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Abstract. In this manuscript we introduce a mixture integer-valued autoregressive
model with a structural break. The introduced model is a mixture of an INAR(1)
model with the binomial thinning operator and an INAR(1) model with the negative
binomial thinning operator. Some properties of the introduced model are derived. The
unknown parameters of the model are estimated by some methods and the performances
of the obtained estimators are checked by simulations. At the end of the paper, two
possible applications of the model are provided and discussed.
Keywords: Binomial thinning, Integer-valued autoregressive model, Mixture of INAR
models, Structural break, Negative binomial thinning.

1. Introduction

In this manuscript we introduce a mixture integer-valued autoregressive model
with a structural break motivated by the following real examples. We observe
the number of infected people from a virus. At first, the activity of the virus
is low and up to the moment τ , the number of infected people from the virus
behaves like an INAR(1) model with the binomial thinning operator [13, 1]. After
the moment τ , when a large number of reproductions are created, the activity of
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the virus increases significantly and a greater number of people can be infected.
Now, the number of infected people can be described as an INAR(1) model with
the negative binomial thinning operator [14]. Also, we can observe the number
of criminal offenses in some places. In the beginning, criminal groups are poorly
organized and therefore, the number of criminal offenses can be described by an
INAR(1) model with the binomial thinning operator. After some time criminal
groups are better organized and their activities become more frequently. Therefore,
after a moment τ , the number of crimes can be represented by an INAR(1) model
with the negative binomial thinning operator.

Regarding these real examples, in this manuscript we introduce an integer-valued
autoregressive model with one structural break τ based on two thinning operators,
the binomial thinning operator ” ◦ ” and the negative binomial thinning operator
”∗”. Exactly, we consider a time series model {Xt}, t ∈ Z ≡ {0,±1,±2, . . . }, given
by

(1.1) Xt =

{
α ◦Xt−1 + εt, t ⩽ τ,
β ∗Xt−1 + εt, t > τ,

where α and β belong to (0, 1), τ is an integer, all the counting series incorporated
in α◦ and β∗ are mutually independent sequences of independent and identically
distributed (i.i.d.) random variables with Bernoulli(α), and Geometric(β/(1 + β))
distributions, respectively. Here, Bernoulli(α) indicates to a Bernoulli distributed
random variable with success α and Geometric(β/(1 + β)) indicates to a geometric
distributed random variable with mean β. We also suppose that {εt} is a sequence
of independent random variables, all the counting series are independent of Xt and
εs for all t and s, and Xt and εs are independent for all t < s. The distribution
of the random variable Xt can be different over the times t ⩽ τ and t > τ , so
the model given by (1.1) can be a non-stationary model. It is possible that the
distribution of the random variable Xt is the same over all times t ⩽ τ and t > τ
and in this case we have a process stationary in distribution. This type of process
is also stationary in mean (a first-order stationary process) and it can be also a
second-order stationary process only when the thinning parameters α and β are
identical. In all other cases it is a non-stationary model, but stationary separately
on each regime, i.e. it is stationary before and after a structural break.

The introduced model is an integer-valued autoregressive model with one struc-
tural break. Some other forms of these models have been widely investigated in
the past. Also, special attentions have been given to development of the methods
for detections of the breaks or the changes in these models. A comprehensive list
of important references in detections of breaks and changes in time series can be
found in [6] and [2]. Kashikar et al. [11] introduced an INAR model of the first-
and higher-order with structural breaks. In their model, different binomial thin-
ning operators have been used in each regime to generate values of the considered
time series model. The authors have supposed that the innovations are independent
Poisson distributed random variables with identical parameters inside each regime
and with different parameters between different regimes. Hudecová [9] considered
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autoregressive binary time series with changes and has proposed method for de-
tection of changes. Yu et al. [15] introduced an integer-valued moving average
model with structural breaks and researched its properties. Hudecová et al. [10]
developed procedures based on the probability generating function for detections
of the changes in the integer-valued autoregressive model of the first order. Chen
and Lee [4] introduced a zero-inflated generalized Poisson autoregressive models
with structural breaks. Recently, Kim and Lee [12] introduced a residual-based
CUSUM test for the PINAR(1) model which can be used as an alternative to classi-
cal CUSUM tests, while Cui and Wu [5] considered how to detect parameter changes
in observation-driven models for count time series.

The manuscript is organized as follows. In Section 2, we introduce a first-
order integer-valued autoregressive model as a mixture of two INAR(1) models
based on two well-known thinning operators, the binomial and the negative binomial
thinning operator. Some properties of the model with geometric marginals including
conditional properties and correlation structure are derived. Section 3 covers some
estimation issues. Here, we consider two methods of estimations, the conditional
maximum likelihood method and the method of the conditional least squares. The
performances of the obtained estimates are checked by simulations for different true
values of the parameters, different sample sizes and different positions for structural
break. In Section 4, we discuss possible applications of the introduced model on two
real data sets about some criminal acts. The manuscript ends with some concluding
remarks and discussion about further developments related to the introduced model
and its generalization.

2. Construction and properties

In this section we derive some properties of the model introduced in the intro-
duction. First, we start with the definition of the model in general case.

Definition 1. Suppose that α and β are real numbers from (0, 1), τ is an inte-
ger, all the counting series incorporated in α◦ and β∗ are mutually independent
sequences of i.i.d. random variables with Bernoulli(α) and Geometric(β/(1 + β))
distributions. Also, suppose that {εt} is a sequence of independent random vari-
ables, all the counting series are performed independently of Xt and εs for all t and
s, and the random variables Xt and εs are independent for all t < s. A process
{Xt} is said to be a mixture integer-valued autoregressive model with a structural
break if it satisfies equation (1.1) for all t ∈ Z.

Now, we consider a case of the mixture integer-valued autoregressive model with
a structural break under the assumption that the random variable Xt has the geo-
metric distribution as follows. For t ⩽ τ we suppose that Xt has Geometric(µ1/(1+
µ1)) distribution and for t > τ we suppose that Xt has Geometric(µ2/(1+µ2)) dis-
tribution. Both parameters µ1 and µ2 are positive real numbers. Thus, our model
has 5 parameters: 2 thinning parameters α and β; 2 mean parameters µ1 and µ2,
and 1 structural break parameter τ . The number of the unknown parameters can be
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reduced. First, it is possible that the random variable Xt has the same distribution
over all times, so in this case we have that the parameters µ1 and µ2 are identical.
Also, the thinning parameters α and β can be identical too. Thus, the number
of unknown parameters can be reduced to 3 unknown parameters. As mentioned
above, in the case when we have identical thinning parameters and identical mean
parameters, our model is reduced to a second-order stationary process with same
marginal distributions.

Our model is completely determined if the distribution of the random variable
εt is known. Regarding this, the following theorem gives its distribution.

Theorem 1. Let {Xt}, t ∈ Z, be the mixture integer-valued autoregressive model
with a structural break given by (1) and let us suppose that Xt has Geom(µ1/(1+µ1))
distribution for t ≤ τ , and Geom(µ2/(1 + µ2)) distribution for t > τ . If α ∈ (0, 1),

β ∈
(
0,min{ µ2

1+µ2
, µ2

1+µ1
}
]
, µ1 > 0, µ2 > 0, and τ ∈ Z, then the random variable εt

is distributed as follows:

(2.1) εt
d
=

{
0, w.p. α,
Geom

(
µ1

1+µ1

)
, w.p. 1− α,

if t ≤ τ,

(2.2) εt
d
=

{
Geom

(
β

1+β

)
, w.p. βµ1

µ2−β ,

Geom
(

µ2

1+µ2

)
, w.p. 1− βµ1

µ2−β ,
if t = τ + 1,

(2.3) εt
d
=

{
Geom

(
β

1+β

)
, w.p. βµ2

µ2−β ,

Geom
(

µ2

1+µ2

)
, w.p. 1− βµ2

µ2−β ,
if t ⩾ τ + 2.

Proof. Let ΦXt
, ΦXt−1

and Φεt be the probability generating functions of the ran-
dom variables Xt, Xt−1 and εt, respectively. Let us first consider the case t ⩽ τ .
In this case, we have that both random variables Xt and Xt−1 have Geom

(
µ1

1+µ1

)
distributions. Thus, from (1.1) we have that

ΦXt
(s) = ΦXt−1

(1− α+ αs)Φεt(s).

We obtain that

Φεt(s) =
ΦXt

(s)

ΦXt−1
(1− α+ αs)

=
1 + αµ1 − αµ1s

1 + µ1 − µ1s
= α+ (1− α) · 1

1 + µ1 − µ1s
.

The function Φεt(s) is well defined for α ∈ (0, 1). Thus, we obtain that the random
variable εt is a mixture of 0 with probability α and the random variable which has
geometric distribution Geom

(
µ1

1+µ1

)
with probability 1− α.

If t = τ +1, then Xt has a geometric distribution Geom(µ2/(1 + µ2)) and Xt−1

has a geometric distribution Geom(µ1/(1 + µ1)). Thus,

ΦXt
(s) = ΦXt−1

(
1

1 + β − βs

)
Φεt(s)
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and we get

Φεt(s) =
ΦXt

(s)

ΦXt−1(
1

1+β−βs )
=

1 + β(1 + µ1)− β(1 + µ1)s

(1 + β − βs)(1 + µ2 − µ2s)

=
βµ1

µ2 − β
· 1

1 + β − βs
+

(
1− βµ1

µ2 − β

)
· 1

1 + µ2 − µ2s
.

The function Φεt(s) is well defined for 0 < β ≤ min{1, µ2

1+µ1
}. Thus, we obtain

that the random variable εt is a mixture of two random variables which have geo-
metric distribution Geom

(
β

1+β

)
with probability βµ1

µ2−β and geometric distribution

Geom
(

µ2

1+µ2

)
with probability 1− βµ1

µ2−β .

The third case, t ⩾ τ1 + 2, can be considered in similar manner which implies
that

Φεt(s) =
βµ2

µ2 − β
· 1

1 + β − βs
+

(
1− βµ2

µ2 − β

)
· 1

1 + µ2 − µ2s
,

where 0 < β ≤ µ2

1+µ2
. Having in mind the above interval for parameter β, it follows

that β ∈
(
0,min{ µ2

1+µ2
, µ2

1+µ1
}
]
, which competes the proof of theorem.

The introduced mixture integer-valued autoregressive model with a structural
break is obviously a first-order Markov process, so the transition probabilities can be
derived by considering the conditional probabilities π(xt|xt−1) ≡ P (Xt = xt|Xt−1 =
xt−1), where xt and xt−1 are non-negative integers. These conditional probabilities
are given by the following theorem and they will be used later for the derivation of
the conditional log-likelihood function and for the conditional maximum likelihood
estimation.

Theorem 2. Let {Xt}, t ∈ Z, be the model given by Definition 1 which satisfies
the assumptions of Theorem 1. Let us define the functions m(t) = min(xt, xt−1),

b(y, i, θ) =
(
y
i

)
θi(1 − θ)y−i, g(y, θ) = θy

(1+θ)y+1 and h(y, i, θ) =
(
y+i−1

i

)
θi

(1+θ)y+i . Let

IA be the indicator function of the event A. Then

π(xt|xt−1) =

=



m(t)∑
i=0

b(xt−1, i, α)
[
αI{xt=i} + (1− α)g(xt − i, µ1)

]
, t⩽τ

xt∑
i=0

h(xt−1, i, β)
[

βµ1

µ2−β g(xt − i, β) +
(
1− βµ1

µ2−β

)
g(xt − i, µ2)

]
, t=τ+1

xt∑
i=0

h(xt−1, i, β)
[

βµ2

µ2−β g(xt − i, β) +
(
1− βµ2

µ2−β

)
g(xt − i, µ2)

]
, t⩾τ+2.

Proof. We will prove theorem only for the case t ⩽ τ . All other cases can be proved
similarly. Let us first suppose that xt−1 > 0. Since t ⩽ τ , we have that

π(xt|xt−1) = P (α ◦Xt−1 + εt = xt|Xt−1 = xt−1).
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Now, the random variable α ◦ Xt−1 for given Xt−1 = xt−1 has the binomial dis-
tribution with parameters xt−1 and α. Let us denote this random variable as
Bin(xt−1, α). Then

π(xt|xt−1) = P (Bin(xt−1, α) + εt = xt) =

m(t)∑
i=0

b(xt−1, i, α)P (εt = xt − i).

According to distribution (2.1), we have that

P (εt = xt − i) = αI{xt=i} + (1− α)g(xt − i, µ1).

Replacing this in the above equation we obtain the expression for the conditional
probability when xt−1 is positive integer. When xt−1 = 0 we have that

π(xt|0) = P (εt = xt) = αI{xt=0} + (1− α)g(xt, µ1).

As a next property we consider the covariance and the correlation structure of
the introduced model. These properties will be used later for the estimation of the
unknown parameters. This structure is given by the following theorem.

Theorem 3. Let {Xt}, t ∈ Z, be the model given by Definition 1 which satisfies
the assumptions of Theorem 1. Then

(a) the covariance function of the random variables Xt and Xt+k, k ⩾ 0, is
positive and it is given as

γt(k)≡Cov(Xt, Xt+k) =


αkµ1(1 + µ1), if t+ k ⩽ τ,

ατ−tβt+k−τµ1(1 + µ1), if t ⩽ τ<t+ k,

βkµ2(1 + µ2), if τ < t,

(b) the correlation function of the random variables Xt and Xt+k, k ≥ 0, is
positive, always less than 1 and given by

ρt(k)≡Corr(Xt, Xt+k) =


αk, if t+ k ⩽ τ,

ατ−tβt+k−τ
√

µ1(1+µ1)
µ2(1+µ2)

, if t ⩽ τ<t+ k,

βk, if τ < t.

Proof. (a) Let us first consider the covariance function between the random variables
Xt and Xt+k. If t + k ≤ τ , then using the independency between Xt and the
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counting series incorporated in α ◦ Xt+k−1, and the independency between the
random variables Xt and εt+k, we have that

γt(k) = Cov(Xt, α ◦Xt+k−1 + εt+k)

= αCov(Xt, Xt+k−1)

= αkV ar(Xt).

Since t ⩽ τ , then V ar(Xt) = µ1(1+µ1) and γt(k) = αk ·µ1(1+µ1). Obviously, the
covariance function is positive in this case.

If t ⩽ τ<t+ k, then using the independency of the random variables considered
in the first case, we have that

γt(k) = Cov(Xt, β ∗Xt+k−1 + εt+k)

= βCov(Xt, Xt+k−1)

= βt+k−τCov(Xt, Xτ ).

Since Cov(Xt, Xτ ) = Cov(Xt, Xt+(τ−t)) and τ − t ⩾ 0, we can apply the result of

the first case which implies that γt(k) = βt+k−τατ−tV ar(Xt). Finally, since t ⩽ τ ,
we have that γt(k) = βt+k−τατ−tµ1(1 + µ1). Obviously, the covariance function is
positive in this case. The third case can be considered in similar way which implies
the proof of the first part of theorem.

(b) The correlation function of the random variables Xt and Xt+k can be rep-
resented via the corresponding covariance function as

ρt(k) =
γt(k)√

V ar(Xt) · V ar(Xt+k)
.

If t+ k ≤ τ , then we have that the random variables Xt and Xt+k have the same
distributions which together with γt(k) = αkV ar(Xt) imply that ρt(k) = αk.

If t ⩽ τ<t + k, then we have that the random variables Xt and Xt+k have
geometric distributions with means µ1 and µ2, respectively. Then, using this and
the result of the first part of theorem, we have that

ρt(k) =
ατ−tβt+k−τµ1(1 + µ1)√
µ1(1 + µ1) · µ2(1 + µ2)

= ατ−tβt+k−τ

√
µ1(1 + µ1)

µ2(1 + µ2)
.

The last case can be considered in similar way which implies the proof of the
second part of theorem related to expression of the correlation function.

Obviously, the correlation function is positive in all cases. Let us now prove that
the correlation function ρt(k) is always less than 1. Since the parameters α and β
belong to (0, 1), this conclusion is obviously in cases: t + k ≤ τ and t > τ . Let

us consider the case t ⩽ τ<t + k. Since β ∈
(
0,min{ µ2

1+µ2
, µ2

1+µ1
}
)
, we have that

β < µ2/(1 + µ1) < (1 + µ2)/µ1. From this we obtain that β <
√

µ2(1+µ2)
µ1(1+µ1)

, which

implies that ρt(k) is less than 1.
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Remark 2.1. From the results of the previous theorem we can conclude that the cor-
relation function of the random variables Xt and Xt+k, k ≥ 0 can be written in the
form ρt(k) = ack, where a is positive and c ∈ {β, α}, which implies that Corr(Xt, Xt+k)
converges to 0 when k −→ ∞.

In the following theorem we present some conditional properties of the intro-
duced model which can be derived without using the complicated conditional prob-
abilities.

Theorem 4. Let {Xt}, t ∈ Z, be the model given by Definition 1 which satisfies
the assumptions of Theorem 1. Then:

(a) The conditional expectation of the random variable Xt+k, k ⩾ 0, for given
Xt is a linear function of Xt given by

E(Xt+k|Xt) =


αk(Xt − µ1) + µ1, if t+ k ⩽ τ,

ατ−tβt+k−τ (Xt − µ1) + µ2, if t ⩽ τ<t+ k,

βk(Xt − µ2) + µ2, if τ < t.

(b) The conditional variance of the random variable Xt+k for given Xt is of the
form

(2.4) V (Xt+k|Xt) = at,kXt + bt,k,

where at,k and bt,k are given respectively as

at,k =



αk(1− αk), t+ k ⩽ τ,

ατ−2tβt+k−2τ

1−β (αtβτ + αtβτ+1 − ατβt+k − 2αtβt+k+1

+ατβt+k+1), t ⩽ τ < t+ k,
βk(1 + β)(1− βk)

1− β
, τ < t,

and

bt,k =



µ1(1− αk)(1 + µ1 + µ1α
k), t+ k ⩽ τ,

α−2tβ−2τ

1− β
[α2t(1− β)β2τµ2(1 + µ2)− α2τ (1− β)β2t+2kµ2

1

+αt+τβt+k(2βt+k+1 − βτ − βτ+1)], t⩽τ <t+ k,
(1− βk)µ2[1− β − 2βk+1 + (1− β)(1 + βk)µ2]

1− β
, τ < t.

Proof. (a) Let us first consider the conditional expectation of the random variable
Xt+k, k ⩾ 0, for given Xt. Let t+ k ≤ τ . Then using the property of the binomial
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thinning operator E(α◦Xt+k−1|Xt+k−1) = αXt+k−1 and the first-order Markovian
property, we have that E(Xt+k|Xt) = αE(Xt+k−1|Xt)+E(εt+k). Applying the last

equation k−1 more times, we have that E(Xt+k|Xt) = αkXt+
∑k−1

j=0 α
jE(εt+k−j).

Since t + k ⩽ τ , the random variables εt+k, εt+k−1, . . . , εt+1, are identically dis-
tributed random variables. Also, from (2.1) we have that E(εt+k−j) = (1 − α)µ1

for j ∈ {0, 1, . . . , k − 1}. Thus,

(2.5) E(Xt+k|Xt) = αkXt + µ1(1− αk).

Let t ⩽ τ < t + k. First, using the property of the negative binomial thinning
operator E(β∗Xt+k−1|Xt+k−1) = βXt+k−1 and applying t+k−τ times the obtained
equation, we have that

E(Xt+k|Xt) = βE(Xt+k−1|Xt) + E(εt+k)

= βt+k−τE(Xτ |Xt) +

t+k−τ−2∑
j=0

βjE(εt+k−j) + βt+k−τ−1E(ετ+1).

The random variables εt+k, εt+k−1, . . . , ετ+2, have the distribution (2.3) which
implies that the expectation is E(εt+k−j) = µ2(1−β) for j ∈ {0, 1, . . . , t+k−τ−2}.
According to (2.2), we have that E(ετ+1) = µ2 − βµ1. Replacing these results in
expression of E(Xt+k|Xt), we have that

E(Xt+k|Xt) = βt+k−τE(Xτ |Xt)− βt+k−τµ1 + µ2.

Since E(Xτ |Xt) = E(Xt+(τ−t)|Xt) and τ−t ⩾ 0, using the result (2.5) for k = τ−t,
we obtain that

E(Xt+k|Xt) = βt+k−τατ−t(Xt − µ1) + µ2.

The third case can be considered in similar way which implies the proof of the first
part of theorem.

(b) The easiest way to calculate the conditional variance V ar(Xt+k|Xt) is to
use the conditional probability generating function gt,k(s) = E(sXt+k |Xt) and the
property

(2.6) V ar(Xt+k|Xt) = g′′t,k(1) + g′t,k(1)− [g′t,k(1)]
2.

We have three cases: t+ k ≤ τ , τ < t and t ≤ τ < t+ k. We will consider each case
separately.

At first we suppose that t+ k ≤ τ . Conditional probability generating function
of the random variable Xt+k, k ⩾ 0, for given Xt is

gt,k(s) = E(sα◦Xt+k−1+εt+k | Xt)

= E[(1− α+ αs)Xt+k−1 |Xt]E(sεt+k)

= gt,k−1(1− α+ αs)φ(s),

(2.7)
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where φ(s) =
1 + αµ1 − αµ1s

1 + µ1 − µ1s
. In fact, we have a recurrent formula gt,k(s) with an

initial condition gt,0(s) = sXt . Thus, we obtain that

(2.8) gt,k(s) =
1 + µ1α

k − µ1α
ks

1 + µ1 − µ1s
(1− α+ αs)Xt .

According to (2.6), we have

(2.9) V ar(Xt+k|Xt) = αk(1− αk)Xt + µ1(1− αk)(1 + µ1 + µ1α
k).

Let us consider now the third case τ ≤ t. The second case will be considered
at the end of the proof. Conditional probability generating function of the random
variable Xt+k, k ⩾ 0, for given Xt is given by

gt,k(s) = E(sβ∗Xt+k−1+εt+k | Xt)

= E
[( 1

1 + β − βs

)Xt+k−1

| Xt

]
E(sεt+k)

= gt,k−1

( 1

1 + β − βs

)
ψ(s),

(2.10)

where ψ(s) = 1+β(1+µ2)−β(1+µ2)s
(1+β−βs)(1+µ2−µ2s)

. The function gt,k(s) can be written in the fol-

lowing form

(2.11) gt,k(s) = (Kk(s))
XtBk(s),

where

Kk(s) =
1− βk − β(1− βk−1)s

1− βk+1 − β(1− βk)s

and

Bk(s) =
1− βk+1 + (1− β)βkµ2 − β[1− βk + (1− β)βk−1µ2]s

[1− βk+1 − β(1− βk)s][1 + µ2 − µ2s]
.

Then, by applying (2.6), we have that

V ar(Xt+k | Xt) =
βk(1 + β)(1− βk)

1− β
Xt

+
(1− βk)µ2[1− β − 2βk+1 + (1− β)(1 + βk)µ2]

1− β
.

At the end, we suppose that t ≤ τ < t+ k. Since t+ k = τ +1+ (t+ k− τ − 1),
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we have the following

E(sXt+k | Xt) =

= E[(Kt+k−τ−1(s))
Xτ+1 | Xt]Bt+k−τ−1(s)

= E[(Kt+k−τ−1(s))
β∗Xτ+ετ+1 | Xt]Bt+k−τ−1(s)

= E
[( 1

1 + β − βKt+k−τ−1(s)

)Xτ

| Xt

]
× 1 + β(1 + µ1)− β(1 + µ1)Kt+k−τ−1(s)

(1 + β − βKt+k−τ−1(s))(1 + µ2 − µ2Kt+k−τ−1(s))
Bt+k−τ−1(s).

Let L(s) = (1 + β − βKt+k−τ−1(s))
−1. Then, the next applies

E(sXt+k | Xt) =

= E((L(s))Xτ |Xt)
1 + β(1 + µ1)− β(1 + µ1)Kt+k−τ−1(s)

(1+β−βKt+k−τ−1(s))(1+µ2−µ2Kt+k−τ−1(s))
Bt+k−τ−1(s)

= (1− ατ−t + ατ−tL(s))Xt
1 + µ1α

τ−t − µ1α
τ−tL(s)

1 + µ1 − µ1L(s)

× 1 + β(1 + µ1)− β(1 + µ1)Kt+k−τ−1(s)

(1 + β − βKt+k−τ−1(s))(1 + µ2 − µ2Kt+k−τ−1(s))
Bt+k−τ−1(s).

Finally, from (2.6), we have that

V ar(Xt+k | Xt) =

=
ατ−2tβt+k−2τ

1− β
(αtβτ + αtβτ+1 − ατβt+k − 2αtβt+k+1 + ατβt+k+1)Xt

+
α−2tβ−2τ

1− β
[α2t(1− β)β2τµ2(1 + µ2)− α2τ (1− β)β2t+2kµ2

1

+ αt+τβt+k(2βt+k+1 − βτ − βτ+1)]

and the theorem is proved by this.

3. Estimation of the unknown parameters

In this section we consider estimation of the unknown parameters of our model.
We suppose that we have a realization (X1, X2, . . . , XN ) of size N of the mixture
integer-valued autoregressive model with a structural break given by (1.1). We want
to estimate the position of the structural break τ and to estimate the parameters
α, β, µ1 and µ2. We consider two estimation methods: the conditional maximum
likelihood method and the conditional least squares method. In the following two
subsections we analyze both methods.

3.1. Conditional maximum likelihood estimation

The maximum likelihood method has been widely used for the estimation of the
structural breaks and change points depending on the considered problem. The
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maximum likelihood method derives the estimators of the structural breaks or
change points by maximizing the log likelihood function with respect to the struc-
tural breaks or given change points. For example, Hinkley and Hinkley [7] consid-
ered the maximum likelihood method for the estimation of one change point for the
sequence of independent random variables with Bernoulli distributions, Horváth [8]
used the maximum likelihood method to test changes in the parameters of indepen-
dent normal distributed random variables, Avery and Anderson [3] used it for the
estimation of two change points in DNA sequences etc.

Since our observations are dependent we consider the conditional maximum
likelihood method which estimates the unknown structural break τ and the pa-
rameters α, β, µ1 and µ2 by maximizing the conditional log-likelihood function
L = logP (Xi = xi, 2 ⩽ i ⩽ N |X1 = x1). Using the fact that our model is a first-
order Markov process and the results of Theorem 2, we obtain that the conditional
log-likelihood function is given by

L(τ, α, β, µ1, µ2) =

=

τ∑
t=2

log


m(t)∑
i=0

b(xt−1, i, α)
[
αI{xt=i} + (1− α)g(xt − i, µ1)

]
+ log

{
xτ+1∑
i=0

h(xτ , i, β)

[
βµ1

µ2 − β
g(xτ+1 − i, β) +

(
1− βµ1

µ2 − β

)
g(xτ+1 − i, µ2)

]}

+

N∑
t=τ+2

log

{
xt∑
i=0

h(xt−1, i, β)

[
βµ2

µ2 − β
g(xt−i, β)+

(
1− βµ2

µ2−β

)
g(xt−i, µ2)

]}
,

where m(t) = min(xt, xt−1).

We can consider two approaches based on the conditional maximum likelihood
estimation method. Which approach will be used depends on the sample size.
Thus, if the sample size is not too large, we can estimate the unknown parameters
as follows. For each fixed and known τ we estimate the parameters α, β, µ1 and
µ2 by maximizing the conditional log-likelihood function L. Let us denote these
estimates by α̂τ , β̂τ , µ̂1,τ and µ̂2,τ . Then, the estimate of the structural break τ̂ is

obtained as the value τ which maximizes the function L(τ, α̂τ , β̂τ , µ̂1,τ , µ̂2,τ ). This
approach works very well and gives good estimates for any sample size, but can
be slow when the sample size is greater than 2000. In this case, we can estimate
all five parameters by maximizing the conditional log-likelihood function L with
respect to all these parameters. The simulations show that the first approach gives
better estimates, especially it estimates better the structural break.
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3.2. Conditional least squares estimation

According to the results presented in the first part of Theorem 4, the conditional
least squares estimators are obtained by minimizing the function Q given as

Q =

τ−1∑
t=1

[Xt+1 − αXt − (1− α)µ1]
2 + (Xτ+1 − βXτ − µ2 + βµ1)

2

+

N−1∑
t=τ+1

[Xt+1 − βXt − (1− β)µ2]
2

with respect to the unknown parameters τ , α, β, µ1 and µ2. If the parameter τ is
known, then the estimators of the parameters α, β, µ1 and µ2 can be obtained as
the solutions of the system of equations

∂Q

∂α
=

τ−1∑
t=1

[Xt+1 − αXt − (1− α)µ1](−Xt + µ1) = 0,

∂Q

∂β
=(Xτ+1 − βXτ − µ2 + βµ1)(−Xτ + µ1)+

+

N−1∑
t=τ+1

[Xt+1 − βXt − (1− β)µ2](−Xt + µ2) = 0,

∂Q

∂µ1
=− (1− α)

τ−1∑
t=1

[Xt+1 − αXt − (1− α)µ1] + β(Xτ+1 − βXτ − µ2 + βµ1) = 0,

∂Q

∂µ2
=(Xτ+1 − βXτ − µ2 + βµ1) + (1− β)

N−1∑
t=τ+1

[Xt+1 − βXt − (1− β)µ2] = 0,

with respect to the parameters α, β, µ1 and µ2. Similarly as in the first approach
discussed in the conditional maximum likelihood estimation, we can derive the
conditional least squares estimates as follows. For each fixed and known true value
of the parameter τ we estimate the remaining parameters α, β, µ1 and µ2 by
minimizing the function Q. Let us denote again these estimates by α̂τ , β̂τ , µ̂1,τ and
µ̂2,τ . Then, the estimate of the structural break τ̂ is obtained as the value τ which

minimizes the function Q(τ, α̂τ , β̂τ , µ̂1,τ , µ̂2,τ ), i.e.

τ̂ = arg
τ

minQ(τ, α̂τ , β̂τ , µ̂1,τ , µ̂2,τ ),

where we consider the realized values of the function Q for all τ ∈ [1, N − 1].

3.3. Simulations

To check the performances of the estimators obtained by the conditional maximum
likelihood method and the conditional least squares method we simulated 1000
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samples for the following cases of true values of the parameters. We considered two
cases: (a) the true values are α = 0.2, β = 0.3, µ1 = 1 and µ2 = 2; and (b) the true
values are α = 0.4, β = 0.8, µ1 = 4 and µ2 = 10. Thus, in the first case we supposed
that the correlations between the observations are small and the mean parameters
are moderate and similar. In the second case we supposed that the correlation and
the mean in the case of the negative binomial thinning operator are significantly
larger.

For both cases we consider samples of sizes n = 100, n = 200 and n = 500. For
each different sample size we consider three different cases: τ = n/4, τ = n/2 and
τ = 3n/4.

The maximization and the minimization have been performed by using the optim
function from R statistical software and using the method Nelder-Mead. Some parts
of the code have been written in Rcpp to improve the speed of the estimation. For
each case we considered the mean, median, lower (Q1) and upper (Q3) quartiles, and
standard error (SE) of the obtained estimates. The flow of the estimation procedure
can be divided into two steps. In the first step, for all τ ∈ [1, T − 1] we estimate
parameters α, β, µ1 and µ2. Consequently, we obtained values of functions L and
Q discussed in the previous subsections. In the second step, from these calculated
values, we pick the value of τ which maximise the value of L for CML and minimize
the value of Q for the CLS method. All the results are presented in Tables 3.1–3.3.

For big enough and small enough sample size, we conclude that there is regu-
larity. As the value of the structural parameter τ rises, as the value SE of α̂ and
µ̂1 decreases. For the value SE of β̂ and µ̂2, we can conclude the opposite. While
the value of the structural parameter τ rises, the value SE of β̂ and µ̂2 also rises.
This correctness is justified by the number of information we receive. When the
value of the structural parameter τ increase, the number of information for α̂ and
µ̂1 grows and the number of information for β̂ and µ̂2 decreases. When we have
more information the error is smaller and conversely.

We can notice that the estimates are quite close to the true values when the sam-
ple size is 500, while there are some deviations for samples of size 100. Actually, the
CML method shows remarkable results even for samples of sizes 100 and 200, while
the CLS method are not quite accurate in these cases, especially for parameters µ1

and µ2. The CML method provides consistent estimates for both set of parameters,
while CLS gives slightly better results when the value of parameters are smaller,
i.e. for the parameter set a). Especially interesting part is the estimation of the
structural break (parameter τ). While the CML method is quite accurate for all
tested cases, the CLS method shows some deviations from true value even for the
samples of size 500.

After all we can conclude that the estimates converges to their true values with
the increase of the sample size, while the convergence is faster with CML than with
CLS method.
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CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 40.3010 31 22 58 0.8389 τ̂ 56.178 53 32 83 0.8509
τ̂ − τ 15.301 6 −3 33 0.8389 τ̂ − τ 31.178 28 7 58 0.8509

α̂ 0.2113 0.1795 0.0240 0.3111 0.0065 α̂ 0.2539 0.2099 0.0663 0.3602 0.0074

β̂ 0.2838 0.2836 0.1722 0.3761 0.0055 β̂ 0.2392 0.2025 0.0300 0.3434 0.0073
µ̂1 0.9436 0.8422 0.5160 1.3039 0.0205 µ̂1 1.4065 1.2500 0.8447 1.6695 0.0335
µ̂2 2.1913 2.0686 1.7100 2.5004 0.0379 µ̂2 2.9528 2.3678 1.8130 3.1826 0.0679

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 52.697 53 40.75 69.25 0.7504 τ̂ 64.957 65 51 82 0.6916
τ̂ − τ 2.697 3 -9.25 19.25 0.7504 τ̂ − τ 14.957 15 1 32 0.6916

α̂ 0.2059 0.1853 0.0728 0.2918 0.0058 α̂ 0.2113 0.1791 0.0674 0.3014 0.0060

β̂ 0.2823 0.2667 0.1599 0.3919 0.0057 β̂ 0.2386 0.1999 0.0305 0.3582 0.0073
µ̂1 0.9375 0.8892 0.6514 1.1087 0.0187 µ̂1 1.1521 1.0440 0.8236 1.2945 0.0225
µ̂2 2.2583 2.1321 1.6926 2.6426 0.0338 µ̂2 3.0559 2.4966 1.8853 3.4039 0.0664

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 63.263 75 44 83 0.8781 τ̂ 73.353 80 70 89.25 0.7596
τ̂ − τ -11.737 0 -31 8 0.8781 τ̂ − τ -1.647 5 -5 14.25 0.7596

α̂ 0.2223 0.1937 0.1058 0.2901 0.0061 α̂ 0.1994 0.1661 0.0764 0.2721 0.0057

β̂ 0.2820 0.2449 0.1072 0.4095 0.0071 β̂ 0.2331 0.1606 0.0001 0.3600 0.0083
µ̂1 0.9271 0.8868 0.7090 1.0701 0.0163 µ̂1 1.1652 0.9633 0.8051 1.1488 0.0482
µ̂2 2.3613 2.1068 1.4056 2.9152 0.0464 µ̂2 3.1387 2.5917 1.8062 3.7004 0.0713

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 68.376 54 45 75 1.4224 τ̂ 104.191 86 56 159 1.723
τ̂ − τ 18.376 4 -5 25 1.4224 τ̂ − τ 54.191 36 6 109 1.723

α̂ 0.1895 0.1748 0.0755 0.2741 0.0050 α̂ 0.2222 0.2080 0.1015 0.3206 0.0053

β̂ 0.2980 0.2990 0.2356 0.3548 0.0039 β̂ 0.2703 0.2590 0.1577 0.3518 0.0061
µ̂1 0.9489 0.8727 0.6749 1.1541 0.0162 µ̂1 1.2340 1.1950 0.8670 1.5363 0.0170
µ̂2 2.1757 2.0817 1.8718 2.3235 0.0259 µ̂2 2.8910 2.2823 1.9894 2.9201 0.0651

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 101.519 102 91 117 1.1599 τ̂ 127.34 117 101.75 160 1.2865
τ̂ − τ 1.519 2 -9 17 1.1599 τ̂ − τ 27.34 17 1.75 60 1.2865

α̂ 0.1943 0.1854 0.1256 0.2527 0.0038 α̂ 0.2035 0.1960 0.1005 0.2842 0.0044

β̂ 0.2964 0.2927 0.2223 0.3644 0.0040 β̂ 0.2701 0.2594 0.1431 0.3541 0.0061
µ̂1 0.9363 0.9254 0.7842 1.0716 0.0097 µ̂1 1.1220 1.0431 0.8798 1.2406 0.0177
µ̂2 2.1895 2.1050 1.8272 2.4042 0.0276 µ̂2 2.9048 2.3379 1.9872 2.9028 0.0637

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 139.624 151 137.75 162 1.3726 τ̂ 156.556 159 150 179 1.1203
τ̂ − τ -10.376 1 -12.25 12 1.3726 τ̂ − τ 6.556 9 0 29 1.1203

α̂ 0.1982 0.1943 0.1395 0.2436 0.0035 α̂ 0.1928 0.1893 0.1221 0.2542 0.0034

β̂ 0.3099 0.2914 0.1975 0.4010 0.0056 β̂ 0.2770 0.2483 0.0962 0.4009 0.0074
µ̂1 0.9559 0.9457 0.8239 1.0627 0.0128 µ̂1 1.0598 0.9968 0.8846 1.1105 0.0170
µ̂2 2.3912 2.2345 1.7516 2.7357 0.0370 µ̂2 3.1465 2.5441 2.0297 3.4113 0.0668

n = 100, τ = 25, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 100, τ = 50, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 100, τ = 75, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 200, τ = 50, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 200, τ = 100, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 200, τ = 150, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

Table 3.1: Conditional maximum likelihood and conditional least squares estimates
for different cases of true values of the parameters
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CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 135.523 128 119 142 1.7701 τ̂ 191.46 139 127 190.25 3.6558
τ̂ − τ 10.523 3 -6 17 1.7701 τ̂ − τ 66.46 14 2 65.25 3.6558

α̂ 0.1933 0.1882 0.1343 0.2454 0.0031 α̂ 0.1994 0.1896 0.1129 0.2687 0.0039

β̂ 0.2969 0.2977 0.2655 0.3290 0.0017 β̂ 0.2859 0.2859 0.2327 0.3328 0.0039
µ̂1 0.9482 0.9449 0.8151 1.0640 0.0075 µ̂1 1.0919 1.0107 0.8798 1.2274 0.0104
µ̂2 2.0448 2.0370 1.9024 2.1460 0.0118 µ̂2 2.4803 2.0982 1.9556 2.2773 0.0531

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 255.23 253 246 265.25 1.4007 τ̂ 289.542 262 251 298.25 2.1692
τ̂ − τ 5.23 3 -4 15.25 1.4007 τ̂ − τ 39.542 12 1 48.25 2.1692

α̂ 0.1952 0.1935 0.1606 0.2279 0.0019 α̂ 0.1991 0.1945 0.1481 0.2446 0.0024

β̂ 0.2954 0.2923 0.2539 0.3355 0.0020 β̂ 0.2893 0.2838 0.2297 0.3405 0.0038
µ̂1 0.9742 0.9713 0.8955 1.0601 0.0042 µ̂1 1.0360 1.0127 0.9278 1.1172 0.0051
µ̂2 2.0509 2.0371 1.8962 2.1879 0.0079 µ̂2 2.3906 2.1054 1.9496 2.3229 0.0429

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 372.582 377 369 391 1.8381 τ̂ 394.592 386 375 419 1.8383
τ̂ − τ -2.418 2 -6 16 1.8381 τ̂ − τ 19.592 11 0 44 1.8383

α̂ 0.1983 0.1997 0.1720 0.2291 0.0015 α̂ 0.2017 0.1963 0.1568 0.2406 0.0025

β̂ 0.2971 0.2922 0.2341 0.3555 0.0032 β̂ 0.2803 0.2754 0.1946 0.3551 0.0048
µ̂1 0.9715 0.9734 0.9106 1.0404 0.0041 µ̂1 1.0258 1.0023 0.9322 1.0779 0.0082
µ̂2 2.1009 2.0907 1.8623 2.3062 0.0158 µ̂2 2.5460 2.2123 1.9534 2.5673 0.0481

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 27.315 25 22 31 0.374 τ̂ 52.778 47 25 86 0.9949
τ̂ − τ 2.315 0 -3 6 0.374 τ̂ − τ 27.778 22 0 61 0.9949

α̂ 0.3823 0.3939 0.3196 0.4604 0.0042 α̂ 0.6072 0.7011 0.3497 0.8357 0.0090

β̂ 0.7953 0.8013 0.7595 0.8356 0.0018 β̂ 0.5914 0.6536 0.4690 0.8017 0.0077
µ̂1 3.8424 3.6386 2.6067 4.9137 0.0555 µ̂1 4.8332 2.9441 1.5312 8.1632 0.1367
µ̂2 10.1301 9.6837 7.7273 11.9703 0.1113 µ̂2 6.5530 5.7130 4.1488 8.2864 0.1325

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 49.606 50 46 56 0.4526 τ̂ 49.159 47 23 76 0.9257
τ̂ − τ -0.394 0 -4 6 0.4526 τ̂ − τ -0.841 -3 -27 26 0.9257

α̂ 0.3901 0.3899 0.3441 0.4414 0.0028 α̂ 0.4820 0.4096 0.2909 0.7275 0.0086

β̂ 0.7776 0.7962 0.7471 0.8369 0.0036 β̂ 0.6073 0.6687 0.5105 0.7896 0.0074
µ̂1 3.8695 3.8411 3.1233 4.6293 0.0396 µ̂1 4.1442 3.0642 1.9004 5.4229 0.1905
µ̂2 10.1451 9.3875 7.1875 12.2876 0.1524 µ̂2 6.8419 6.0001 4.1815 8.2232 0.1612

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 69.431 75 67 78 0.5738 τ̂ 49.801 49 24 75 0.9141
τ̂ − τ -5.569 0 -8 3 0.5738 τ̂ − τ -25.199 -26 -51 0 0.9141

α̂ 0.3986 0.4027 0.3614 0.4390 0.0027 α̂ 0.3847 0.3467 0.2244 0.5031 0.0076

β̂ 0.7389 0.7898 0.7034 0.8460 0.0058 β̂ 0.5889 0.6245 0.4577 0.7546 0.0068
µ̂1 3.7731 3.7484 3.2043 4.3642 0.0361 µ̂1 3.6433 3.3320 2.2435 4.5701 0.0699
µ̂2 10.0257 9.0245 5.4754 13.107 0.1956 µ̂2 6.2752 5.7130 4.1102 7.5401 0.1171

n = 500, τ = 125, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 500, τ = 250, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 500, τ = 375, α = 0.2, β = 0.3, µ1 = 1, µ2 = 2

n = 100, τ = 25, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 100, τ = 50, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 100, τ = 75, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

Table 3.2: Conditional maximum likelihood and conditional least squares estimates
for different cases of true values of the parameters
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CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 52.079 50 47 56 0.4835 τ̂ 99.802 77.5 39 179 2.1926
τ̂ − τ 2.079 0 -3 6 0.4835 τ̂ − τ 49.802 27.5 -11 129 2.1926

α̂ 0.3949 0.3962 0.3464 0.4409 0.0027 α̂ 0.6169 0.7021 0.3983 0.8215 0.0077

β̂ 0.7955 0.7977 0.7721 0.8223 0.0012 β̂ 0.6260 0.7097 0.5035 0.7978 0.0076
µ̂1 3.9902 3.8837 3.1168 4.7795 0.0385 µ̂1 4.8815 2.7730 1.8929 8.3710 0.1216
µ̂2 9.9912 9.7218 8.2559 11.3364 0.0797 µ̂2 7.5863 7.0549 4.9478 9.0451 0.1589

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 100.343 100 96 105 0.4853 τ̂ 88.594 72 35 140 1.9663
τ̂ − τ 0.343 0 -4 5 0.4853 τ̂ − τ -11.406 -28 -65 40 1.9663

α̂ 0.3977 0.3990 0.3668 0.4298 0.0016 α̂ 0.5060 0.4450 0.3367 0.7127 0.0074

β̂ 0.7944 0.7996 0.7650 0.8298 0.0016 β̂ 0.6658 0.7230 0.6100 0.7899 0.0062
µ̂1 3.9851 3.9772 3.5154 4.4516 0.0235 µ̂1 3.6213 2.5677 1.9437 4.6694 0.0807
µ̂2 10.0778 9.65 7.9898 11.8108 0.1068 µ̂2 6.9571 6.756 4.6707 8.2727 0.1127

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 147.603 150 144.75 155 0.6018 τ̂ 105.155 108.5 51 157 1.8747
τ̂ − τ -2.397 0 -5.25 5 0.601 τ̂ − τ -44.845 -41.5 -99 7 1.8747

α̂ 0.3990 0.3994 0.3739 0.4246 0.0013 α̂ 0.4139 0.3896 0.2983 0.4885 0.0060

β̂ 0.7810 0.7943 0.7449 0.8349 0.0029 β̂ 0.6495 0.6914 0.5943 0.7713 0.0059
µ̂1 3.9524 3.9663 3.5614 4.3297 0.0193 µ̂1 3.5984 3.5848 2.3423 4.3866 0.0517
µ̂2 10.2504 9.6642 7.1598 12.4546 0.1494 µ̂2 6.4835 6.0226 4.4474 7.4225 0.1027

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 126.589 125 123 130 0.4317 τ̂ 214.71 123 74 440.25 5.6351
τ̂ − τ 1.589 0 -2 5 0.4317 τ̂ − τ 89.71 -2 -51 315.25 5.6351

α̂ 0.3976 0.3995 0.3726 0.4241 0.0013 α̂ 0.6082 0.5840 0.444 0.7999 0.0063

β̂ 0.7979 0.7995 0.7820 0.8150 0.0008 β̂ 0.6796 0.7602 0.6771 0.8054 0.0067
µ̂1 4.0661 3.9800 3.5957 4.5168 0.0223 µ̂1 4.4798 2.3832 2.0444 7.9776 0.1049
µ̂2 9.9584 9.8093 8.8011 11.0295 0.0499 µ̂2 8.1966 8.2114 5.9552 9.8036 0.1216

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 251.822 250 248 256 0.4341 τ̂ 183.334 124.5 67.75 282.25 4.7419
τ̂ − τ 1.822 0 2 6 0.4341 τ̂ − τ -66.666 -125.5 -182.25 32.25 4.7419

α̂ 0.4008 0.4018 0.3831 0.4187 0.0008 α̂ 0.5115 0.4664 0.3784 0.6269 0.0057

β̂ 0.7977 0.7993 0.7777 0.8186 0.0009 β̂ 0.7231 0.7659 0.7187 0.7973 0.0051
µ̂1 3.9649 3.9336 3.6907 4.2383 0.0128 µ̂1 3.3701 2.2528 1.9854 4.0988 0.0659
µ̂2 10.0991 9.9783 8.7784 11.3061 0.0597 µ̂2 7.3444 7.2657 5.7130 8.3134 0.1048

CML Mean Median Q1 Q3 SE CLS Mean Median Q1 Q3 SE

τ̂ 374.349 375 370 381 0.5138 τ̂ 268.048 297 137 382 4.3605
τ̂ − τ -0.651 0 -5 6 0.5138 τ̂ − τ -106.952 -78 -238 7 4.3605

α̂ 0.4001 0.4011 0.3851 0.4153 7e-04 α̂ 0.4315 0.4174 0.3657 0.4779 0.0038

β̂ 0.7938 0.7973 0.766 0.8229 0.0014 β̂ 0.7346 0.7499 0.697 0.7938 0.0036
µ̂1 4.0037 4.0093 3.7538 4.2318 0.0111 µ̂1 3.4848 3.6406 2.6151 4.2147 0.0365
µ̂2 10.1226 9.709 8.1434 11.5507 0.1103 µ̂2 6.6011 6.0863 4.5934 7.1362 0.1267

n = 200, τ = 50, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 200, τ = 100, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 200, τ = 150, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 500, τ = 125, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 500, τ = 250, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

n = 500, τ = 375, α = 0.4, β = 0.8, µ1 = 4, µ2 = 10

Table 3.3: Conditional maximum likelihood and conditional least squares estimates
for different cases of true values of the parameters
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4. Illustrative examples

In this section we discuss possible applications of our introduced model. Accord-
ing to the motivations mentioned in the introductory section, we consider two real
data sets about some criminal counts observed in Pittsburgh. We consider two real
data sets from the forecasting principles site (http://www.forecastingprinciples.com).
Each data set contains 144 observations which represents monthly observed corre-
sponding criminal counts in the period between January 1990 and December 2001.

4.1. Computer Aided Dispatch (CAD) calls about drug dealing

The first considered real data set represents Computer Aided Dispatch (CAD) calls
about drug dealing registered in Pittsburgh 1011th tract. The sample mean and the
sample variance are 3.1944 and 13.3605, respectively, which indicate that we deal
with overdispersed data. The sample autocorrelation is 0.6509, so the observations
are strongly correlated. The sample path, ACF and PACF plots are presented in
Figure 4.1.

From the PACF plot, we can conclude that the first order integer-valued time
series model will be adequate for this real data set. Also, from the sample path plot
we can conclude that there are low activities about the CAD drug calls before the
first 60 months. After that, the CAD drug calls significantly increase. This indicates
that there is a change in model after 60 months, so our model with structural
break can be considered as competitive model in comparison with GINAR(1) and
NGINAR(1) models. For each model we derive the maximum likelihood estimates,
values of the Akaike (AIC) and Bayesian (BIC) criterions and the root mean square
(RMS). Beside this, we estimate the structural break for our model. All results are
presented in Table 4.1.

Model ML estimates AIC BIC RMS

GINAR(1) α̂ = 0.3901, µ̂ = 2.7882 633.0897 639.0293 2.9385

NGINAR(1) β̂ = 0.6588, µ̂ = 3.0756 608.0767 614.0163 2.7664

Mixture τ̂ = 62, α̂ = 0.0736, β̂ = 0.6309, µ̂1 = 0.868, µ̂2 = 4.2307 593.0997 604.9790 2.6405

Table 4.1: ML estimates, AIC, BIC, RMS for the CAD drug calls in 1011th tract

From the obtained results, we can conclude that our model provides the smallest
values for the AIC and BIC criterions, which leads to conclusion that our model has
captured very well the change of models. The estimated structural break is τ̂ = 62
which corresponds to earlier conclusion obtained from the sample path. Also, we
can see that the smallest RMS is obtained for our model which means that our
model gives best fit among the considered models. Fits for all three models are
given in Figure 4.2. The bolded lines represent the fit of each model. From this
figure we can conclude that our model very well capture behavior of CAD drug
calls.
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Fig. 4.1: The sample path, ACF and PACF for the CAD calls about drug dealing
in 1011th tract
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Fig. 4.2: The fits of all three models for the CAD drug calls data
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4.2. Phone calls about registered shootings that can be reported also
by civilians

The second considered actual dataset consists of phone calls about registered shoot-
ings that can be reported also by civilians registered in the 1017th Pittsburgh tract.
The sample mean and the sample variance are 5.9722 and 32.3349, respectively.
Again, we have overdispersed data. The sample autocorrelation is 0.4563 which in-
dicates significant correlation between the observations. The Figure 4.3 represents
the sample path, ACF and PACF plots.
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Fig. 4.3: The sample path, ACF and PACF for 1017 data

From the sample path we can observe that there is change in the behavior of
the phone calls after around 20 months. This is justified by estimation in which we
obtain that estimated structural break is 24 months. From the results presented in
Table 4.2, we can conclude that our model very well fit the counts of phone calls.
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Model ML estimates AIC BIC RMS

GINAR(1) α̂ = 0.3360, µ̂ = 5.2345 787.0130 792.9526 5.1089

NGINAR(1) β̂ = 0.4213, µ̂ = 5.4126 782.5761 788.5157 5.0521

Mixture τ̂ = 24, α̂ = 0.1903, β̂ = 0.3724, µ̂1 = 0.7662, µ̂2 = 5.9462 768.2952 780.1744 4.8912

Table 4.2: ML estimates, AIC, BIC, RMS for the calls in 1017th tract
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Fig. 4.4: The fits of all three models for the phone calls data
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5. Concluding remarks

In this manuscript we have introduced an integer-valued autoregressive model of
the first-order with a structural break as a mixture of two integer-valued autoregres-
sive models with binomial and negative binomial thinning operators. The model
has been constructed under motivations of the different behaviors of the considered
objects before and after a break. Exactly, we have considered objects (virus, crimi-
nals etc.) which have low activities before a break leading to counts of small values
and after a break have increasing activities leading to counts of large values. Be-
cause of that, we have used two different thinning operators, the binomial thinning
for low activity and the negative binomial thinning for increasing activity. A model
with different geometric marginals has been constructed and many of its proper-
ties are considered. Some of them are distribution of the innovations, conditional
and unconditional properties, covariance and correlation structures. Two methods
of estimations, conditional maximum likelihood and conditional least squares, are
considered and the performances of their estimates have been checked by simula-
tions. At the end, applicability of the model has been considered on two real data
sets about criminal acts. It would be interesting to introduce some methods which
can be used to detect the position of structural break. Standard CUSUM tests
cannot be applied for our model because the change in thinning operators is not
considered yet. Also, it would be interesting to consider more breaks and generalizes
the model introduced in this paper.
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