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Abstract. In this paper, we generalize the notion of Bertrand curve in Euclidean
3-space analogously as in Minkowski 3-space. According to this generalization, the
Bertrand curve conditions of a given space curve are obtained and the relations between
Frenet vectors and curvature functions are revealed. A curve that meets the given
condition is constructed as an example.
Keywords: Bertrand curve, Euclidean 3-space, Frenet vectors, curvature functions.

1. Introduction

In the theory of curves in Euclidean space, one of the important and interesting
problems is characterization of a regular curve. In the solution of the problem, the
curvature functions k1 (or κ) and k2 (or τ) of a regular curve have an effective role.
For example: if k1 = 0 = k2, then the curve is a geodesic or if k1 =constant 6= 0
and k2 = 0, then the curve is a circle with radius 1/k1, etc. Another way in the
solution of the problem is the relationship between the Frenet vectors and Frenet
planes of the curves [6, 10]. An interesting example of relations between Frenet
vectors belonging to pairs of space curves is Bertrand curves.

A Bertrand curve is a curve in the Euclidean space such that its principal normal
is the principal normal of the second curve [2, 12]. The study of this kind of curves
has been extended to many other ambient spaces. In [9], Pears studied this problem
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for curves in the n-dimensional Euclidean space En, n > 3, and showed that a
Bertrand curve in En must belong to a three-dimensional subspace E3 ⊂ En. This
result is restated by Matsuda and Yorozu [8]. They proved that there was not
any special Bertrand curves in En (n > 3) and defined a new kind, which is called
(1, 3)-type Bertrand curves in 4-dimensional Euclidean space. Bertrand curves and
their characterizations were studied by many researchers in Minkowski 3-space and
Minkowski space-time [1, 3, 5] as well as in Euclidean space. In addition, (1, 3)-type
Bertrand curves were studied in semi-Euclidean 4-space with index 2 [11].

A new generalization for Bertrand curves is given by Zhang and Pei in 2020
[13]. In this study, instead of classical condition for Bertrand curves, generalized
Bertrand curves are defined such that the principal normal of a given curve belongs
to a normal space of another curve.

In this paper, we generalize the notion of Bertrand curve in Euclidean 3-space
analogously as in Minkowski 3-space. According to this generalization, the Bertrand
curve conditions of a given space curve are obtained and the relations between Frenet
vectors and curvature functions are revealed. An example of a curve is constructed
that satisfies the given conditions.

2. Preliminaries

In this section, we give some well known results from Euclidean geometry [4, 7]. Let
E3 be the 3-dimensional Euclidean space equipped with the inner product 〈X,Y 〉 =
x1y1 + x2y2 + x3y3, where X = (x1, x2, x3) and Y = (y1, y2, y3) ∈ E3. The norm of
X is given by ‖X‖ =

√
〈X,X〉 and the vector product is given by

X × Y =

 e1 e2 e3
x1 x2 x3
y1 y2 y3


where {e1, e2, e3} is the canonical basis of E3.

Let I be an interval of R and let γ : I → E3 be a regular space curve, that
is, γ

′
(t) 6= 0 for all t ∈ I, where γ

′
(t) = dγ

dt (t). We say that γ is nondegenerate

condition if γ
′
(t) × γ′′

(t) 6= 0 for all t ∈ I . If we take the arc-length parameter s,

that is,
∥∥∥γ′

(s)
∥∥∥ = 1 for all s, then the tangent vector ,the principal normal vector

,and the binormal vector are given by

T (s) = γ
′
(s),

N(s) = γ
′′
(s)

‖γ′′ (s)‖ ,
B(s) = T (s)×N(s)

where γ
′
(s) = dγ

ds (s). Then {T (s), N(s), B(s)} is a moving frame of γ(s) and we
have the Frenet-Serret formula:
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(2.1)

 T ′

N ′

B′

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T
N
B


where

κ(s) =
∥∥∥γ′′

(s)
∥∥∥ ,

τ(s) =
det
(
γ

′
(s), γ

′′
(s), γ

′′′
(s)
)

κ2(s)
.

If we take general parameter t ,then the tangent vector ,the principal normal
vector and the binormal vector are given by

T (t) = γ̇(t)
‖γ̇(t)‖ ,

N(t) = B(t)× T (t),

B(t) = γ̇(t)×γ̈(t)
‖γ̇(t)×γ̈(t)‖

where γ̇(t) = dγ
dt (t). Then {T (t), N(t), B(t)} is a moving frame of γ(t) and we have

the Frenet-Serret formula:

(2.2)

 Ṫ (t)

Ṅ(t)

Ḃ(t)

 =

 0 ‖γ̇(t)‖κ(t) 0
−‖γ̇(t)‖κ(t) 0 ‖γ̇(t)‖ τ(t)

0 −‖γ̇(t)‖ τ(t) 0

 T (t)
N(t)
B(t)


where

κ(t) =
| γ̇(t)× γ̈(t) |
| γ̇(t) |3

,

τ(t) =
det (γ̇(t), γ̈(t),

...
γ (t))

| γ̇(t)× γ̈(t) |2
.

3. Generalized Bertrand curves in Euclidean 3-space

In this section, generalized Bertrand curve concept given by Zhang and Pein (see
[13]) Minkowski 3-space will be defined in 3-dimensional Euclidean space E3and
generalized Bertrand curve conditions will be obtained for a curve in this space.

Definition 3.1. Let α(s) and α∗(s∗) be two curves in 3-dimensional Euclidean
space. If the principal normal N(s) of α(s) lies in the normal plane of α∗(s∗) and
the angle between N(s) and N∗(s∗) is θ at the corresponding points, then we call
α(s) a generalized Bertrand curve, α∗(s∗) is a generalized Bertrand mate of α(s).
Also (α(s), α∗(s∗)) is called a pair of generalized Bertrand curves.
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According to the above definition if α(s) is a generalized Bertrand Curve in E3

then the following holds :

(i) N = cos θN∗(s∗) + sin θB∗(s∗),
(ii) 〈N(s), N∗(s∗)〉 = cos θ = constant

where N∗ and B∗ are principal normal and binormal vectors of α∗.

Theorem 3.1. Let α(s) be a generalized Bertrand curve in Euclidean 3-space,
parametrized by its arc-length s and α∗(s∗) be the generalized Bertrand mate curve
of α(s) in E3such that the principal normal N(s) of α(s) lies in the normal plane
spanned by {N∗, B∗} and the angle between N and N∗ is θ at the corresponding
points. The curvatures and Frenet vector of α and α∗are related as follows:

T ∗ =

(
1− λκ
f ′

)
T +

λτ

f ′ B,

N∗ = eT + cos θN + hB,

B∗ =
D1√

D2
1 +D2

2 +D2
3

T +
D2√

D2
1 +D2

2 +D2
3

N +
D3√

D2
1 +D2

2 +D2
3

B

and

κ∗(s∗) =
κ− λ

(
κ2 + τ2

)[
(1− λκ)

2
+ λ2τ2

]
cos θ

, τ∗(s∗) =

√
D2

1 +D2
2 +D2

3

f ′

where cos θ 6= 0 and λ ∈ R0,
(
f

′
)2

= (1− λκ)2 + λ2τ2 ,

e =

− cos θ

(
λκ

′
+ f

′′

f ′ (1− λκ)

)
κ− λ (κ2 + τ2)

, h =

cos θ

(
λτ

′
+ f

′′

f ′ λτ

)
κ− λ (κ2 + τ2)

and

D1 = e
′ − κ cos θ + κ∗ (1− λκ) , D2 = eκ− hτ, D3 = τ cos θ + h

′
+ κ∗λτ.

Proof. Assume that there exists the generalized Bertrand curve α in E3 and its α∗

generalized Bertrand mate α∗ in E3.Then α∗can be parametrized by

(3.1) α∗(s∗) = α(s) + λ(s)N(s)

where s∗ = s∗(s). Differentiating equation (3.1) with respect to s and using
Frenet frame (2.1), we get

T ∗f ′ = (1− λκ)T + λ
′
N + λτB.

By taking the inner product of the last relation by N = cos θN∗ + sin θB∗, we
have λ′ = 0.Substituting this in the last relation, we find
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(3.2) T ∗f ′ = (1− λκ)T − λτB.

From equation (3.2), we obtain

(3.3) 〈T ∗f
′
, T ∗f

′
〉 = (f ′)

2
= (1 + λκ)2 + (λτ)

2
.

Differentianting equation (3.2) with respect to s and using Frenet frame (3.2),
we obtain

(3.4) κ∗N∗(f
′
)2 + f

′′
T ∗ = (−λκ

′
)T + (κ− λκ2 − λτ2)N + (λτ

′
)B.

By taking the inner product of the last relation with N = cos θN∗+ sin θB∗, we
get

(3.5) κ∗(f
′
)2 cos θ = κ− λ(κ2 + τ2).

Then, by using equation (3.3), we find

(3.6) κ∗ =
κ− λ(κ2 + τ2)[

(1− λκ)
2

+ λ2τ2
]

cos θ
.

Putting the equations (3.2) and (3.6) in (3.4), we get

(3.7) N∗ = eT + cos θN + hB

where, e =

− cos θ

(
λκ

′
+ f

′′

f ′ (1− λκ)

)
κ− λ (κ2 + τ2)

and h =

cos θ

(
λτ

′
+ f

′′

f ′ λτ

)
κ− λ (κ2 + τ2)

.

Differentianting (3.7) with respect to s and using Frenet frame (2.1), we obtain

(3.8) (−κ∗T ∗ + τ∗B∗)f
′

= (e
′
− κ cos θ)T + (eκ− hτ)N + (τ cos θ + h

′
)B.

By using (3.2) and (3.8), we get

(3.9) τ∗B∗ =
D1

f ′ T +
D2

f ′ N +
D3

f ′ B

where
D1 = e

′ − κ cos θ + κ∗ (1− λκ) ,
D2 = eκ− hτ,
D3 = τ cos θ + h

′
+ κ∗λτ.
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By taking the inner product of equation (3.9) with itself, we get

(3.10) T ∗ =

√
D2

1 +D2
2 +D2

3

f ′ .

By using equation (3.10) in equation (3.9), we obtain

(3.11) B∗ =
D1√

D2
1 +D2

2 +D2
3

T +
D2√

D2
1 +D2

2 +D2
3

N +
D3√

D2
1 +D2

2 +D2
3

B.

This completes the proof.

Theorem 3.2. Let α be a unit speed curve with N principal normal vector in E3.
α∗ be a regular curve with N∗ principal normal vector, then (α, α∗) is a pair of
generalized Bertrand curve if and only if the curvature κ(s) and torsion τ(s) of
α(s) satisfy;

(3.12)

κ−λ(κ2+τ2) = cos θ

{[
κ− λ(κ2 + τ2)

]2 [
λ2τ2 + (1− λκ)2

]
+
[
λτ

′ − λ2(κτ
′ − κ′

τ)
]2} 1

2

[(1− λκ)2 + λ2τ2]
1
2

,

where θ is the angle between the vectors N(s) , N∗(s∗) and λ is a non-zero

constant , κ
′

=
dκ

ds
and τ

′
=
dτ

ds
.

Proof. We assume that (α, α∗) is a pair of generalized Bertrand curve in E3, then
we have

(3.13) α∗(s∗) = α(s) + λ(s)N(s).

From Theorem 1, we get

(3.14) T ∗f ′ = (1− λκ)T + λτB

and we have known,

(3.15) N = cos θN∗ + sin θB∗.

Differentiating (3.14) with respect to s and using Frenet frame (2.1), we find

(3.16) −κT + τB = −κ∗ cos θT ∗f
′
− τ∗ sin θN∗f

′
+ τ∗ cos θB∗f

′
.
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By inner product (3.16) with (3.14), we reached

(3.17) κ− λ(κ2 + τ2) = κ∗ cos θ(f
′
)2.

The curvature κ∗(s∗) of the curve α∗(s∗) is

κ∗(s∗) =

∥∥∥α∗′ × α∗′′∥∥∥
‖α∗′‖3

where, α∗
′

=
dα∗

ds∗
ds∗

ds
=
dα∗

ds
,
∥∥∥α∗′∥∥∥ =

∥∥∥∥dα∗ds
∥∥∥∥ =

∥∥∥f ′
∥∥∥.

By using the last relations in (3.17), we easily get

(3.18) κ− λ(κ2 + τ2) =

∥∥∥α∗′ × α∗′′∥∥∥
‖α∗′‖

cos θ.

Also we have

α∗
′

= (1− λκ)T + λτB

and differentiating the last relation with respect to s, we get

α∗
′′

= λκ
′
T +

[
κ− (κ2 + τ2)

]
N + λτ

′
B.

Then if we calculate
∥∥∥α∗′∥∥∥ and

∥∥∥α∗′ × α∗′′∥∥∥, we get

(3.19)

∥∥∥α∗′∥∥∥ =
[
(1− λκ)2 + λ2τ2

] 1
2 ,∥∥∥α∗′ × α∗′′∥∥∥ =

{
λ2τ2

[
κ− λ(κ2 + τ2)

]2
+
[
λτ

′ − λ2(κτ
′ − κ′

τ)
]2

+[
(1− λκ)2

[
κ− λ(κ2 + τ2)

]2]} 1
2

.

We put equations (3.19) in (3.18), we get equation (3.12) .

Conversely,we will prove that if κ(s) and τ(s) satisfy equation (3.12), the prin-
cipal normal and binormal of α∗ generated by the equation

(3.20) α∗(s∗) = α(s) + λ(s)N(s)

are coplanar with the principal normal of α(s), where s∗ = s∗(s). The angle
between N and N∗ is θ in equation (3.12), we have known that λ is a non-zero
constant. Then from (3.20) differentiating with respect to s we easily get

(3.21) T ∗f ′ = (1− λκ)T + λτB.
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By taking the inner product of equation (3.21) with N , we get

〈T ∗, N〉 = 0

which means that; N is coplanar with N∗ and B∗.

Then we prove that
〈N,N∗〉 = cos θ.

We assume that

(3.22) N = aN∗ + bB∗ a, b ∈ R.

Differentiating equation (3.22) with respect to s, we find

(3.23) −κT + τB = −κ∗aT ∗f
′
− τ∗bN∗f

′
+ τ∗aB∗f

′
.

By taking product equation (3.23) with equation (3.21), we get

(3.24) κ− λ(κ2 + τ2) = κ∗a(f
′
)2.

From equation (3.24) and (3.17) we easily obtain cos θ = a.

From equation (3.22) we get

〈N,N∗〉 = a = cos θ.

This completes the proof.

Remark 3.1. In Theorem 2, when θ = 0 ,we have cos θ = 1. Then we have

κ−λ(κ2+τ2) =

{[
κ− λ(κ2 + τ2)

]2 [
λ2τ2 + (1− λκ)2

]
+
[
λτ

′ − λ2(κτ
′ − κ′

τ)
]2} 1

2

[(1− λκ)2 + λ2τ2]
1
2

.

Squaring both sides of this equation, we find[
λτ

′
− λ2(κτ

′
− κ

′
τ)
]

= 0.

Therefore ,
τ

′
(λκ− 1) = λκ

′
τ

dτ

τ
=
d(λκ− 1)

(λκ− 1)
λ1τ + λ2κ = 1

where λ is a constant. The equation λ1τ + λ2κ = 1 is the necessary and sufficient
condition for a curve to be a Bertrand curve in Euclidean 3-space.
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Example 3.1. Let us take θ =
π

4
, λ = 2 and κ = 1 in Theorem 2, then we obtain

τ =
3 tanh

(√
5
2
s
)

√
10 − 4 tanh

(√
5
2
s
)2 . Thus we have generalized Bertrand curve α with curvatures

κ = 1 and τ =
3 tanh

(√
5
2
s
)

√
10 − 4 tanh

(√
5
2
s
)2 in Euclidean 3-space. It is easily check that α is a

Salkowski curve.

Remark 3.2. If we take θ =
π

2
in equation 3.15, we get N = B∗ which means that α is

a Mannheim curve and (α, α∗) is a pair Mannheim curve. Also from Theorem 2, we get
κ = λ

(
κ2 + τ2

)
. This equation also shows that α is a Mannheim curve .

Remark 3.3. We know that curves with constant curvatures (circular helix) are Bertrand
curves. The equation (3.12) satisfies the circular helix if and only if θ = 0 or θ = π
.In this case, circular helices are not generalized by Bertrand curves but only by classical
Bertrand curves.
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