y(9) at ¥ = ¢,, (&, - ||) is a Banach
space, ¢ : © x PC ([~w,@],E) x E — Z is a given function, h; € C([~w,0],Z),
ho € C([5,2+@],E), and ¥, : Q, x = = E; 7 = 1,...,m are given continuous
functions. For y defined on [~ s + &) and for any ¥ € [0, »], y” is given by

¥ (o) =y(W+0), 0€[-w @]

The following part refers to how the current paper is arranged. In Section 2, we
present certain notations and review some preliminary information on the Riesz-
Caputo fractional derivative and auxiliary results. Section 3 presents an existence
result to the problem (1.1)-(1.5) based on Ménch’s fixed point theorem associated
with the technique of measure of noncompactness. The Ulam-Hyers-Rassias Stabil-
ity for our problem is discussed in Section 4. Finally, in the final part, we provide
an example to demonstrate the application of our study results.

2. Preliminaries

In this section, we introduce some notations, definitions, and preliminary facts which
are used throughout this paper.

We denote by C(©,E) the Banach space of all continuous functions from © to
=, with the norm

[€llcc = sup{ll§(D)]| : ¥ € O}

Let X = O([-w,0],Z) and X = C ([», » + @], E) be the spaces endowed, respec-
tively, with the norms

[€]lx = sup{[|£(0)] : 0 € [~w, 0]},
and
1€l 5 = sup {[I£(O)] : 0 € [>, 3¢+ @]} .
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Consider the Banach space

PC(0,E) = {y:@—>E: y|§~ZJ =V;7=1,...,m, y|QJ €C(Q,,2);7=0,...,m,

and there exist u(d;), y(9)),y(>; ), and y(>")

with y(J;) = y(ﬁg)},
with the norm
Iyl pc = sup [[y(9)]|
JEO

Consider the weighted Banach space

PC([~w,w],E) = {y tem @ = E vyl 5,0 € O T4].B);50=0,..,m,

for each ¥ € ), and yl; € C([7,1),E);0=1,...,m,
for each ¥ € Q,, where 7, = 5, — ¢ and 7, = ¥, — 9 and

there exist y(7,”), y(%f), y(7,") and y(T;r);j =1,...,m,

with y(r,") = y(n)},

with the norm

TE|—w™, ™

[Yll[~w,2) = sup } [y" ()]
Next, we consider the Banach space

with the norm
lylle = max {|lyllx, Iyl &, lvllpc }-

Definition 2.1. ([14]) Let ¢ > 0. The left and right Riemann-Liouville fractional
integrals of a function ¢ € C(0,Z) of order ( are given respectively by

29
oIS0(9) = ﬁ /0 (9 — o) plo)do.

and

WIop(0) = % / " (0 -9 ol(o)de.
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Definition 2.2. ([14]) Let ¢ > 0. The Riesz fractional integral of a function ¢ €
C(0,2) of order ( is defined by

NI ﬁ /0”|ﬁ_g|<—1¢(g)dg

= oLye(0) + o ILe(V),
where o/ g and ¢IS are the left and right fractional integrals of Riemann-Liouville.

Definition 2.3. ([14]) Let ¢ € (n,n + 1], n € N. The left and right Caputo
fractional derivatives of a function ¢ € C"T1(0, =) of order ¢ are given respectively
by

FD560) = iz [0 oS

0 19%0 - F(n+ 1 _ C) 0 o "2 0)aop,
and

C ¢ _ (_1)n+1 * _\n—¢, (n+1)

SD5e(0) = o= [, 0= 95 e

Definition 2.4. ([14]) Let ¢ € (n,n + 1], n € N. The Riesz-Caputo fractional
derivative of a function ¢ € C"*1(0, =) of order ( is given by

1 »
RC ¢ _ — o|" St
o Dxe(d) F(n+1_0/0 |9 = o" " (0)do
1 n+1C
= S(ED5e) + (~1)" 1T D)),

where OCDf9 is the left Caputo derivative and §'DS, is the right one. If we take
0<(¢<1land ¢ e C(0,E), we obtain

1
0CDLp(9) = 5§ Dip(9) — §DLp(9)).

Lemma 2.1. ([14]) If ¢ € C"*1(O,E) and ¢ € (n,n + 1], then we have

of§ §DSEW) = @)=Y
and
oIS §DSEW) = (=)™ Ew) =D

Consequently, we may have

oIS HCDSEM) = 5 (oIS §DSEW) + (1) IS §DSEW)).
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In particular, if 0 < ( <1, then we obtain
1
ol%. (O DLEW) = £(0) — 5 (£(0) +£()).

Lemma 2.2. Leto € C(0,2) and 0 < ( < 1. Theny € C(0,Z2) is a solution of
(2.1) ¢ DLy(9) =o(9), VeB,
if and only if y verifies the following integral equation:

(22) () = y<o>—ﬁ /0%9<lo<g>dg+r(1<) /O%ﬂ—m“ff(g)dg.

Proof. From Definition 2.2, Definition 2.4, and Lemma 2.1, we have

oIS 9 DE(9) = y(9) — 5(5(0) +y())

which implies that

y(0) = 2((0) + y(9) + oISo(),

2
1 1 [ .
= 50O 30 + 5 [ 19— e olo)de
1 I 1 1 [~ 1
= 50O+ 300 + 55 [ 0= 0 oo+ 75 [ (0= olopde

For 19 = 0, we have

Then, the final solution is given by:

y(¥) = y(0) - 1“(16)/0% o o(o)do + F(lofoﬂ 19 — oo (0)do.

Conversely, we can easily show by Lemma 2.1 that if £ verifies equation (2.2),
then it satisfied the equation (2.1). O

Definition 2.5. ([7]) Let X be a Banach space and let Tx be the family of
bounded subsets of X. The Kuratowski measure of noncompactness is the map
a:Tx — [0,00) defined by

a(y)=infie>0:xC ij,diam(xj)ga ,
j=1

where x € T x. The map « satisfies the following properties:
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e a(y) =0« Y is compact (x is relatively compact).
e a(x) = a(x)-
* X1 Cx2 = a(x1) < alx).
o a(x1+x2) < a(f) + a(2).
e alcx) =|calx), c € X.
e a(convy) = a(x).
Theorem 2.1. Monch’s fixed point theorem [18] Let D be a non-empty, closed,

bounded and convex subset of a Banach space X such that 0 € D and let H :
D — D be a continuous mapping. If the implication

(2.3) Q =convH(Q) or Q =H(Q) U {0} = a(Q) =0,
holds for every subset Q of D, then H has at least one fized point.
3. Main Results
We study the fractional differential equation that follows:
2 T4

(3.1) (RCD< y) W) =o(¥); VEQ, 7=0,....m,

where 0 < ¢ <1, with the conditions

(3.2) y(0) = W,(0,y(9,)); 9 €Qy, g=1,...,m,
(3.3) 01y(0) + d2y(3) = d3,

(3.4) y(9) = (9), 9€[-w,0], w>0,
(3.5) y(9) = ha(9), 9 € [, %+ @], @>0,

where (517(52 € R, 03 € E7~61 75 0, 0‘() S C(@,E), h € C([—W,O],E), hy €
C([s¢,2+w@],E),and ¥, : Q,xE — Z; g =1,...,m are given continuous functions.
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Theorem 3.1. The function y(-) verifies (3.1)-(3.3) if and only if it verifies

53 52\I/m(%may(t;z)) 52 * ¢—1
R ey AL
) * 1 ("
TR L, @ [ e ode
1
g L e @de vea,
1 9y41 B
)= )~ [ o0 de
1 19.7+1 1
+F(C)/,{] |’l9—Q|C_ o(o)do, 9€Q;7=1,...,m,

q’](ﬁ’y(ﬁj_))) 19 6 Q]?J = 1) e ama

y(’&) = hl(ﬁ)v v e [7@,0},

y(¥) = ha(9), V€[5, + @].
Proof. Assume y satisfies (3.1)-(3.3). If ¥ € Qp, then

6“D§,y(0) = o (9).
By Lemma 2.2, we get

9 U1
y(0) :yw—ﬁ%A f*d@@+ﬁ%£ 19— oo (o) de

If ¥ € Qy, the we have y(9) = U1 (9, y(97)).
If 9 € Qq, then Lemma 2.2 implies

Y2

V2
y(9) = y(3a1) — %/ 0o (o) d@+%/ 9 — 0| "o (0)do

Yo Vo
=wwmmwn—§5/ f“d@@+ﬁ%/ 19— 010 (o) do.

If 9 € Qy, the we have y(9) = Wy (9, y(05)).
If ¥ € Q9, then Lemma 2.2 implies

9

V3 3
yw>=yuw—I@3[;g<%wmdg+ré)[;|ﬂ—m<%mmdg

I3 V3
= Uy (00, y(03)) — %/ 0o (o) do+ %/ 19— 0|0 (o) do.
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Repeating the process in this way, for ¢ € © we can obtain

91
y(O)—F(lg)/0 o 'o (o) do
R R ST
g L et @ de,

Fy+1
y() = %(%],yw;»—% / 710 (o) do

1 /19]+1 B
t== 9—o|to(o)do, VeQ;y)=1,...,m,
0Q /), M@ )

U, (0,y(9))), € Q;5=1,...,m.

Taking ¥ = s in (3.), we obtain

Y(5) = U (30m, y(t5,)) — %C) /% oo (o) do+ %C) /% 3¢ — 0| "o (0) do.

Using the condition (3.3), we get

85 S9U e, y(ts 5 S
y(0) = - =2 bim, () |0 oo (o) do
5 5
|

1 IN(QISI
02

0% /hm % —0|°" o (o) do.

Substituting the value of y(0) in (3.), we obtain (3.1).

Reciprocally, for 9 € €, taking 9 = 0, we get

y(()) — 57‘3 _ 62\1’m(%may(t;1)) + F((22)51 /%
02

5 o
= g _ ol¢1

and for ¥ € Q,,, taking ¥ = s, we get

0o (o) do

Hm

y(52) = W (o2, (7)) — ﬁ / " 0 (o) do

+ — x—0 o (o) do.
10 /. | > o (e)
Thus, we can obtain d1y(0)+d2y(5¢) = d3, which implies that (3.3) is verified. Next,
apply EJCDf%H(-) on both sides of (3.1), where 3 =0,...,m. Then, by Lemma 2.2
we get the equation (3.1). Also, it is clear that y verifies (3.2), (3.4) and (3.5). O
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Lemma 3.1. Let0< (<1, ¢:0xPC([~w,@],E)xE — E is a given function,
hi(-) € X and ho(-) € X, then y € F verifies (1.1)-(1.5) if and only if y is the fized
point of the operator X : F — F defined by

03 62V, (50m,y(t,,)) d2 g

9 _ ¢—

5, 5, 508 e o (o) do
N N T L
F<1<)611,//;m'” oS0 (o) do r<<>/o o (o) do
v /0 19— oo (o) de, 9 € D,

B 1 LA
Ny(9) = W, (50, y(9;)) — F(C)/ 0t (0)do

1

9y41
+7/ 9—0to(0)do, VeQ;y)=1,....m,
1—\(() x, | | ( ) J J

‘1’3(197?/(19;))’ 19 € Q]7] = 1a ceey M,

y(ﬁ) = hl(ﬁ)a S [*W,O],

y(¥) = he(¥), V€[5, + @].
where o be a function satisfying the functional equation
o(9) = ¢ (0,4°(-),0(9)) .
Obviously, the fized points of the operator X are solutions of the problem (1.1)-(1.5).

Let us assume the following assumptions:
(Az1) The function ¢ : © x PC ([-w, @], E) x 2 — = is continuous.
(Az2) There exist constants ¢1, p, > 0 and 0 < 92 < 1 such that
lp(0,€,7) = (@, E NN < ¥1llé — Ellj—w,2) + Y2lly — 7l

and
10, (3, ) = 2,9, < osllv = Al
for any f,g € PO([—WJ%] aE)a )

p* = Fqlazm{@y}-

yeZand ¥ € Qp 7=0,...,m, where

(Az8) For each bounded sets 81 € PC ([—~w,@],E) and B2 € E and for each ¢ €
Q,;, 7=0,...,m, we have

a(p(V,p1,52) <1 sup  a(Bi(s)) + ea(f2)

SE[—w,w]

and
& (q/](ﬁ’ﬁQD < p]a(ﬁ2)-
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Remark 3.1. ([5]) It is worth noting that the hypotheses (Az2) and (Az3) are equivalent.

We are now in a position to prove the existence result of the problem (1.1)-(1.5)
based on the Monch fixed point theorem.

Theorem 3.2. Assume that the assumptions (Axl)-(Ax2) hold. If

(3.6) B = (|61] + |d2]) + D(C + 1)[61](1 — 1)

101]
then the implicit fractional problem (1.1)-(1.5) has a solution on ©.

<1,

Proof. The proof will be given in several steps.

Step 1: We show that the operator R defined in (3.1), transforms the ball
B, =B(0,w) ={y € F: |ly|lr <w} into itself.
Let w a positive constant such that

15| + (18] + [62)) L L (8] 4180

) T(C+ Doy |(1 —
w > max Bl DDA =) e il
L (o] 4 162y [ 4
o] T T DB )
such that ~ .
L= max (sup{|9,(0.0)], 9 € 2,3,
and

" = sup [[¢(9,0,0)].
9€0
For each ¥ € [—w, 0], we have

IRy ()| < [ ]| 2
S w,
and for each ¥ € [5, s + @], we have

IRy (D) < |72l 5
< w.

By the hypothesis (Az2), for ¥ € ©, we have
lo(@)Il = Il (9,57 (), 0(9)) = @(9,0,0)] + [l(9,0,0)]
<y -] + Y2llo@)] + "

and
9, (9, y() = ¥, (2, y(9)) — ¥, (9,0)[| + [[¥,(,0)]

< p*lylr + L,
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which implies that
o) < 1w+ allo(@)|| + ¢*,

then
0"+ P1w
o] < ——,
o)) < £

and
1, (0, y(9))|| < p*w + L.

Thus, for ¥ € Qy and by (3.1) and hypothesis (Az2), we obtain

A e L
Ny) (9] < m ¢ d
o < 151+ < t e o @lde
1) * _
Ll e (o) e

NN
1
+—f/‘g“no@mw
0

547

T(0)
1 gl
— 9 — ol o
trg | 1= e @ e
183 6ol (9" + B) | 200al(0" 4 aw) | 2 (0 + i)
Sl P TTEr DI - ve) T T+ D )

165]] + 62| L | 2(161] + |02]) ¢ "
|61 L(C+1)[61|(1 —12)

+w[6zlp* 2(101] + |821) 2541 }
o] TCH+ DG =) [

For ¥ € Q2,;7=1,...,m, we obtain

V541
H(Nyﬂﬁ)ﬂféﬂwjﬁﬁvy(ﬁ])ﬂl+“glgl/’ o (o) de

1 Dy+1
— ¥ — o]t d
trg ) 10 @ lde

* T ZKC(QD* + 1/1160)
S @t L R )

and forﬂeflj;jzl,...,m7 we have

IRy @) < (|2, (9, y(9))
< p*w+ L.
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Then for each ¥ € © we get

Ryl[pe <

||53||+(|51\+|52Di+ 2(101] + |82]) 0"
|61] L(C+1)[61|(1 —12)

0" 25¢51)y
w([01| + [02]) [|51| T D¢+ 1)]61](1— 1/12)]

< w.

Then, for each ¥ € [—w, 5 + @] we obtain

INylle < w.

Step 2: N: B, — B, is continuous.
Let {yn} be a sequence such that y,, —> y in F. For each ¥ € [—w,0] U [, 3¢ + @],
we have

Ry, (9) — Ry (I) [ = 0.
And for ¥ € Qy we have

IRU(9) = X D) < 52 G 4(072) = i )|

s L oo - outolde

rézial " = o o(e) — ou(e)de
Y1
+ ﬁ/o o“ "o (o) — on(o)lldo
Y1
- % /o 19 — 0| o (0) — an(o)|do,

and for ¥ € Q,;7=1,...,m, we have
IRy(9) = Ry (D] < (|95 (25, y(97)) = Ty (545, 9 (07))

Y
(1/ Yo (0) — on(0)de
1
)

7+1
+ e / 9= oo (e) — o (o) e

where o and o, be functions satisfying the functional equations

a(0) = ¢(9,y" (). 0 (9)),
on(9) = (9,43 () Tu(9)).
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Since y, — y and hypothesis (Az2), we have that o, (V) — o(9) as n — oo for each
veo.
For ¥ € Q);9=1,...,m, we have

IRy (9) = Ry ()| < ||, (9, 5(9))) — ¥, (9, yu ()|
< ©"lly = ynllpc-
Since ¢ and ¥,;4 = 1,...,m are continuous, then we have

IRy, — Ry|lrp — 0 as n — oo.

Step 3: N(B,,) is bounded and equicontinuous.
Since RX(B,,) C B,, and B,, is bounded, then ®(B,,) is bounded.
For vq,v5 € Q,;7=0,...,m, we have

I(Ry) (1) = (Ry) (v2)]|

1 941 . 1 D41 )
/ v — oS0 (o) do — —/ v — oo () do

sl /L. 7).
19]+1
= ﬁ / [l = el = v = 2" o (o) |1de

©* +Pw /79“1 -1 ¢-1
< —— ) — vy — 0 do.
FOU—vn) J,, |2 el

Note that
[(Ry)(v1) — Ry) (=) = 0 as v — va.

And for vy, vy EQJ;jzl,...,m,

1(Ry) (v1) = Ry) ()| < [[ W, (v1, 5(97)) = Wy (w2, 5 (97)]

and since ¥, are continuous that

)

[Ry)(1) = Ry)(2)]| = 0 as w1 — v

Hence, R(B,,) is bounded and equicontinuous.

Step 4: The implication (2.3) of Theorem 2.1 holds.
Now let 20 be an equicontinuous subset of B, such that U C R(U) U {0}, therefore
the function ¥ — d(¥) = a(U(Y)) is continuous on [—w, 3 + @|. By (Az3) and
the properties of the measure «, for each ¥ € €,;7=0,...,m, we have
d(9) < a ((RY)(9) U{0})
< a((RY)(9))
< |02] 0* ||| P |62 |55 91 [|d]|[— 2] n 2P ||d]| [ w,2)
Y L(C+ D01 =b2)  D(C+1)(1 =)
[Galg® _ (I61] +13a])¢ ¢y
1] T(¢C+ 1)[01[(1 — 1p2)

< lldlle
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For 9 € Qj;]: 1,...,m, we have
d(9) < p*||dls.
For ¥ € [—w, 0] U [5, 3¢ + @] , we have
4(9) = a(hy () = a(ha(9)) = 0.

Thus
ldllr < Bl|d]|-

From (3.6), we get ||d||[p = 0, that is d(¢) = a(B(¥)) = 0, for each ¥ € [—w, > + @],
and then U (V) is relatively compact in =. In view of the Ascoli-Arzela Theorem, U
is relatively compact in B,,. By Theorem 2.1, we deduce that X has a fixed point,
which is a solution to (1.1)-(1.5). O

4. Ulam-Hyers-Rassias Stability

Now, we consider the Ulam stability for problem (1.1)-(1.5). For this, we take
inspiration from the following papers [23, 33, 26, 35] and the references therein. Let
yeF, e>0,A1,A2 >0, A >0, and Im : © — [0,00) be a continuous function.
We consider the following inequalities:

(5905 ,,u) @) = ¢ (9.5°C), (2D v) )| < €9 €@y =0,....m,

(%ﬁ) — 0,0, y¥;))|[ <6, VEQ, =1,....m,

ly(9) =@ <e, ¥ €[-w,0],

ly(0) —he(W)[| <€, U € [56,3¢+ ],

(295, ) 0) = (9.570), (2905 ,0) @) | < @), 0 € 9,5 =0,....m,

||y(ﬂ845)\pj(ﬂay(ﬂ;))|} S)‘a 1969]7]:17"'7m7

ly(0) = (@) <A1, 0 € [-w,0],

[y(9) = ha(D)|| < Az, I €[50, 2+ ],
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and

1(59D5,,,4) 0) = ¢ (9.:97(), (5D ,y) ) | < clm(v), 9 € 25 = 0,.....m,
[y(9) = B, (0,50 )| S ed, D EeQy=1,....m,

(4.3) o
ly(9) = (D) < €Ay, I € [-w,0],

y(9) — ha(D)|| < €Ag, VI € [32, 50+ @] .

Definition 4.1. ([33, 26, 35]) Problem (1.1)-(1.5) is Ulam-Hyers (U-H) stable if
there exists a real number a, > 0 such that for each ¢ > 0 and for each solution
x € IF of inequality (4.1) there exists a solution y € F of (1.1)-(1.5) with

[z(0) =yl < eap, V€O,

Definition 4.2. ([33, 26, 35]) Problem (1.1)-(1.5) is generalized Ulam-Hyers (G.U-
H) stable if there exists K, : C([0,00), [0,00)) with K,(0) = 0 such that for each
€ > 0 and for each solution x € I of inequality (4.1) there exists a solution y € F of
(1.1)-(1.5) with

2(9) YO < K,(0),  veo.

Definition 4.3. ([33, 26, 35]) Problem (1.1)-(1.5) is Ulam-Hyers-Rassias (U-H-R)
stable with respect to (Im, X\, Aj, Ay) if there exists a real number a, 1 > 0 such
that for each € > 0 and for each solution x € F of inequality (4.3) there exists a
solution y € F of (1.1)-(1.5) with

l2(9) — y(I)|| < €apim(Im(I) + X+ A1 + Ay), Y€ 0.

Definition 4.4. ([33, 26, 35]) Problem (1.1)-(1.5) is generalized Ulam-Hyers-Rassias
(G.U-H-R) stable with respect to (Im,\, Ay, As) if there exists a real number
ap1m > 0 such that for each solution € F of inequality (4.3) there exists a
solution y € F of (1.1)-(1.5) with

[2(0) =y < apm(Im(d) + A+ A1+ As), D €O

Remark 4.1. It is clear that :

1. Definition 4.1 = Definition 4.2
2. Definition 4.3 = Definition 4.4
3. Definition 4.3 for Im(.) = A = Ay = Ay = 1 = Definition 4.1

Remark 4.2. A function y € F is a solution of inequality (4.3) if and only if there exist
v € F and a sequence v,,) =0,...,m+ 2 such that

L. H’U(ﬁ)H S 61m('l9)7 19 € Qja] = 07"'7m; ||UJ|| S €>\7 19 € QJ?] = 17"’7m7 ”U’m+1|| S
€A1 and ||[um42|| < €As.
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2. (ichgmy) () =¢ (197y19(~), (5905, ,v) @) +0(@), 9 €25 =0,....m,
3. y(W) = U,(0,y(9;)) + vy, ¥ EQyy=1,...,m.
4. y(¥) = () + Ums1, V€ [~,0].

5. y(ﬁ) = hg(’ﬂ) + Um+2, Y e [%,%—l— @} .

Theorem 4.1. Assume that in addition to (Ax1)-(Ax3) and (3.6), the following

hypothesis holds.

(Ax4) There exist a nondecreasing function Im : © — [0, 00) and {1y > 0 such that

for each ¥ € Q,;9=0,...,m, we have

(0ISIm) (V) < LrpIm(¥9),

Then the problem (1.1)-(1.5) is U-H-R stable with respect to (Im, X).

Proof. Let « € F be a solution if inequality (4.3), and let us assume that y is the

unique solution of the problem

(5D5,, v) 0) = ¢ (9,97 (), (2D, ,9) @) s 9 € @y, 5=0,...m,
y(9) = W, (0, y(9,)); 9 €Qy, g=1,...,m,

y(¥) = (D), € [~,0,

y(0) = ha(9), 9 € 2,3+ &,

519(0) + 2y () = G,

y(g) = x(5);9=0,...,m,

y(@,) ==z(,);7=1,...,m+ 1.
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By Theorem 3.1, we obtain for each 9 € ©

0. 5\I’7n ms t7_n g * —
g3 Y2 (% y( ))+1-\2 / Q< 10(Q)d9

o o GRYS
L By A PRATS __ L e
IN(QL1 me [ =o' o (o) do NG /0 0" o (o)do
b [ 10 o @de, 0 e
1 9y41
y(ﬁ) — qj](%]ay(ﬁj_)) - m/ chla (g) do
1 Py1 “
+W/ 19— o] to(0)do, YEQ;)=1,...,m,

Uy (0, y(97)), ¥ €Qy59=1,...,m,

y(0) = h(d), 9 € [-w,0],

y(9) = he(¥), U € [, + @],
where o be a function satisfying the functional equations
0—(19) = 90(19’ yﬂ(')’ 0(19))

Since z is a solution of the inequality (4.3), by Remark 4.2, we have

(5§ 2) 0) = ¢ (9.2°C), (B°D§ =) (9)) +v(9),0 € @) =0,...,m,

2y T4 Yy+1

z(9) = 0,(9,z(07))+v,,9€Q,,7=1,...,m,
(EL.A%) 20, 2(97)) + v, 5
z(9) = h(9) + vmt1, V€ [—w,0],

z(V) = ha(9) + Uiz, V€[5, +@].

Clearly, the solution of (4.4) is given by

Vyt1
o) %o/ ¢* " (02(0) + v(0))de
1 Dyr1 %]
*r(g)/ |9 — 0| (0x(0) +v(0))do, ifVEQ, =1,....m,

U, (0, 2(97)) + vy, if9eQ, ) =1,...,m,

y(ﬁ) =Mh (19) + Um41, S [—W,O],

y(ﬁ) = h2(19) + Um+2, VRS [%, x+ 7%] s
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where o, be a function satisfying the functional equations

a2 (9) = (9, (), 04 (9)).

Hence, for each ¥ € Q,,7=0,...,m, we have
1 V41 L
[z(9) — y(D)]| < (C)/ [ — 0" |ow (0) — o (0) [|do + (o L5 [l(T)]])
< elyIm(9) + V1 llz —ylr /% [0 — 0| tdo
B I'(¢) 0
1/)1%C

< elypIm (V) + m”z — Y|l

And for each ¥ € Q],j =1,...,m, we have
() —y(@)|| < 19,0, z(9;)) = ¥, (0, y(I;)I + vyl
< e llz(9) =y + €A
< 'z —yllr + €A
For each ¥ € [—w, 0], we have

() = y(I)I| < lvmall
S EAl.

And for each ¥ € [5, 5 + @], we have

[2(9) =y < [lvm-s2
S EAQ.

Thus

P15

[z —yllr < [elimIm(F) + X + €A1 + eAo] + {p* + T — )

Then for each ¥ € ©, we have
[ — yllr < apme(\ +Im(9) + A; + Ay),

where
1+ gIm

Ap,Im =

Hence, the problem (1.1)-(1.5) is U-H-R stable with respect to (Im, A\, Ay, As).

} Iz = yll.

O

Remark 4.3. If the conditions (Az1)-(Az2) and (3.6) are satisfied, then by Theorem 4.1
and Remark 4.1, it is clear that problem (1.1)-(1.5) is U-H-R stable and G.U-H-R stable.
And if Im(.) = A = A; = Ay = 1, then problem (1.1)-(1.5) is also G.U-H stable and U-H

stable.
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5. An Example

Let
E:ll = {é-: (617527"'7£n7"’)7z|§n‘ < OO}
n=1

be the Banach space with the norm

Il =" 1€l
n=1

Consider the following impulsive problem which is an example of our problem (1.1)-
(1.5).

(5.1) (f‘fDémy) )= (19, v’ (), (ﬁfD§]+ly) (19)) ;9 € QU,

(5.2) y(9) = U1 (3, y(97)) € O,
(5.3) y(0) +y(x) =0,

(5.4) y(¥) = i (9), ¥ €[-m0], w >0,
(5.5) y(9) = ha (), 9 € [m, 2n], @ >0,

where Qp = (0,2], @ = (3,7], & = (2,3], 20 =0, ¥; = e and 2, = 3, with { = 1
7€{0,1},01=02=1,03=0and w=w =7, and

y:(ylvaa"'ayn7"')7
<p:(<)017<p2)""<pn)"')7

RC 13 _ (RCp3 RC 13 RC 13
> Dgﬁly o (”J D5J+1y1, > D1§J+1y2, ] D53+1y"’ o ) ’
>t 1+ 2| cos(V)| + ||y ]| ly2(9)|
+ 2| cos + Y1ll[—w, @] T [|Y2
@(ﬁayhyQ) = 2154—32[3619 ] ) VRS QOUQh
and

W0, pa(07)) = L DO,

where y; € PC ([-m,7],2), y2 € E.
Clearly, the function ¢ is continuous. Hence the condition (Axz1) is satisfied.
For each z1,y1 € PC ([-m,7],2), x2,y2 € Z and ¥ € ©, we have

1

_ < ot
1F (9,20, 22) = F(O, 1, 0)l < Gegom s

(lz1 = yall— o, 2] + llz2 — y2ll)

1
< % (Hffl - y1|\[_w,@] + HxZ - yZH) s
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W1 (0, 22(97)) — Ta(d, 2 (97))]| < llz2(9) — y2()]|

312¢Y
1
< —_
< atlea () ~ ),
1
Hence condition (Az2) is satisfied with 1)1 = 19 = £33 and p* = 35"
And, the condition (3.6) of Theorem 3.2 is verified, for
* ¢
% 7Py
= ([61] +[02]) | = +
R TR Y AT
RN
© 312 537
~ 0.02130783555
<1

Then the problem (5.1)-(5.3) has a unique solution in PC([0, 7], E).
Hypothesis (Az4) is satisfied with A = A; = Ay = 1, Im(9¥) = 3/7 and {4, = 4.
Indeed, for each ¢ € Qg U Qq, we get

S LR ST Oy

SVE = 1 [ 10— el e
ﬁ ! _ )61 ﬁ " .\ ¢-1
SF(C)/O (¥ — o) dQ“LF(g)/ﬁ (0—1)"""do
< 16+/7.

Consequently, Theorem 4.1 implies that the problem (5.1)-(5.3) is U-H-R stable.
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