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Abstract. We establish the equivalence of the Riemann-Stieltjes ∆-integral as defined
in [13, 14] in terms of the Darboux sum definition and the Riemann sum definition, and
provide the definition of the Riemann-Stieltjes ∇-integral in terms of the Riemann sum
definition and prove its equivalence with the Riemann-Stieltjes ∇-integral as defined
in [13] in terms of the Darboux sum definition. We establish a few results concerning
finite discontinuity.
Keywords: Riemann-Stieltjes Delta Integral, Riemann-Stieltjes Nabla Integral, Time
Scale.

1. Introduction

The theory of time scale calculus was first introduced in 1988 by the German math-
ematician Stefan Hilger [9].

As seen in his paper, Hilger’s main motivation was the analogy between dis-
crete and continuous analysis and the aim to unify them. The delta derivative
was introduced here [9], and a descriptive sense of the integral (named the Cauchy
Integral) was given. More than a decade after the so-called delta derivative was
formulated, another derivative called the nabla derivative was introduced by Atici
and Guseinov [3], which was previously hinted in the works of Calvin and Bohner
[2], who introduced a so-called alpha derivative which consisted both the delta and
nabla derivative as special cases.

For an excellent introduction to this subject with theoretical developmental sum-
mary and rich history, the reader is referred to the following [5, 6, 9, 10, 12].
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Various integration notions, in their constructive sense, is discussed in literature
including the Riemann-Stieltjes integral on time scales.

The Riemann integral on time scales was formulated by S. Sailer [5, 7], using
the concept of Darboux sum definition of the integral; and by G. Sh. Guseinov and
B. Kaymakçalan [7], using the concept of Riemann sum definition of the integral.
The latter also proved that the two different approaches of the Riemann integral on
time scales are in essence equal [7].

The Riemann-Stieltjes integral on time scales was formulated by S. Sailer [5, 6,
13], using the concept of Darboux sum definition of the integral; and re-investigated
by Dorota Mozyrska et al. [13]. The Riemann sum definition of Riemann-Stieltjes
∆-integral is given in [14] by the same authors.
Other studies related to the Riemann-Stieltjes integral on time scales include in-
equalities and majorization [14], generalization of the integral to deal with discon-
tinuous dynamical equations [4], prove of the Riesz representation theorem on time
scales [11].

In this article, we establish the equivalence of the Riemann-Stieltjes integral de-
fined in terms of the Darboux sum definition and the Riemann sum definition, and
discuss the Riemann-Stieltjes integrability of finite discontinuous functions, consid-
ering three cases. The first case is when the monotone increasing function ψ has
finite points of discontinuity while the bounded function f is continuous at those
points. The second case is when the bounded function f has finite points of discon-
tinuity while the monotone increasing function ψ is continuous at those points. And
finally, the third case is when both bounded function f and monotone increasing
function ψ has a common point of discontinuity.

2. Preliminaries

In this section, we recall a few definitions and results on the theory of time scale
calculus (one may refer [5, 6, 9] for more insight).

A time scale T is any non-empty closed subset of R.

Definition 2.1. [9] Forward Jump Operator: The forward jump operator denoted
by σ is a mapping, σ : T→ T defined by σ(t) = inf

{
r ∈ T : r > t

}
.

Definition 2.2. [9] Backward Jump Operator: The backward jump operator de-
noted by ρ is a mapping, ρ : T→ T defined by ρ(t) = sup

{
r ∈ T : r < t

}
.

Assuming p ≤ q, intervals in T are defined as [5]-
[p, q] = [p, q]T =

{
t ∈ T : p ≤ t ≤ q

}
; (p, q) = (p, q)T =

{
t ∈ T : p < t < q

}
;

[p, q) = [p, q)T =
{
t ∈ T : p ≤ t < q

}
; (p, q] = (p, q]T =

{
t ∈ T : p < t ≤ q

}
.

Throughout the article [p, q], [p, q), (p, q] and (p, q) will denote intervals on T.

Let [p, q] be a closed interval on T such that p < q. Let P be the collection of
all possible partitions of [p, q].
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Below we provide the definition of the Riemann ∆-integral and Riemann ∇-integral.
Before proceeding we first establish a few preliminary information required for the
definition. For the sake of clarity, V ∈ P will denote the partition for the ∆-integral
and W ∈ P will denote the partition for the ∇-integral.

Let V ∈ P, V =
{
p = t0 < t1 < . . . < tn = q

}
, with t0, t1, . . ., tn being the finite

points of division. We consider subintervals of the form [th−1, th), for 1 ≤ h ≤ n,
and from each subinterval we choose ϑh arbitrarily, defined as ϑh ∈ [th−1, th), and
call it the tag point of the respective subinterval.
For V ∈ P, we define a point-interval collection as V̆ =

{(
ϑh, [th−1, th)

)}n
h=1

, and
call it the tagged partition.
We define the mesh of V as mesh-(V) = max1≤h≤n(th− th−1) > 0. For some δ > 0,
Vδ will represent a partition of [p, q] with mesh δ satisfying the property: For each
h = 1, 2, . . . , n we have either- (th − th−1) ≤ δ or (th − th−1) > δ ∧ ρ(th) = th−1.
Hence, V̆δ will mean a tagged partition with mesh δ satisfying the above property.

We proceed to give the definition of Riemann ∆-integral on time scales according
to G. Sh. Guseinov and B. Kaymakçalan [7, 8].

Definition 2.3. [8] Riemann ∆-integral: A function f : [p, q]T → R is Riemann
∆-integrable if there exists a number I ∈ R such that, for any ε > 0 there exists a
δ > 0 such that for any tagged partition V̆δ we have

∣∣∑n
h=1 f(ϑh)(th−th−1)−I

∣∣ < ε.

Here I = R
∫ q
p
f(t)∆t.

Now, let W ∈ P, W =
{
p = t0 < t1 < . . . < tn = q

}
, with t0, t1, . . ., tn

being the finite points of division. We consider subintervals of the form (th−1, th],
for 1 ≤ h ≤ n, and from each subinterval we choose ξh arbitrarily, defined as
ξh ∈ (th−1, th], and call it the tag point of the respective subinterval. For W ∈ P,
we define a point-interval collection as W̆ =

{(
ξh, (th−1, th]

)}n
h=1

, and call it the
tagged partition.
We define the mesh ofW as mesh-(W) =

∣∣W∣∣ = max1≤h≤n(th−th−1) > 0. For some
δ > 0,Wδ will represent a partition of [p, q] with mesh δ satisfying the property: For
each h = 1, 2, . . . , n we have either- (th−th−1) ≤ δ or (th−th−1) > δ∧th = σ(th−1).
Hence, W̆δ will mean a tagged partition with mesh δ satisfying the above property.

We proceed to give the definition of Riemann∇-integral on time scales according
to G. Sh. Guseinov and B. Kaymakçalan [7, 8].

Definition 2.4. [8] Riemann ∇-integral: A function f : [p, q]T → R is Riemann
∇-integrable if there exists a number I ∈ R such that, for any ε > 0 there exists a
δ > 0 such that for any tagged partition W̆δ we have

∣∣∑n
h=1 f(ξh)(th−th−1)−I

∣∣ < ε.

Here I = R
∫ q
p
f(t)∇t.

3. Riemann-Stieltjes integral on time scales

We, again, establish a few preliminary information followed by the definition of the
Riemann-Stieltjes ∆-integral and the Riemann-Stieltjes ∇-integral.
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Given V ∈ P, V =
{
p = t0 < t1 < . . . < tn = q

}
, with t0, t1, . . ., tn being the

finite points of division. Let ψ be a real-valued monotone increasing function on
[p, q]. Then for partition V of [p, q] we define ψ(V) =

{
ψ(p) = ψ(t0) < ψ(t1) < . . . <

ψ(tn) = ψ(q)
}

and 4ψh = ψ(th)−ψ(th−1). (Note that unless mentioned otherwise,
f will be considered a bounded function and ψ will be considered a monotone
increasing function on [p, q]). Also for the ∆-integral we consider subintervals of
the form [th−1, th).

We now proceed to give the definition of the Riemann-Stieltjes ∆-integral using
the Darboux sum definition (which we will call the Darboux-Stieltjes ∆-integral);
and using the Riemann sum definition (which we will call the Riemann-Stieltjes
∆-integral) on time scales according to Dorota Mozyrska et al. [13, 14], and we
prove the equivalence of these two definitions.

Considering subintervals of the form [th−1, th), we define-
D = sup

{
f(t) : t ∈ [p, q)

}
; d = inf

{
f(t) : t ∈ [p, q)

}
; Dh = sup

{
f(t) : t ∈

[th−1, th)
}

; and dh = inf
{
f(t) : t ∈ [th−1, th)

}
.

The upper Darboux-Stieltjes ∆-sum of f with respect to partition V, denoted by
U∆(V, f, ψ) is defined by U∆(V, f, ψ) =

∑n
h=1Dh

[
ψ(th)− ψ(th−1)

]
.

The lower Darboux-Stieltjes ∆-sum of f with respect to partition V, denoted by
L∆(V, f, ψ) is defined by L∆(V, f, ψ) =

∑n
h=1 dh

[
ψ(th)− ψ(th−1)

]
.

The upper Darboux-Stieltjes ∆-integral from p to q with respect to ψ is defined as

U

∫ q

p

f(t)∆ψ(t) = inf
{
U∆(V, f, ψ) : V ∈ P

}
.

The lower Darboux-Stieltjes ∆-integral from p to q with respect to ψ is defined as

L

∫ q

p

f(t)∆ψ(t) = sup
{
L∆(V, f, ψ) : V ∈ P

}
.

Definition 3.1. [13] Darboux-Stieltjes ∆-integral : Let function f : [p, q]T → R
be a bounded function and let ψ : [p, q]T → R be a monotone increasing func-
tion, then f is said to be Darboux-Stieltjes ∆-integral with respect to ψ on [p, q]
provided U

∫ q
p
f(t)∆ψ(t) = L

∫ q
p
f(t)∆ψ(t), and the common value denoted by

DS
∫ q
p
f(t)∆ψ(t) is called the Darboux-Stieltjes ∆-integral of f with respect to

ψ on [p, q].

Now for the Riemann sum definition- for each subinterval of the form [th−1, th), for
1 ≤ h ≤ n, we choose ϑh arbitrarily, defined as ϑh ∈ [th−1, th), and call it the tag
point of the respective subinterval. As defined above, for V ∈ P, we define a point-
interval collection as V̆ =

{(
ϑh, [th−1, th)

)}n
h=1

, and call it the tagged partition.
We define the mesh of V as mesh-(V) = max1≤h≤n(th− th−1) > 0. For some δ > 0,
Vδ will represent a partition of [p, q] with mesh δ satisfying the property: For each
h = 1, 2, . . . , n we have either- (th − th−1) ≤ δ or (th − th−1) > δ ∧ ρ(th) = th−1.
Hence, V̆δ will mean a tagged partition with mesh δ satisfying the above property.

Definition 3.2. [14] Riemann-Stieltjes ∆-integral : Let function f : [p, q]T → R
be a bounded function and let ψ : [p, q]T → R be a monotone increasing function.
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Then function f with respect to ψ on [p, q] is said to be Riemann-Stieltjes ∆-
integrable if there exists a number I ∈ R such that, for any ε > 0 there exists a
δ > 0, such that for any tagged partition V̆δ ∈ P we have

∣∣RS − I∣∣ < ε. Here

I = RS
∫ q
p
f(t)∆ψ(t) and RS =

∑n
h=1 f(ϑh)

[
ψ(th)− ψ(th−1)

]
.

The set of all Riemann-Stieltjes ∆-integrable functions on [p, q] will be denoted by
RS∆[p, q].

Remark 3.1. Taking ψ(t) = t we see that the Riemann-Steiltjes ∆-integral coincides
with the Riemann ∆-integral.

Cases when T = R and when T = Z-

1. When T = R, the Riemann-Stieltjes ∆-integral coincides with the usual
Riemann-Stieltjes integral in R.

2. When T = Z,

DS

∫ q

p

f(t)∆ψ(t) = RS

∫ q

p

f(t)∆ψ(t) =

n∑
h=1

f(th)
(
ψ(th)− ψ(th−1)

)
=

q∑
m=p+1

f(m)
(
ψ(m)− ψ(m− 1)

)
.

Theorem 3.1. If f ∈ RS∆[p, q], then the value of integral, I, is unique.

Proof. Let us assume that f with respect to ψ has two integral values, say I
′

and

I
′′
, both satisfy the definition and let ε > 0.

Then, there exists δ′ε
2
> 0 such that for any tagged partition V̆δ′ε

2

, the respective

Riemann-Stieltjes ∆-sum, RS
′

satisfies
∣∣RS′ − I ′∣∣ < ε

2 .

Also, there exists δ′′ε
2
> 0 such that for any tagged partition V̆δ′′ε

2

, the respective

Riemann-Stieltjes ∆-sum, RS
′′

satisfies
∣∣RS′′ − I ′′∣∣ < ε

2 .

Now, let δε = min
{
δ′ε

2
, δ′′ε

2

}
> 0 and let V̆δε be the tagged partition. Since length of

the partition of V̆δε is lesser or equal to the length of the partitions of V̆δ′ε
2

and V̆δ′′ε
2

,

thus taking RS to be the respective Riemann-Stieltjes ∆-sum we have
∣∣RS−I ′∣∣ < ε

2

and
∣∣RS − I ′′∣∣ < ε

2 , whence it follows from triangle inequality that,∣∣I ′ − I ′′∣∣ =
∣∣I ′ −RS +RS − I ′′

∣∣
≤

∣∣I ′ −RS∣∣+
∣∣RS − I ′′∣∣ < ε.

Since ε > 0 is arbitrary, we conclude that I
′

= I
′′
.
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Theorem 3.2. A bounded function f with respect to a monotone increasing func-
tion ψ over [p, q] is Riemann-Stieltjes ∆-integrable if and only if it is Darboux-
Stieltjes ∆-integrable.

Proof. First, we suppose that f with respect to ψ is Darboux-Stieltjes ∆-integrable
from p to q i.e., U

∫ q
p
f(t)∆ψ(t) = DS

∫ q
p
f(t)∆ψ(t) = L

∫ q
p
f(t)∆ψ(t).

Let us choose an arbitrary ε > 0 and a respective δ > 0 such that the Cauchy
Criterion of integrability holds i.e., ∀ Vδ ∈ P implies,

U∆(Vδ, f, ψ)− L∆(Vδ, f, ψ) < ε.(3.1)

We are to show that, ∣∣∣∣RS −DS ∫ q

p

f(t)∆ψ(t)

∣∣∣∣ < ε,(3.2)

for every Riemann-Stieltjes ∆-sum ,RS, with partition Vδ ∈ P.
From Eq. (3.1) we have,

U∆(Vδ, f, ψ) < ε+ L∆(Vδ, f, ψ) ≤ ε+ L

∫ q

p

f(t)∆ψ(t) = ε+DS

∫ q

p

f(t)∆ψ(t).

Similarly,

L∆(Vδ, f, ψ) ≥ U∆(Vδ, f, ψ)− ε ≥ U
∫ q

p

f(t)∆ψ(t)− ε = DS

∫ q

p

f(t)∆ψ(t)− ε.

It is clear that L∆(V, f, ψ) ≤ RS ≤ U∆(V, f, ψ).
Hence taking-

RS ≤ U∆(Vδ, f, ψ)

0 ≥ RS − U∆(Vδ, f, ψ) > RS −
(
ε+DS

∫ q

p

f(t)∆ψ(t)

)

ε ≥ RS −DS
∫ q

p

f(t)∆ψ(t).(3.3)

Also taking-

L∆(Vδ, f, ψ) ≤ RS

0 ≤ RS − L∆(Vδ, f, ψ) ≤ RS −
(
DS

∫ q

p

f(t)∆ψ(t)− ε
)

−ε ≤ RS −DS
∫ q

p

f(t)∆ψ(t).(3.4)
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From Eq. (3.3) and Eq. (3.4) we conclude that Eq. (3.2) is true, i.e.,∣∣∣∣RS −DS ∫ q

p

f()∆ψ(t)

∣∣∣∣ < ε.

This shows that RS
∫ q
p
f(t)∆ψ(t) = I = DS

∫ q
p
f(t)∆ψ(t).

Thus, if f with respect to ψ is Darboux-Stieltjes ∆-integrable then it is also Riemann-
Stieltjes ∆-integrable.

Secondly, we suppose that f with respect to ψ is Riemann-Stieltjes ∆-integrable
from p to q, and show that it is also Darboux-Stieltjes ∆-integrable for the same.
Let V =

{
p = t0 < t1 < . . . < tn = q

}
be a partition of [p, q], then for any

ε > 0 there exists a δ > 0 such that we consider partitions Vδ ∈ P. For each
h = {1, 2, .., n} we choose the tag point ϑh ∈, [th−1, th) so that, f(ϑh) < dh + ε,
where dh = inf

{
f(t) : t ∈ [th−1, th)

}
.

The Riemann-Stieltjes ∆-sum, RS, for these choice of ϑh’s gives,

RS =

n∑
h=1

f(ϑh)
(
ψ(th)− ψ(th−1)

)
<

n∑
h=1

(dh + ε)
(
ψ(th)− ψ(th−1)

)
L∆(Vδ, f, ψ) > RS − ε

(
ψ(q)− ψ(p)

)
.

By definition, we have
∣∣RS − I∣∣ < ε ⇒ −ε+ I < RS < I + ε.

Hence,

L

∫ q

p

f(t)∆ψ(t) ≥ L∆(Vδ, f, ψ) > RS − ε
(
ψ(q)− ψ(p)

)
>

(
− ε+ I

)
− ε
(
ψ(q)− ψ(p)

)
= I − ε− ε

(
ψ(q)− ψ(p)

)
.

Since ε > 0 is arbitrarily chosen, we conclude that,

L

∫ q

p

f(t)∆ψ(t) ≥ I.(3.5)

Similarly, for each h = {1, 2, .., n} we choose the tag point ζh ∈ [th−1, th) so that,
f(ζh) > Dh − ε, where Dh = sup

{
f(t) : t ∈ [th−1, th)

}
.

The Riemann-Stieltjes ∆-sum, RS, for these choice of ζh’s gives,

RS =

n∑
h=1

f(ζh)
(
ψ(th)− ψ(th−1)

)
>

n∑
h=1

(Dh − ε)
(
ψ(th)− ψ(th−1)

)
U∆(Vδ, f, ψ) < RS + ε

(
ψ(q)− ψ(p)

)
.

By definition, we have
∣∣RS − I∣∣ < ε ⇒ −ε+ I < RS < I + ε.

Hence,

U

∫ q

p

f(t)∆ψ(t) ≤ U∆(Vδ, f, ψ) < RS + ε
(
ψ(q)− ψ(p)

)
< (I + ε)− ε

(
ψ(q)− ψ(p)

)
= I + ε− ε

(
ψ(q)− ψ(p)

)
.
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Since ε > 0 is arbitrarily chosen, we conclude that,

U

∫ q

p

f(t)∆ψ(t) ≤ I.(3.6)

Thus from Eq. (3.5) and Eq. (3.6) we get I ≤ L
∫ q
p
f(t)∆ψ(t) ≤ U

∫ q
p
f(t)∆ψ(t) ≤

I, which implies L
∫ q
p
f(t)∆ψ(t) = U

∫ q
p
f(t)∆ψ(t) = I. This proves thatDS

∫ q
p
f(t)∆ψ(t) =

I = RS
∫ q
p
f(t)∆ψ(t).

Thus if f with respect to ψ is Riemann-Stieltjes ∆-integrable then it is also Darboux-
Stieltjes ∆-integrable.

This concludes that the Riemann-Stieltjes ∆-integral defined in terms of the Rie-
mann sum and the Darboux sum are equivalent, given f is bounded and ψ is
monotonically increasing on a closed interval.

Now let W ∈ P, W =
{
p = t0 < t1 < . . . < tn = q

}
, with t0, t1, . . ., tn being

the finite points of division. Let ψ be a real-valued monotone increasing function
on [p, q]. Then for partition W of [p, q] we define ψ(W) =

{
ψ(p) = ψ(t0) < ψ(t1) <

. . . < ψ(tn) = ψ(q)
}

and 4ψh = ψ(th)−ψ(th−1). (Note that unless mentioned oth-
erwise, f will be considered a bounded function and ψ will be considered a monotone
increasing function on [p, q]). Also for the ∇-integral we consider subintervals of
the form (th−1, th].

We now proceed to give the definition of the Riemann-Stieltjes ∇-integral using
the Darboux sum definition (which we will call the Darboux-Stieltjes ∇-integral)
according to Dorota Mozyrska et al. [13], and define the Riemann-Stieltjes ∇-
integral using the Riemann sum definition (which we will call the Riemann-Stieltjes
∇-integral), and we prove the equivalence of these two definitions.

Considering subintervals of the form (th−1, th], we define-
D = sup

{
f(t) : t ∈ (p, q]

}
; d = inf

{
f(t) : t ∈ (p, q]

}
; Dh = sup

{
f(t) : t ∈

(th−1, th]
}

; and dh = inf
{
f(t) : t ∈ (th−1, th]

}
.

The upper Darboux-Stieltjes ∇-sum of f with respect to partition W, denoted by
U∇(W, f, ψ) is defined by U∇(W, f, ψ) =

∑n
h=1Dh

[
ψ(th)− ψ(th−1)

]
.

The lower Darboux-Stieltjes ∇-sum of f with respect to partition W, denoted by
L∇(W, f, ψ) is defined by L∇(W, f, ψ) =

∑n
h=1 dh

[
ψ(th)− ψ(th−1)

]
.

The upper Darboux-Stieltjes ∇-integral from p to q with respect to ψ is defined as

U

∫ q

p

f(t)∇ψ(t) = inf
{
U∇(W, f, ψ) :W ∈ P

}
.

The lower Darboux-Stieltjes ∇-integral from p to q with respect to ψ is defined as

L

∫ q

p

f(t)∇ψ(t) = sup
{
L∇(W, f, ψ) :W ∈ P

}
.

Definition 3.3. [13] Darboux-Stieltjes ∆-integral : Let function f : [p, q]T → R
be a bounded function and let ψ : [p, q]T → R be a monotone increasing func-
tion, then f is said to be Darboux-Stieltjes ∇-integral with respect to ψ on [p, q]
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provided U
∫ q
p
f(t)∇ψ(t) = L

∫ q
p
f(t)∇ψ(t), and the common value denoted by

DS
∫ q
p
f(t)∇ψ(t) is called the Darboux-Stieltjes ∇-integral of f with respect to

ψ on [p, q].

Now for the Riemann sum definition- for each subinterval of the form (th−1, th], for
1 ≤ h ≤ n, we choose ξh arbitrarily, defined as ξh ∈ (th−1, th], and call it the tag
point of the respective subinterval. As defined above, forW ∈ P, we define a point-
interval collection as W̆ =

{(
ξh, (th−1, th]

)}n
h=1

, and call it the tagged partition.
We define the mesh ofW as mesh-(W) = max1≤h≤n(th−th−1) > 0. For some δ > 0,
Wδ will represent a partition of [p, q] with mesh δ satisfying the property: For each
h = 1, 2, . . . , n we have either- (th − th−1) ≤ δ or (th − th−1) > δ ∧ ρ(th) = th−1.
Hence, W̆δ will mean a tagged partition with mesh δ satisfying the above property.

Definition 3.4. [14] Riemann-Stieltjes∇-integral: Let function f : [p, q]T → R be
a bounded function and let ψ : [p, q]T → R be a monotone increasing function. Then
function f with respect to ψ on [p, q] is said to be Riemann-Stieltjes ∇-integrable if
there exists a number I ∈ R such that, for any ε > 0 there exists a δ > 0, such that
for any tagged partition W̆δ ∈ P we have |RS − I| < ε. Here I = RS

∫ q
p
f(t)∇ψ(t)

and RS =
∑n
h=1 f(ξh)

[
ψ(th)− ψ(th−1)

]
.

The set of all Riemann-Stieltjes ∇-integrable functions on [p, q] will be denoted by
RS∇[p, q].

Remark 3.2. Taking ψ(t) = t we see that the Riemann-Steiltjes ∇-integral coincides
with the Riemann ∇-integral.

Cases when T = R and when T = Z-

1. When T = R, the Riemann-Stieltjes ∇-integral coincides with the usual
Riemann-Stieltjes integral in R.

2. When T = Z,

DS

∫ q

p

f(t)∇ψ(t) = RS

∫ q

p

f(t)∇ψ(t) =

n∑
h=1

f(th)
(
ψ(th)− ψ(th−1)

)
=

q∑
m=p+1

f(m)
(
ψ(m)− ψ(m− 1)

)
.

Theorem 3.3. If f ∈ RS∇[p, q], then the value of integral, I, is unique.

Theorem 3.4. A bounded function f with respect to a monotone increasing func-
tion ψ over [p, q] is Riemann-Stieltjes ∇-integrable if and only if it is Darboux-
Stieltjes ∇-integrable.
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This concludes that the Riemann-Stieltjes ∇-integral defined in terms of the Rie-
mann sum and the Darboux sum are equivalent, given f is bounded and ψ is
monotonically increasing on a closed interval.

Henceforth, all definitions and results will be in terms of the ∆-integral. The case
of the ∇-integral can be obtained in a similar manner using the above ∇-integral
definition.

Below we discuss the Riemann-Stieltjes integrability of finite discontinuous func-
tions, considering three cases. Case when the monotone increasing function ψ has
finite points of discontinuity while the bounded function f is continuous at those
points. Case when the bounded function f has finite points of discontinuity while
the monotone increasing function ψ is continuous at those points. And finally the
case when both bounded function f and monotone increasing function ψ has a
common point of discontinuity.

4. Results

Theorem 4.1. Let ψ : [p, q] → R be a step function with discontinuities at r1 <
. . . < rs, in [p, q]. Let f : [p, q] → R be continuous at each rj, 1 ≤ j ≤ s. Then
f ∈ RS∆[p, q] and,

RS

∫ q

p

f(t)∆ψ(t) =

s∑
j=1

f(rj)
[
ψ(r+

j )− ψ(r−j )
]
,

where ψ(r+
j ) = limrj→t+ ψ(t) and ψ(r−j ) = limrj→t− ψ(t). Also ψ(p−) = ψ(p) and

ψ(q+) = ψ(q).

Proof. Let ε > 0. Choose partition Vδ =
{
p = t̃0 < t̃1 < . . . < t̃m = q

}
such that{

r1, r2, . . . , rs
}
⊂ Vδ and δ = min

{
|r2 − r1|, . . . , |rs − rs−1|, δ0

}
, δ0 given by (?).

(The explanation of (?) is mentioned below).
Now let V =

{
p = t0 < t1 < . . . < tn = q

}
⊃ Vδ and from each subinterval we

choose ϑh ∈ [th−1, th) arbitrarily, then RS is given by,

RS =

n∑
h=1

f(ϑh)
[
ψ(th)− ψ(th−1)

]
.

Clearly no rj can be strictly between th−1 and th. Furthermore, since V ⊃ Vδ
where δ = min

{
|r2 − r1|, ..., |rs − rs−1|, δ0

}
we cannot have both th−1 and th in{

r1, r2, . . . , rs
}

. So either,

1. neither th nor th−1 is in {r1, r2, . . . , rs}, in which case, as no point of discon-
tinuity rj can lie between th−1 and th we have ψ(th)− ψ(th−1) = 0,

Or
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2. th = rj for some 1 ≤ j ≤ s. In this case th−1 cannot be r′j and no r′j can be
between th−1 and rj so that,

ψ(th)− ψ(th−1) = ψ(rj)− ψ(r−j ),

Or

3. th−1 = rj for some 1 ≤ j ≤ s. In this case th cannot be r′j and no r′j can be
between rj and th so that,

ψ(th)− ψ(th−1) = ψ(r+
j )− ψ(rj).

So,

RS =

n∑
h=1

f(ϑh)
[
ψ(th)− ψ(th−1)

]
=

s∑
j=1

{
f(ϑhj )

[
ψ(rj)− ψ(r−j )

]
+ f(ϑhj′ )

[
ψ(r+

j )− ψ(rj)
]}
.

Here ϑhj lies in the subinterval of V whose right hand end point is rj and so is
within a distance less than δ or rj .
Similarly, ϑhj′ lies in the subinterval of V whose left hand end point is rj and so is
within a distance less than δ or rj .
Now,

s∑
j=1

f(rj)
[
ψ(r+

j )− ψ(r−j )
]

=

s∑
j=1

{
f(rj)

[
ψ(rj)− ψ(r−j )

]
+ f(rj)

[
ψ(r+

j )− ψ(rj)
]}
.

Hence,∣∣∣∣RS − s∑
j=1

f(rj)
[
ψ(r+

j )− ψ(r−j )
]∣∣∣∣ ≤ s∑

j=1

{∣∣f(ϑhj )− f(rj)
∣∣∣∣ψ(rj)− ψ(r−j )

∣∣
+
∣∣f(ϑhj′ )− f(rj)

∣∣∣∣ψ(r+
j )− ψ(rj)

∣∣}.
Now (?) for each 1 ≤ j ≤ s, f is continuous at rj so that there is a δj > 0 such that,∣∣∣f(ϑ)− f(rj)

∣∣∣ < ε∑s
k=1

{∣∣ψ(rk)− ψ(r−k )
∣∣+
∣∣ψ(r+

k )− ψ(rk)
∣∣} ,

for all ϑ with |ϑ− rj | < δj .
Choose δ0 = min

{
δ1, δ2, ..., δs

}
. Then,∣∣∣∣RS − s∑

j=1

f(rj)
[
ψ(r+

j )− ψ(r−j )
]∣∣∣∣ < ε,

as desired.
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Theorem 4.2. Suppose that f is bounded on [p, q], and has only finitely many
points of discontinuity in [p, q], and that the monotonically increasing function ψ is
continuous at each point of discontinuity of f . Then f ∈ RS∆[p, q].

Proof. Let ε > 0. Suppose that f is bounded on [p, q] and continuous on [p, q]−A
where A =

{
r1, r2, . . . , rs

}
is the non-empty finite set of points of discontinuity of

f in [p, q], and suppose ψ is a monotonically increasing function on [p, q] that is
continuous at each element of A.
Given A is finite and ψ is continuous at each rj ∈ A, we find s pairwise disjoint
intervals [xj , yj ], j = 1, 2, . . . , s such that,

A ⊂
s⋃
j=1

[xj , yj ] ( [p, q] and

s∑
j=1

[
ψ(yj)− ψ(xj)

]
< ε∗,

for any ε∗ > 0; furthermore, the intervals can be chosen in such a way that rm ∈
A ∩ (p, q) is an element of the interior of the corresponding interval, [xm, ym]. Let

K = [p, q]−
s⋃
j=1

[xj , yj ].

Then K is compact and f is continuous on K implies that f is uniformly continuous
there. Thus, corresponding to ε∗ > 0, ∃ δ > 0 such that,

∀ t̃1, t̃2 ∈ K,
∣∣t̃1 − t̃2∣∣ < δ ⇒

∣∣f(t̃1)− f(t̃2)
∣∣ < ε∗.

Now let V =
{
p = t0, t1, . . . , tn = q

}
be a partition of [p, q] satisfying the following

conditions:

� xj , yj ∈ V ∀ j ∈
{

1, 2, . . . , s
}

.

� (xj , yj) ∩ V = φ.

� th−1 6= xj where h ∈
{

1, 2, . . . , n
}

and j ∈
{

1, 2, . . . , s
}
⇒4th < δ.

Note that under the conditions established, tm−1 = xj ⇒ tm = yj .
If,

D = sup
t∈[p,q]

∣∣f(t)
∣∣,

Dh = sup
th−1≤t≤th

f(t) and dh = sup
th−1≤t≤th

f(t),

then for each h, Dh − dh ≤ 2D.
Furthermore, Dh − dh < ε∗ as long as th−1 6= xj . Hence,

U∆(V, f, ψ)− L∆(V, f, ψ) =

s∑
j=1

(
Dj − dj

)(
ψ(tj)− ψ(tj−1)

)
≤

[
ψ(q)− ψ(p)

]
ε∗ + 2Dε∗ < ε,
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where,

ε∗ <
ε

2D +
[
ψ(q)− ψ(p)

] .
Since ε > 0 is arbitrary, we conclude f ∈ RS∆[p, q].

Theorem 4.3. If f and ψ have a common discontinuity, say r ∈ [p, q] then f is
not Riemann-Stieltjes ∆-integrable with respect to ψ on [p, q].

Proof. By contradiction. Suppose f ∈ RS∆[p, q], then given ε > 0 ∃ δ > 0 for
partition Vδ ∈ P of [p, q] such that,∣∣∣∣RSVδ −RS ∫ q

p

f(t)∆ψ(t)

∣∣∣∣ < ε,(4.1)

where, RSVδ =
∑n
h=1 f(ϑh)

(
ψ(th)− ψ(th−1)

)
and ϑh ∈ [th−1, th). Let,

V = Vδ ∪ r ⇒ Vδ ⊂ V.(4.2)

Choose, εf > 0 such that for all δf > 0 ∃ ϑf such that,∣∣ϑf − r∣∣ < δf and
∣∣f(ϑf )− f(r)

∣∣ ≥ √εf .
Choose εψ > 0 such that for all δψ > 0 ∃ ϑψ such that,∣∣ϑψ − r∣∣ < δψ and

∣∣ψ(ϑψ)− ψ(r)
∣∣ ≥ √εψ.

Since p < r < q, there exists k, 1 ≤ k ≤ n, such that tk−1 < r < tk.
Let ε∗ = inf

{
εf , εψ

}
. Choose ε = ε∗ for δ∗ = min

(
tk − r, r − tk−1

)
so there exists

ϑ∗ such that, ∣∣ϑ∗f − r∣∣ < δ∗ and
∣∣f(ϑ∗f )− f(r)

∣∣ ≥ √ε∗ and,∣∣ϑ∗ψ − r∣∣ < δ∗ and
∣∣ψ(ϑ∗ψ)− f(r)

∣∣ ≥ √ε∗.
Therefore, ∣∣∣∣RSV −RS ∫ q

p

f(t)∆ψ(t)

∣∣∣∣ < ε.(4.3)

From Eq. 4.1, 4.3, and Eq. 4.2 and Theorem 3.1 we get,∣∣∣RSVδ −RSV ∣∣∣ ≥ √ε∗√ε∗ ≥ ε,
which is a contradiction, thus f is not integrable with respect to ψ in case of common
discontinuity.
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5. Example

Example 5.1. Let T = lZ, l > 1, f(t) = t, ψ(t) = t2, [p, q] = [0, 1]T and P be the
collection of all possible partitions of [p, q]. Let V ∈ P, considering the partition V =
{0, l−n+1, · · · , l−1, 1 : t0 = 0 < l−n+1 < · · · < l−n+h < · · · < l−1 < 1 = tn, where th =
l−n+h for h = 1, · · · , n}, we have 4ψh = ψ(th)−ψ(th−1) = t2h− t2h−1 = l2(−n+h−1)(l2− 1)

for h = 2, · · · , n, and 4ψ1 = t21 − 0 = l2(−n+1). According to [13], we have

Dh = sup
{
f(t) : t ∈ [th−1, th)

}
= ρ(th);

dh = inf
{
f(t) : t ∈ [th−1, th)

}
= th−1.

For our partition, we have Dh = th−1 = dh, for h = 2, · · · , n and D1 = ρ(t1) = l−n, d1 =
0. Then,

L∆(V, f, ψ) =

n∑
h=1

dh
(
ψ(th)− ψ(th−1)

)
=

n∑
h=2

th−14ψh =
l + 1

l2 + l + 1
(1− l3(−n+1)),

and

U∆(V, f, ψ) =

n∑
h=1

Dh

(
ψ(th)− ψ(th−1)

)
= l2−3n +

n∑
h=2

th−14ψh =
l + 1 + l2−3n

l2 + l + 1
.

Thus, the lower Darboux-Stieltjes ∆-integral from p to q with respect to ψ is

L

∫ q

p

f(t)∆ψ(t) = sup
{
L∆(V, f, ψ) : V ∈ P

}
= lim

n→∞

l + 1

l2 + l + 1
(1−l3(−n+1)) =

l + 1

l2 + l + 1
,

and the upper Darboux-Stieltjes ∆-integral from p to q with respect to ψ is

U

∫ q

p

f(t)∆ψ(t) = inf
{
U∆(V, f, ψ) : V ∈ P

}
= lim

n→∞

l + 1 + l2−3n

l2 + l + 1
= L

∫ q

p

f(t)∆ψ(t).

Consequently, DS
∫ q

p
f(t)∆ψ(t) = l+1

l2+l+1
. ∀ϑh ∈ [th−1, th), we have Riemann-Stieltjes

∆-sum, RS, of the function f with respect to ψ as

RS =

n∑
h=1

f(ϑh)

(
ψ(th)− ψ(th−1)

)
=

n∑
h=1

f(ϑh)∆ψh.

As the length of the subinterval [th−1, th) tends to 0, we have ϑh → th−1 and

n∑
h=1

f(ϑh)

(
ψ(th)− ψ(th−1)

)
→ l + 1

l2 + l + 1
,

i.e., the Riemann-Stieltjes ∆-integral I = RS
∫ q

p
f(t)∆ψ(t) = l+1

l2+l+1
= DS

∫ q

p
f(t)∆ψ(t).

Example 5.2. Let T = lZ, l > 1, f(t) = t, ψ(t) = t2, [p, q] = [0, 1]T and P be the
collection of all possible partitions of [p, q]. Let W ∈ P, considering the partition W =
{0, l−n+1, · · · , l−1, 1 : t0 = 0 < l−n+1 < · · · < l−n+h < · · · < l−1 < 1 = tn, where th =
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l−n+h for h = 1, · · · , n}, we have 4ψh = ψ(th)−ψ(th−1) = t2h− t2h−1 = l2(−n+h−1)(l2− 1)

for h = 2, · · · , n, and 4ψ1 = t21 − 0 = l2(−n+1). According to [13], we have

Dh = sup
{
f(t) : t ∈ (th−1, th]

}
= th;

dh = inf
{
f(t) : t ∈ (th−1, th]

}
= σ(th−1).

For our partition, we have Dh = th = dh, for h = 2, · · · , n and D1 = t1 = l−n+1, d1 =
σ(0) = 0. Then,

L∇(W, f, ψ) =

n∑
h=1

dh
(
ψ(th)− ψ(th−1)

)
=

n∑
h=2

th4ψh = l
l + 1

l2 + l + 1
(1− l3(−n+1)),

and

U∇(W, f, ψ) =

n∑
h=1

Dh

(
ψ(th)− ψ(th−1)

)
= l3−3n +

n∑
h=2

th4ψh = l
l + 1 + l2−3n

l2 + l + 1
.

Thus, the lower Darboux-Stieltjes ∇-integral from p to q with respect to ψ is

L

∫ q

p

f(t)∇ψ(t) = sup
{
L∇(W, f, ψ) :W ∈ P

}
= lim

n→∞
l

l + 1

l2 + l + 1
(1−l3(−n+1)) =

l2 + l

l2 + l + 1
,

and the upper Darboux-Stieltjes ∇-integral from p to q with respect to ψ is

U

∫ q

p

f(t)∇ψ(t) = inf
{
U∇(W, f, ψ) :W ∈ P

}
= lim

n→∞
l
l + 1 + l2−3n

l2 + l + 1
= L

∫ q

p

f(t)∇ψ(t).

Consequently, DS
∫ q

p
f(t)∇ψ(t) = l2+l

l2+l+1
. ∀ξh ∈ (th−1, th], we have Riemann-Stieltjes

∇-sum, RS, of the function f with respect to ψ as

RS =

n∑
h=1

f(ξh)

(
ψ(th)− ψ(th−1)

)
.

As length of the subinterval (th−1, th] tends to 0, then we have ξh → th and

n∑
h=1

f(ξh)

(
ψ(th)− ψ(th−1)

)
→ l2 + l

l2 + l + 1
,

i.e., the Riemann-Stieltjes ∇-Integral I = RS
∫ q

p
f(t)∇ψ(t) = l2+l

l2+l+1
= DS

∫ q

p
f(t)∇ψ(t).

6. Conclusion

We establish the equivalence of the Riemann-Stieltjes ∆-(resp. ∇-) integral on
time scales as defined in [13, 14] in terms of the Darboux sum definition and the
Riemann sum definition, and discuss the Riemann-Stieltjes integrability of finite
discontinuous functions, considering three cases. Case one is when the monotone
increasing function ψ has finite points of discontinuity while the bounded function
f is continuous at those points. Case two is when the bounded function f has finite
points of discontinuity while the monotone increasing function ψ is continuous at
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those points. And finally the case three is when both bounded function f and
monotone increasing function ψ has a common point of discontinuity. We establish
that the integrability holds for two of the above three cases, failing when both
bounded function f and monotone increasing function ψ has a common point of
discontinuity.
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