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COMMON FIXED POINT RESULTS USING (E.A) AND
CLR-PROPERTIES IN S-METRIC SPACES

Gurucharan Singh Saluja

Abstract. In this paper, we prove some common fixed point results for two pairs
of weakly compatible mappings satisfying (E.A) property and CLR-property in the
framework of S-metric spaces and provide some examples to support the outcomes. We
also prove well-posedness of a fixed point problem. Our findings generalize and extend
a number of previously published findings.
Keywords: Common fixed point, S-metric space, (E : A)-property, CLR-property,
weakly compatible condition.

1. Introduction

Banach fixed point theorem ([4]) (or in short BCP) in a complete metric space
has been generalized in many spaces. This famous result is stated as follows.

Theorem 1.1. Let (X, d) be a complete metric space and let R:X → X be a
self-mapping. If there exists k ∈ [0, 1) such that

d(R(x),R(y)) ≤ k d(x, y),(1.1)

for all x, y ∈ X, then R has a unique fixed point z ∈ X.

Moreover, for any u0 ∈ X, the sequence {un} ⊂ X defined by un+1 = Run, n ∈ N,
is convergent to the fixed point z ∈ X. Inequality (1.1) also implies the continuity
of R.
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Over last few decades, a number of generalizations of metric spaces, such as
2-metric spaces, D∗-metric spaces, b-metric spaces and partial metric spaces, have
thus appeared in numerous papers. These generalizations were then used to extend
the study of fixed point theory. For more discussions of such generalizations, we
refer to [3, 5, 6].

In 2006, Mustafa and Sims [13] introduced G-metric spaces as a generalization
of metric spaces and proved the existence of fixed points under different contractive
conditions.

In 2012, Sedghi et al. [16] generalized the notion of metric by introducing the
following concept:

Definition 1.1. ([16]) Let X be a nonempty set and let S:X3 → [0,∞) be a
function satisfying the following conditions for all u, v, z, t ∈ X:

(S1) S(u, v, z) = 0 if and only if u = v = z;

(S2) S(u, v, z) ≤ S(u, u, t) + S(v, v, t) + S(z, z, t).

Then the function S is called an S-metric on X and the pair (X,S) is called an
S-metric space (in short SMS).

Some examples of such S-metric spaces are as follows.

Example 1.1. ([16])

(1) Let X = Rn and ‖ · ‖ a norm on X, then S(u, v, z) = ‖v + z − 2u‖+ ‖v − z‖ is an
S-metric on X.

(2) Let X = Rn and ‖ · ‖ a norm on X, then S(u, v, z) = ‖u − z‖ + ‖v − z‖ is an
S-metric on X.

Example 1.2. ([17]) Let X = R be the real line. Then S(u, v, z) = |u− z|+ |v − z| for
all u, v, z ∈ R is an S-metric on X. This S-metric on X is called the usual S-metric on X.

Example 1.3. ([12]) Let X be a non-empty set and d be an ordinary metric on X. Then
S(u, v, z) = d(u, z) + d(v, z) for all u, v, z ∈ R is an S-metric on X.

Example 1.4. ([19]) Let X be a non-empty set and d1, d2 be two ordinary metrics on
X. Then S(u, v, z) = d1(u, z) + d2(v, z) for all u, v, z ∈ X is an S-metric on X.

Recently, Sedghi et al. [18] have proved some existence results of the unique
common fixed point for a pair of weakly compatible self mappings satisfying some
Φ-type contractive conditions in the setting of S-metric spaces.

2. Basic Properties and Auxiliary Results of an S-Metric Space

We need the following definitions and lemmas in the sequel.
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Definition 2.1. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we define
the open ball BS(x, r) and closed ball BS [x, r] with center x and radius r as follows,
respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},

BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 2.1. ([17]) Let X = R. Denote by S(x, y, z) = |y + z − 2x| + |y − z| for all
x, y, z ∈ R. Then

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2),

and

BS [2, 4] = {y ∈ R : S(y, y, 2) ≤ 4} = {y ∈ R : |y − 2| ≤ 2}
= {y ∈ R : 0 ≤ y ≤ 4} = [0, 4].

Definition 2.2. ([16], [17]) Let (X,S) be an S-metric space and A ⊂ X.

• The subset A is said to be an open subset of X, if for every x ∈ A there exists
r > 0 such that BS(x, r) ⊂ A.

• A sequence {tn} in X converges to t ∈ X if S(tn, tn, t)→ 0 as n→∞, that is,
for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have S(tn, tn, t) < ε.
We denote this by limn→∞ tn = t or tn → t as n→∞.

• A sequence {tn} in X is called a Cauchy sequence if S(tn, tn, tm) → 0 as
n,m → ∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0
we have S(tn, tn, tm) < ε.

• The S-metric space (X,S) is called complete if every Cauchy sequence in X
is convergent in X.

• Let τ be the set of all A ⊂ X with the property that for each x ∈ A and there
exists r > 0 such that BS(x, r) ⊂ A. Then τ is a topology on X (induced by the
S-metric space).

• A nonempty subset A of X is S-closed if closure of A coincides with A.

Lemma 2.1. ([16], Lemma 2.5) Let (X,S) be an S-metric space. Then, we have
S(u, u, v) = S(v, v, u) for all u, v ∈ X.

Lemma 2.2. ([16], Lemma 2.12) Let (X,S) be an S-metric space. If tn → t and
un → u as n→∞ then S(tn, tn, un)→ S(t, t, u) as n→∞.

Lemma 2.3. ([7], Lemma 8) Let (X,S) be an S-metric space and A is a nonempty
subset of X. Then A is S-closed if and only if for any sequence {tn} in A such that
tn → t as n→∞, then t ∈ A.
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Lemma 2.4. ([16]) Let (X,S) be an S-metric space. If r > 0 and x ∈ X, then
the ball BS(x, r) is an open subset of X.

Lemma 2.5. ([17]) The limit of a sequence {tn} in an S-metric space (X,S) is
unique.

Lemma 2.6. ([16]) Let (X,S) be an S-metric space. Then any convergent se-
quence {tn} in X is Cauchy.

In the following lemma we see the relationship between a metric and S-metric.

Lemma 2.7. ([8]) Let (X, d) be a metric space. Then the following properties are
satisfied:

(Ω1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.

(Ω2) xn → x in (X, d) if and only if xn → x in (X,Sd).

(Ω3) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).

(Ω4) (X, d) is complete if and only if (X,Sd) is complete.

We call the function Sd defined in Lemma 2.7 (1) as the S-metric generated by
the metric d. An example of an S-metric which is not generated by any metric can
be found in [8, 14].

Definition 2.3. ([16]) Let (X,S) be an S-metric space. A mapping T :X → X is
said to be a contraction if there exists a constant 0 ≤ L < 1 such that

S(T u, T v, T z) ≤ LS(u, v, z)(2.1)

for all u, v, z ∈ X.

Remark 2.1. If the S-metric space (X,S) is complete then the mapping defined as above
has a unique fixed point (see [16], Theorem 3.1).

Definition 2.4. ([16]) Let (X,S) and (Y, S′) be two S-metric spaces. A function
g:X → Y is said to be continuous at a point t0 ∈ X if for every sequence {tn} in
X with S(tn, tn, t0) → 0, S′(g(tn), g(tn), g(t0)) → 0 as n → ∞. We say that g is
continuous on X if g is continuous at every point t0 ∈ X.

Definition 2.5. Let X be a non-empty set and let T , g:X → X be two self
mappings of X. Then a point x ∈ X is called a

(Γ1) fixed point of operator T if T x = x;

(Γ2) common fixed point of T and g if T x = gx = x.

Definition 2.6. ([1]) Let f and g be single valued self-mappings on a set X. If
w = fu = gu for some u ∈ X, then u is called a coincidence point of f and g, and
w is called a point of coincidence of f and g.
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Definition 2.7. ([10]) Let f and g be single valued self-mappings on a set X.
Mappings f and g are said to be commuting if fgu = gfu for all u ∈ X.

Definition 2.8. ([11]) Let f and g be single valued self-mappings on a set X.
Mappings f and g are said to be weakly compatible if they commute at their coin-
cidence points, i.e., if fu = gu for some u ∈ X implies fgu = gfu.

Definition 2.9. ([2]) Let (X,S) be an S-metric space and let A,S:X → X be
two self mappings of X. The pair (A,S) is said to have the (E.A)-property if there
exists a sequence {tn} in X such that limn→∞Atn = limn→∞ Stn = t for some
t ∈ X.

Example 2.2. Let X = [0, 1] and let f, g:X → X be defined by f(x) = x
2

and g(x) = x
4
.

Define the function S:X3 → [0,∞) by

S(x, y, z) =

{
0, if x=y=z,

max{x, y, z}, if otherwise,

for all x, y, z ∈ X, then S is an S-metric on X. Now, we show that the pair (f, g) satisfies
the (E.A) property. For this, consider the sequence {tn} = { 1

2n+1
}n≥1. Clearly {tn} is in

X and note that ftn = tn
2

= 1
2(2n+1)

and gtn = tn
4

= 1
4(2n+1)

for all n ∈ N. This implies
that

S(ftn, ftn, 0) = S

(
1

2(2n + 1)
,

1

2(2n + 1)
, 0

)
= max

{
1

2(2n + 1)
,

1

2(2n + 1)
, 0

}

=
1

2(2n + 1)
→ 0 as n→∞.

This shows that ftn → 0 as n→∞.

Also note that

S(gtn, gtn, 0) = S

(
1

4(2n + 1)
,

1

4(2n + 1)
, 0

)
= max

{
1

4(2n + 1)
,

1

4(2n + 1)
, 0

}

=
1

4(2n + 1)
→ 0 as n→∞.

This shows that gtn → 0 as n → ∞. Thus there exists a sequence {tn} in X such that
ftn → 0 and gtn → 0 as n→∞. Hence the pair (f, g) satisfies (E.A) property.

Definition 2.10. ([9]) Let (X,S) be an S-metric space and f, g,R, T :X → X be
four self mappings of X. We say that the pairs (f,R) and (g, T ) satisfy the common
limit range property with respect to R and T if there exist two sequences {tn} and
{un} in X such that

lim
n→∞

Rtn = lim
n→∞

ftn = lim
n→∞

gun = lim
n→∞

Tun = v,

for some v ∈ R(X) ∩ T (X) and it is denoted by (CLRRT ).
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Proposition 2.1. ([1]) Let f and g be weakly compatible self mappings on a set
X. If f and g have a unique point of coincidence w = fx = gx, then w is the
unique common fixed point of f and g.

In this paper, we prove some common fixed point theorems in the framework
of S-metric spaces by using (E.A)-property and (CLRRT ) property. Also, we give
some examples to validate the results. Our results generalize, extend, improve and
enrich several existing results in the literature.

3. Common fixed point theorems using (E.A) property

Theorem 3.1. Let (X,S) be an S-metric space and let f, g,R, T :X → X be four
self-mappings of X satisfying the following conditions:

(i)

S(fx, fy, gz) ≤ r max
{
S(Rx,Ry, Tz), S(fx, fx,Rx), S(gz, gz, Tz),

S(fy, fy, Tz)
}
,(3.1)

for all x, y, z ∈ X, where 0 < r < 1 is a constant;

(ii) the pairs (f,R) and (g, T ) are weakly compatible;

(iii) one of the pairs (f,R) and (g, T ) satisfies the (E.A) property;

(iv) f(X) ⊆ T (X) and g(X) ⊆ R(X).

If one range of the mappings R and T is a complete subspace of (X,S), then f ,
g, R and T have a unique common fixed point in X.

Proof. First, we suppose that the pair (f,R) satisfies the (E.A) property. Then
by Definition 2.9, there exists a sequence {tn} in X such that limn→∞ ftn =
limn→∞Rtn = t for some t ∈ X. Further, since f(X) ⊆ T (X), there exists a se-
quence {wn} in X such that limn→∞ ftn = limn→∞ Twn. Hence limn→∞ Twn = t.
We claim that limn→∞ gwn = t. If not, then putting x = tn and y = wn in
inequality (3.1) and using Lemma 2.1, we have

S(ftn, ftn, gwn) ≤ r max
{
S(Rtn, Rtn, Twn), S(ftn, ftn, Rtn),

S(gwn, gwn, Twn), S(ftn, ftn, Twn)
}

= r max
{
S(Rtn, Rtn, ftn), S(ftn, ftn, Rtn),

S(gwn, gwn, ftn), S(ftn, ftn, Twn)
}

= r max
{
S(Rtn, Rtn, ftn), S(ftn, ftn, Rtn),

S(gwn, gwn, ftn), S(ftn, ftn, ftn)
}

= r max
{

0, 0, S(ftn, ftn, gwn), 0
}

= r S(ftn, ftn, gwn),(3.2)
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which is a contradiction, since 0 < r < 1. Hence S(ftn, ftn, gwn) = 0, that is,
ftn = gwn. Letting n→∞, we get limn→∞ ftn = limn→∞ gwn = t.

Now, first we suppose that T (X) is a complete subspace of (X,S), then t = Tu
for some u ∈ X. Consequently, we have

lim
n→∞

gwn = lim
n→∞

ftn = lim
n→∞

Rtn = lim
n→∞

Twn = Tu = t.

We claim that gu = Tu. For this, putting x = y = tn and z = u in inequality
(3.1) and using Lemma 2.1, we have

S(ftn, ftn, gu) ≤ r max
{
S(Rtn, Rtn, Tu), S(ftn, ftn, Rtn),

S(gu, gu, Tu), S(ftn, ftn, Tu)
}
.(3.3)

Letting n→∞ in (3.3) and using Lemma 2.1, we get

S(Tu, Tu, gu) ≤ r max
{
S(t, t, t), S(t, t, t), S(gu, gu, Tu), S(Tu, Tu, Tu)

}
= r max

{
0, 0, S(gu, gu, Tu), 0

}
= r S(Tu, Tu, gu),

which is a contradiction, since 0 < r < 1. Hence S(Tu, Tu, gu) = 0, that is,
Tu = gu = t. Hence u is a coincidence point of the mappings g and T , that is, the
pair (g, T ). Now, the weak compatibility of the pair (g, T ) implies that gTu = Tgu
or gt = Tt.

On the other hand, since g(X) ⊆ R(X), there exists v ∈ X such that gu = Rv.
Thus Tu = gu = Rv = t. Let us show that v is a coincidence point of the pair
(f,R), that is, fv = Rv = t. If not, then putting x = y = v and z = u in inequality
(3.1) and using Lemma 2.1, we have

S(fv, fv, gu) ≤ r max
{
S(Rv,Rv, Tu), S(fv, fv,Rv),

S(gu, gu, Tu), S(fv, fv, Tu)
}

= r max
{
S(t, t, t), S(fv, fv, gu),

S(t, t, t), S(t, t, t)
}

= r max
{

0, 0, S(fv, fv, gu), 0
}

= r S(fv, fv, gu),

which is a contradiction, since 0 < r < 1. Hence S(fv, fv, gu) = 0, that is,
S(fv, fv,Rv) = 0 and hence fv = Rv = t. Thus v is a coincidence point of f and
R. Further, the weak compatibility of the pair (f,R) implies that fRv = Rfv or
ft = Rt. Thus t is a common coincidence point of f , g, R and T .
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In order to show that t is a common fixed point of f , g, R and T , let us put
x = y = v and z = t in (3.1) and using Lemma 2.1, we get

S(t, t, gt) = S(fv, fv, gt)

≤ r max
{
S(Rv,Rv, T t), S(fv, fv,Rv),

S(gt, gt, T t), S(fv, fv, T t)
}

= r max
{
S(t, t, gt), S(fv, fv, fv), S(gt, gt, gt), S(t, t, gt)

}
= r max

{
S(t, t, gt), 0, 0, S(t, t, gt)

}
= r S(t, t, gt),

which is a contradiction, since 0 < r < 1. Hence S(t, t, gt) = 0. Thus gt = t.
Consequently, ft = gt = Rt = Tt = t. This shows that t is a common fixed point
of the mappings f , g, R and T .

Similar argument arises if we assume that R(X) is a complete subspace of (X,S).

Similarly, the property (E.A) of the pair (g, T ) will give the similar result.

Now, we show the uniqueness of the common fixed point. For this, let us assume
that q is another common fixed point of f , g, R and T with q 6= t. Then using
inequality (3.1) and Lemma 2.1 for x = y = q and z = t, we have

S(q, q, t) = S(fq, fq, gt)

≤ r max
{
S(Rq,Rq, T t), S(fq, fq,Rq), S(gt, gt, T t),

S(fq, fq, T t)
}

= r max
{
S(q, q, t), S(q, q, q), S(t, t, t), S(q, q, t)

}
= r max

{
S(q, q, t), 0, 0, S(q, q, t)

}
= r S(q, q, t),

which is a contradiction, since 0 < r < 1. Hence S(q, q, t) = 0. We conclude that
q = t. This shows that the common fixed point of f , g, R and T is unique. This
completes the proof.

Corollary 3.1. Let (X,S) be an S-metric space and let f,R:X → X be two self-
mappings of X satisfying the following conditions:

(i)

S(fx, fy, fz) ≤ r max
{
S(Rx,Ry,Rz), S(fx, fx,Rx), S(fz, fz,Rz),

S(fy, fy,Rz)
}
,

for all x, y, z ∈ X, where 0 < r < 1 is a constant;



Common Fixed Point Results Using (E.A) And. . . 187

(ii) the pair (f,R) is weakly compatible;

(iii) the pair (f,R) satisfies (E.A) property;

(iv) f(X) ⊆ R(X).

If the range of the mapping R is a complete subspace of (X,S), then f and R
have a unique common fixed point in X.

Proof. Putting f = g and R = T in inequality (3.1). Then all conditions of Theorem
3.1 are satisfied and hence the result follows.

Corollary 3.2. Let (X,S) be an S-metric space and let f, g:X → X be two self-
mappings of X satisfying the following conditions:

(i)

S(fx, fy, gz) ≤ r max
{
S(x, y, z), S(fx, fx, x), S(gz, gz, z), S(fy, fy, z)

}
,

for all x, y, z ∈ X and for some r ∈ (0, 1);

(ii) one of the pairs (f, I) and (g, I) satisfies the (E.A) property, where I is an
identity map on X.

If the one range of the mappings f and g is a complete subspace of (X,S), then
f and g have a unique common fixed point in X.

Proof. Follows from Theorem 3.1 by setting R = T = I, where I is an identity map
on X.

Now, we get the special cases of Theorem 3.1 as follows.

Corollary 3.3. Let (X,S) be a complete S-metric space and let f, g:X → X be
two self-mappings of X satisfying the following condition:

S(fx, fy, gz) ≤ r max
{
S(x, y, z), S(fx, fx, x), S(gz, gz, z), S(fy, fy, z)

}
,

for all x, y, z ∈ X with r ∈ (0, 1). Then there exists a unique point µ ∈ X such that
fµ = gµ = µ.

Proof. If we take R and T as an identity map on X, then Theorem 3.1 follows that
f and g have a unique common fixed point.

Corollary 3.4. Let (X,S) be a complete S-metric space and let f :X → X be a
self-mapping of X satisfying the following condition:

S(fx, fy, fz) ≤ r max
{
S(x, y, z), S(fx, fx, x), S(fz, fz, z), S(fy, fy, z)

}
,

for all x, y, z ∈ X with r ∈ (0, 1). Then f has a unique fixed point in X.
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Proof. If we take R and T as an identity map on X and f = g, then Theorem 3.1
follows that f has a unique fixed point.

Theorem 3.2. Let (X,S) be an S-metric space and let f, g,R, T :X → X be four
mappings satisfying the following conditions:

(i)

S(fx, fy, gz) ≤ h1 S(Rx,Ry, Tz) + h2 S(fx, fx,Rx)

+h3 S(gz, gz, Tz) + h4 S(fy, fy, Tz),(3.4)

for all x, y, z ∈ X, where h1, h2, h3, h4 are nonnegative constants with h1 + h2 +
h3 + h4 < 1;

(ii) the pairs (f,R) and (g, T ) are weakly compatible;

(iii) one of the pairs (f,R) and (g, T ) satisfies the (E.A) property;

(iv) f(X) ⊆ T (X) and g(X) ⊆ R(X).

If the one range of the mappings R and T is a complete subspace of (X,S), then
f , g, R and T have a unique common fixed point in X.

Proof. First, we suppose that the pair (f,R) satisfies the (E.A) property. Then
by Definition 2.9, there exists a sequence {tn} in X such that limn→∞ ftn =
limn→∞Rtn = t for some t ∈ X. Further, since f(X) ⊆ T (X), there exists a se-
quence {wn} in X such that limn→∞ ftn = limn→∞ Twn. Hence limn→∞ Twn = t.
We claim that limn→∞ gwn = t. If not, then putting x = y = tn and z = wn in
inequality (3.4) and using Lemma 2.1, we have

S(ftn, ftn, gwn) ≤ h1 S(Rtn, Rtn, Twn) + h2 S(ftn, ftn, Rtn),

+h3 S(gwn, gwn, Twn) + h4 S(ftn, ftn, Twn)

= h1 S(Rtn, Rtn, ftn) + h2 S(ftn, ftn, Rtn),

+h3 S(gwn, gwn, ftn) + h4 S(ftn, ftn, Twn)

= h1 S(Rtn, Rtn, ftn) + h2 S(ftn, ftn, Rtn),

+h3 S(gwn, gwn, ftn) + h4 S(ftn, ftn, ftn)

= (h1 + h2)S(Rtn, Rtn, ftn) + h3 S(gwn, gwn, ftn).(3.5)

This implies

S(ftn, ftn, gwn) ≤
(h1 + h2

1− h3

)
S(Rtn, Rtn, ftn)

= q S(Rtn, Rtn, ftn),(3.6)

where q =
(

h1+h2

1−h3

)
< 1, since h1 + h2 + h3 + h4 < 1. Now, letting n→∞ in (3.6),

we get limn→∞ S(ftn, ftn, gwn) = 0, that is, limn→∞ ftn = limn→∞ gwn = t. The
rest of the proof is similar to that of Theorem 3.1, so we omit it.

Remark 3.1. Completeness of the space X is relaxed in Theorem 3.1 and Theorem 3.2.
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4. Common fixed point theorems using (CLRRT ) property

Theorem 4.1. Let (X,S) be an S-metric space and let f, g,R, T :X → X be four
self-mappings of X satisfying the following conditions:

(i)

S(fx, fy, gz) ≤ r max
{
S(Rx,Ry, Tz), S(fx, fx,Rx), S(gz, gz, Tz),

S(fy, fy, Tz)
}
,(4.1)

for all x, y, z ∈ X, where 0 < r < 1 is a constant;

(ii) the pairs (f,R) and (g, T ) are weakly compatible.

If the pairs (f,R) and (g, T ) satisfy (CLRRT ) property, then the mappings f ,
g, R and T have a unique common fixed point in X.

Proof. As (f,R) and (g, T ) satisfy (CLRRT ) property, we can find two sequences
{tn} and {wn} in X such that

lim
n→∞

R(tn) = lim
n→∞

f(tn) = lim
n→∞

g(wn) = lim
n→∞

T (wn) = λ

for some λ ∈ R(X) ∩ T (X). Then λ = Tα1 = Rα2 for some α1, α2 ∈ X. Now, we
show that gα1 = Tα1. For each n ∈ N, from equation (4.1) and using Lemma 2.1,
we have

S(ftn, ftn, gα1) ≤ r max
{
S(Rtn, Rtn, Tα1), S(ftn, ftn, Rtn),

S(gα1, gα1, Tα1), S(ftn, ftn, Tα1)
}
.

Now, letting n→∞ in the above inequality, we get

S(Tα1, Tα1, gα1) ≤ r max
{
S(Tα1, Tα1, Tα1), S(Tα1, Tα1, Tα1),

S(gα1, gα1, Tα1), S(Tα1, Tα1, Tα1)
}

= r max
{

0, 0, S(Tα1, Tα1, gα1), 0
}

= r S(Tα1, Tα1, gα1).

That is,

S(Tα1, Tα1, gα1) ≤ r S(Tα1, Tα1, gα1),

which is a contradiction, since 0 < r < 1. Hence we conclude that S(Tα1, Tα1, gα1) =
0. It follows that gα1 = Tα1. Therefore, we can prove the result as in Theorem 3.1
and hence we omit the rest of the proof.
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Theorem 4.2. Let (X,S) be an S-metric space and let f, g,R, T :X → X be four
mappings satisfying the following conditions:

(i)

S(fx, fy, gz) ≤ h1 S(Rx,Ry, Tz) + h2 S(fx, fx,Rx)

+h3 S(gz, gz, Tz) + h4 S(fy, fy, Tz),(4.2)

for all x, y, z ∈ X, where h1, h2, h3, h4 are nonnegative constants with h1 + h2 +
h3 + h4 < 1;

(ii) the pairs (f,R) and (g, T ) are weakly compatible.

If the pairs (f,R) and (g, T ) satisfy (CLRRT ) property, then the mappings f ,
g, R and T have a unique common fixed point in X.

Proof. Since (f,R) and (g, T ) satisfy (CLRRT ) property, so we can find two se-
quences {tn} and {wn} in X such that

lim
n→∞

R(tn) = lim
n→∞

f(tn) = lim
n→∞

g(wn) = lim
n→∞

T (wn) = λ

for some λ ∈ R(X) ∩ T (X). Then λ = Tα1 = Rα2 for some α1, α2 ∈ X. Now, we
show that gα1 = Tα1. For each n ∈ N, from equation (4.2) and using Lemma 2.1,
we have

S(ftn, ftn, gα1) ≤ h1 S(Rtn, Rtn, Tα1) + h2 S(ftn, ftn, Rtn)

+h3 S(gα1, gα1, Tα1) + h4 S(ftn, ftn, Tα1)
}
.

Now, letting n→∞ in the above inequality, we get

S(Tα1, Tα1, gα1) ≤ h1 S(Tα1, Tα1, Tα1) + h2 S(Tα1, Tα1, Tα1)

+h3 S(gα1, gα1, Tα1) + h4 S(Tα1, Tα1, Tα1)
}

= h3 S(Tα1, Tα1, gα1)

< (h1 + h2 + h3 + h4)S(Tα1, Tα1, gα1),

which is a contradiction, since by hypothesis h1 + h2 + h3 + h4 < 1. Therefore, we
conclude that S(Tα1, Tα1, gα1) = 0 and hence it follows that gα1 = Tα1. Now, we
show that fα2 = Rα2. For each n ∈ N, from equation (4.2), we have

S(fα2, fα2, gwn) ≤ h1 S(Rα2, Rα2, Twn) + h2 S(fα2, fα2, Rα2)

+h3 S(gwn, gwn, Twn) + h4 S(fα2, fα2, Twn).

Now, letting n→∞ in the above inequality and using Lemma 2.1 and (S1), we get

S(fα2, fα2, λ) ≤ h1 S(Rα2, Rα2, λ) + h2 S(fα2, fα2, Rα2)

+h3 S(λ, λ, λ) + h4 S(fα2, fα2, Twn)
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= h1 S(λ, λ, λ) + h2 S(fα2, fα2, λ)

+h3 S(λ, λ, λ) + h4 S(fα2, fα2, λ)

= h1(0) + h3(0) + (h2 + h4)S(fα2, fα2, λ)

= (h2 + h4)S(fα2, fα2, λ)

< (h1 + h2 + h3 + h4)S(fα2, fα2, λ),

which is a contradiction, since by hypothesis h1 + h2 + h3 + h4 < 1. Hence, we
conclude that S(fα2, fα2, λ) = 0 and thus it follows that fα2 = λ, so fα2 =
Rα2 = gα1 = Tα1 = λ. Since the pair (f,R) is weakly compatible and fα2 = Rα2

implies that fRα2 = Rfα2 and hence fλ = Rλ. Now since the pair (g, T ) is weakly
compatible and gα1 = Tα1 implies that Tgα1 = gTα1 and hence gλ = Tλ.

Now, we show that λ is a common fixed point of f and R. For this, we consider

S(fλ, fλ, gα1) ≤ h1 S(Rλ,Rλ, Tα1) + h2 S(fλ, fλ,Rλ)

+h3 S(gα1, gα1, Tα1) + h4 S(fλ, fλ, Tα1)

= h1 S(fλ, fλ, λ) + h2 S(fλ, fλ, fλ)

+h3 S(gα1, gα1, gα1) + h4 S(fλ, fλ, λ).

Using the condition (S1) and λ = gα1 in the above inequality, we obtain

S(fλ, fλ, gα1) ≤ (h1 + h4)S(fλ, fλ, gα1)

< (h1 + h2 + h3 + h4)S(fλ, fλ, gα1),

which is a contradiction, since by hypothesis h1 + h2 + h3 + h4 < 1. Hence, we
conclude that S(fλ, fλ, gα1) = 0. This will imply that gα1 = fλ and hence fλ =
Rλ = λ. This shows that λ is a common fixed point of f and R.

Now, we show that λ is a common fixed point of g and T . For this, we consider
the inequality (4.2) and using Lemma 2.1, we have

S(fα2, fα2, gλ) ≤ h1 S(Rα2, Rα2, Tλ) + h2 S(fα2, fα2, Rα2)

+h3 S(gλ, gλ, Tλ) + h4 S(fα2, fα2, Tλ)

= h1 S(λ, λ, gλ) + h2 S(fα2, fα2, fα2)

+h3 S(gλ, gλ, gλ) + h4 S(λ, λ, gλ).

Using the condition (S1) and λ = fα2 in the above inequality, we obtain

S(λ, λ, gλ) ≤ (h1 + h4)S(λ, λ, gλ)

< (h1 + h2 + h3 + h4)S(λ, λ, gλ),

which is a contradiction, since by hypothesis h1 + h2 + h3 + h4 < 1. Hence, we
conclude that S(λ, λ, gλ) = 0. This will imply that gλ = λ and hence gλ = Tλ = λ.
This shows that λ is a common fixed point of g and T . Hence λ is a common fixed
point of f , g, R and T .
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Now, we show the uniqueness of the common fixed point. Let us assume that µ
is another common fixed point of f , g, R and T such that fµ = gµ = Rµ = Tµ = µ
with µ 6= λ. Again from the given inequality (4.2), we have

S(λ, λ, µ) = S(fλ, fλ, gµ)

≤ h1 S(Rλ,Rλ, Tµ) + h2 S(fλ, fλ,Rλ)

+h3 S(gµ, gµ, Tµ) + h4 S(fλ, fλ, Tµ)

= h1 S(λ, λ, µ) + h2 S(λ, λ, λ)

+h3 S(µ, µ, µ) + h4 S(λ, λ, µ).

Using the condition (S1) in the above inequality, we get

S(λ, λ, µ) ≤ (h1 + h4)S(λ, λ, µ)

< (h1 + h2 + h3 + h4)S(λ, λ, µ),

which is a contradiction, since by hypothesis h1 + h2 + h3 + h4 < 1. Hence, we
conclude that S(λ, λ, µ) = 0, that is, λ = µ. Thus, the common fixed point of f , g,
R and T is unique. This completes the proof.

Remark 4.1. Completeness of the space X is relaxed in Theorem 4.1 and Theorem 4.2.

The following examples illustrate Theorem 3.1, Theorem 3.2, Theorem 4.1 and
Theorem 4.2 respectively.

Example 4.1. Let X = [0, 1]. We define the function S:X3 → [0,∞) by

S(x, y, z) =

{
0, if x=y=z,

max{x, y, z}, if otherwise,

for all x, y, z ∈ X, then S is an S-metric on X. Define four self-maps f, g,R.T :X → X
on X by f(x) = x

4
, g(x) = x

4
, T (x) = x and R(x) = x

2
for all x ∈ X. Let x, y ∈ X. Now

consider the following cases:

Case I. Let x < y < z. Then we have

S(fx, fy, gz) = S

(
x

4
,
y

4
,
z

4

)
= max

{
x

4
,
y

4
,
z

4

}
=

z

4
,

S(Rx,Ry, Tz) = S

(
x

2
,
y

2
, z

)
= max

{
x

2
,
y

2
, z

}
= z,

S(fx, fx,Rx) = S

(
x

4
,
x

4
,
x

2

)
= max

{
x

4
,
x

4
,
x

2

}
=

x

2
,

S(gz, gz, Tz) = S

(
z

4
,
z

4
, z

)
= max

{
z

4
,
z

4
, z

}
= z,

S(fy, fy, Tz) = S

(
y

4
,
y

4
, z

)
= max

{
y

4
,
y

4
, z

}
= z.
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Now using inequality (3.1), we have

S(fx, fy, gz) =
z

4

≤ r max

{
S(Rx,Ry, Tz), S(fx, fx,Rx),

S(gz, gz, Tz), S(fy, fy, Tz)

}
= r max{z, x

2
, z, z} = r z,

that is,

1

4
≤ r.

If we take 1
4
≤ r < 1, then we have 0 < r < 1.

Now using inequality (3.4) of Theorem 3.2, we have

S(fx, fy, gz) =
z

4
≤ h1 S(Rx,Ry, Tz) + h2 S(fx, fx,Rx)

+h3 S(gz, gz, Tz) + h4 S(fy, fy, Tz)

= h1 z + h2
x

2
+ h3 z + h4 z.

Putting x = 0 and z = 1 in the above inequality, we obtain

1

4
≤ h1 + h3 + h4.

The above inequality is satisfied for (i) h1 = 1
4

and h2 = h3 = h4 = 0, (ii) h1 = 1
5
, h3 = 1

5

and h2 = h4 = 0, (iii) h1 = 1
8
, h3 = 1

8
, h4 = 1

4
and h2 = 0 with h1 + h2 + h3 + h4 < 1

etc., that is, it satisfies for hi ∈ [0, 1) for i = 1, 2, 3, 4 with h1 + h2 + h3 + h4 < 1.

Case II. Note that f(X) = [0, 1
4
], g(X) = [0, 1

4
], T (X) = [0, 1] = X and R(X) = [0, 1

2
].

This will imply that f(X) ⊂ R(X) and g(X) ⊂ T (X).

Case III. Now we show that the pairs (f,R) and (g, T ) are weakly compatible. For
this, suppose that Tx = gx for x ∈ X. Then x = x

4
. It follows that x = 0. Now, we

consider Tg(x) = T (gx) = T (0) = 0 and gT (x) = g(Tx) = g(0) = 0. Thus, the pair (g, T )
is weakly compatible. Now, let fx = Rx for x ∈ X. This implies that x

4
= x

2
and hence

x = 0. Now, we consider fR(x) = f(Rx) = f(0) = 0 and Rf(x) = R(fx) = R(0) = 0. It
follows that the pair (f,R) is also weakly compatible.

Case IV. Now we show that the pairs (g, T ) satisfies (E.A) property. For this, consider
the sequence {tn} = { 1

2n+1
}n≥1. Clearly the sequence {tn} is in X and note that Ttn =

tn = 1
2n+1

and gtn = tn
4

= 1
4(2n+1)

for all n ∈ N. This will imply that

S(Ttn, T tn, 0) = S

(
1

2n + 1
,

1

2n + 1
, 0

)
= max

{
1

2n + 1
,

1

2n + 1
, 0

}
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=
1

2n + 1
→ 0 as n→∞.

This shows that Ttn → 0 as n→∞.

Also note that

S(gtn, gtn, 0) = S

(
1

4(2n + 1)
,

1

4(2n + 1)
, 0

)
= max

{
1

4(2n + 1)
,

1

4(2n + 1)
, 0

}
=

1

4(2n + 1)
→ 0 as n→∞.

This shows that gtn → 0 as n→∞.

Thus there exists a sequence {tn} in X such that gtn → 0 and Ttn → 0 as n → ∞.
Hence the pair (g, T ) satisfies (E.A) property.

Similarly, we can show that the pair (f,R) also satisfies (E.A) property.

Case V. As f(X) = [0, 1
4
], then f(X) is a complete subspace of X.

Thus all the conditions of Theorem 3.1 and Theorem 3.2 are satisfied and hence the
mappings f , g, R and T have a unique common fixed point, namely x = 0 ∈ X.

Example 4.2. Let X = [0, 4]. We define the function S:X3 → [0,∞) by

S(x, y, z) =

{
0, if x=y=z,

max{x, y, z}, if otherwise,

for all x, y, z ∈ X, then S is an S-metric on X. Define four self-maps f, g,R.T :X → X on
X by f(x) = x

2
, g(x) = x

2
, T (x) = x and R(x) = x for all x ∈ X. Let x, y, z ∈ X. Now

consider the following cases:

Case I. Let x < y < z. Then we have

S(fx, fy, gz) = S

(
x

2
,
y

2
,
z

2

)
= max

{
x

2
,
y

2
,
z

2

}
=

z

2
,

S(Rx,Ry, Tz) = S

(
x, y, z

)
= max

{
x, y, z

}
= z,

S(fx, fx,Rx) = S

(
x

2
,
x

2
, x

)
= max

{
x

2
,
x

2
, x

}
= x,

S(gz, gz, Tz) = S

(
z

2
,
z

2
, z

)
= max

{
z

2
,
z

2
, z

}
= z,

S(fy, fy, Tz) = S

(
y

2
,
y

2
, z

)
= max

{
y

2
,
y

2
, z

}
= z.

Now using inequality (4.1), we have

S(fx, fy, gz) =
z

2

≤ r max

{
S(Rx,Ry, Tz), S(fx, fx,Rx),

S(gz, gz, Tz), S(fy, fy, Tz)

}
= r max{z, x, z, z} = r z,
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that is,

1

2
≤ r.

If we take 1
2
≤ r < 1, then we have 0 < r < 1.

Now using inequality (4.2) of Theorem 4.2, we have

S(fx, fy, gz) =
z

2
≤ h1 S(Rx,Ry, Tz) + h2 S(fx, fx,Rx)

+h3 S(gz, gz, Tz) + h4 S(fy, fy, Tz)

= h1 z + h2 x + h3 z + h4 z.

Putting x = 0 and z = 1 in the above inequality, we obtain

1

2
≤ h1 + h3 + h4.

The above inequality is satisfied for (i) h1 = 1
2

and h2 = h3 = h4 = 0, (ii) h1 = 1
4
, h3 = 1

4

and h2 = h4 = 0, (iii) h1 = 1
5
, h3 = 1

5
, h4 = 1

4
and h2 = 0 with h1 + h2 + h3 + h4 < 1

etc., that is, it satisfies for hi ∈ [0, 1) for i = 1, 2, 3, 4 with h1 + h2 + h3 + h4 < 1.

Case II. Now we show that the pairs (f,R) and (g, T ) satisfy (CLRRT ) property.
For this, we choose the sequences {tn} = { 1

n
}n≥1 and {wn} = { 1

2n+3
}n≥1. Clearly the

sequences {tn} and {wn} are in X. Then we have

S(Rtn, Rtn, 0) = S

(
1

n
,

1

n
, 0

)
= max

{
1

n
,

1

n
, 0

}
=

1

n
→ 0 as n→∞.

This shows that Rtn → 0 as n→∞.

Also we observe that

S(ftn, ftn, 0) = S

(
1

2n
,

1

2n
, 0

)
= max

{
1

2n
,

1

2n
, 0

}
=

1

2n
→ 0 as n→∞.

This shows that ftn → 0 as n→∞.

Similarly, we obtain that

S(gwn, gwn, 0) = S

(
1

2(2n + 3)
,

1

2(2n + 3)
, 0

)
= max

{
1

2(2n + 3)
,

1

2(2n + 3)
, 0

}
=

1

2(2n + 3)
→ 0 as n→∞.

This shows that gwn → 0 as n→∞.

Also we observe that

S(Twn, Twn, 0) = S

(
1

2n + 3
,

1

2n + 3
, 0

)
= max

{
1

2n + 3
,

1

2n + 3
, 0

}
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=
1

2n + 3
→ 0 as n→∞.

This shows that Twn → 0 as n→∞.

Since R(0) = 0 = T (0), we have 0 ∈ R(X) ∩ T (X). Therefore there exist sequences
{tn} and {wn} in X such that

lim
n→∞

R(tn) = lim
n→∞

f(tn) = lim
n→∞

T (wn) = lim
n→∞

g(wn).

Therefore the pairs (f,R) and (g, T ) satisfy (CLRRT ) property.

Case III. Now we show that the pairs (f,R) and (g, T ) are weakly compatible. For
this, suppose that Tx = gx for x ∈ X. Then x = x

2
. It follows that x = 0. Now, we

consider Tg(x) = T (gx) = T (0) = 0 and gT (x) = g(Tx) = g(0) = 0. Thus, the pair (g, T )
is weakly compatible. Now, let fx = Rx for x ∈ X. This implies that x

2
= x and hence

x = 0. Now, we consider fR(x) = f(Rx) = f(0) = 0 and Rf(x) = R(fx) = R(0) = 0. It
follows that the pair (f,R) is also weakly compatible.

Thus all the hypothesis of Theorem 4.1 and Theorem 4.2 are satisfied and hence the
mappings f , g, R and T have a unique common fixed point, namely x = 0 ∈ X.

5. Well-Posedness Theorem

In this section, we prove well-posedness of fixed point problem of mapping in
Corollary 3.4.

Definition 5.1. ([15]) Let (X, d) be a metric space and let T :X → X be a map-
ping. The fixed point problem of T is said to be well posed if:

(1) T has a unique fixed point x0,

(2) for any sequence {xn} ∈ X with limn→∞ d(Txn, xn) = 0, we have limn→∞
d(xn, x0) = 0.

Now, we define well-posedness of fixed point in S-metric spaces.

Let FP (f,X) denote a fixed point problem of mapping f and let F (f) denote
the set of all fixed points of f .

Definition 5.2. Let (X,S) be an S-metric space and let f :X → X be a mapping.
FP (f,X) is called well posed if:

(1) f has a unique fixed point x0,

(2) for any sequence {xn} in X with

lim
n→∞

S(fxn, fxn, xn) = 0 = lim
n→∞

S(xn, xn, fxn),

implies

lim
n→∞

S(x0, x0, xn) = 0 = lim
n→∞

S(xn, xn, x0).
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Theorem 5.1. Let f :X → X be a self mapping as in Corollary 3.4. Then the
fixed point problem for f is well posed.

Proof. From Corollary 3.4, we know that f has a unique fixed point v = fv ∈ X.
Let {xn} ⊂ X be such that limn→∞ S(fxn, fxn, xn) = 0 = limn→∞ S(xn, xn, fxn).
Then, we have

S(xn, xn, v) ≤ 2S(xn, xn, fxn) + S(v, v, fxn)

= 2S(xn, xn, fxn) + S(fxn, fxn, fv)

≤ 2S(xn, xn, fxn) + r max
{
S(xn, xn, v),

S(fxn, fxn, xn), S(fv, fv, v), S(fxn, fxn, v)
}
.

Taking the limit as n→∞ in the above inequality and using (S1) and Lemma 2.1,
we obtain

S(xn, xn, v) ≤ r max
{
S(xn, xn, v), 0, 0, 0

}
= r S(xn, xn, v)

< S(xn, xn, v),

which is a contraction, since 0 < r < 1. Hence S(xn, xn, v)→ 0 as n→∞ which is
equivalent to saying that xn → v as n→∞. Thus, the fixed point problem of f is
well-posed. This completes the proof.

6. Conclusion

In this paper, we prove some unique common fixed point theorems in the setting
of S-metric spaces with the help of weakly compatible condition, (E.A) property
and (CLRRT ) property of the pair of mappings and give some corollaries of the
main results. We validate our results by illustrative examples. We have also proved
well-posedness of a fixed point problem. Our results extend, generalize and improve
several results from the existing literature (see, for example, [12], [16], [17], [18] and
many others).
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14. N. Y. Özgür and N. Tas: Some new contractive mappings on S-metric spaces
and their relationships with the mapping (S25), Math. Sci. 11(7) (2017), 7–16.

15. S. Reich and A. J. Zaslavski: Well posedness of fixed point problem, Far East
J. Math. special volume part III (2001), 393–401.

16. S. Sedghi, N. Shobe and A. Aliouche: A generalization of fixed point theorems
in S-metric spaces, Mat. Vesnik 64(3) (2012), 258–266.

17. S. Sedghi and N. V. Dung: Fixed point theorems on S-metric spaces, Mat.
Vesnik 66(1) (2014), 113–124.

18. S. Sedghi, M. M. Rezaee, T. Dosenović and S. Radenović: Common fixed
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