FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 39, No 1 (2024), 123–139 https://doi.org/10.22190/FUMI230207008S Original Scientific Paper

HYPERBOLIC KENMOTSU MANIFOLD ADMITTING A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION

Abhishek Singh¹, Lovejoy S. Das², Pankaj³ and Shraddha Patel¹

 1 Department of Mathematics and Statistics

Dr. Rammanohar Lohia Avadh University, Ayodhya-224001 (U.P.), India ² Department of Mathematics, Kent State University, Ohio, USA

³ Department of Mathematics, Pranveer Singh Institute of Technology Kanpur-209305 (U.P.), India

ORCID IDs: Abhishek Singh Lovejoy S. Das Pankaj Shraddha Patel

Abstract. In this work, we study a new type of semi-symmetric non-metric connection on hyperbolic Kenmotsu manifold. Some Riemannian curvature's characteristics on hyperbolic Kenmotsu manifold are investigated. The properties of semi-symmetric, locally φ -symmetric and Ricci semi-symmetric hyperbolic Kenmotsu manifold endowed with a new type of semi-symmetric non-metric connection are evaluated. A semi-symmetric and Ricci semi-symmetric hyperbolic Kenmotsu manifold with a semi-symmetric non-metric connection is also demonstrated, the Ricci soliton of data ($\mathfrak{g}_1, \xi^{\flat}, \lambda$) is shrinking. Finally, we demonstrate our results with a 3-dimensional example.

Keywords: Semi-symmetric non-metric, hyperbolic Kenmotsu manifold, Ricci soliton, Einstein manifold, Ricci semi-symmetric.

1. Introduction

A. Friedmann and A. Schouten [16] first established the concept of a semisymmetric linear connection on differentiable manifold in 1924. E. Bartolotti [6] gave a geometrical meaning to such a connection. Further, H. A. Hayden [17] introduced the concept of metric connection with non zero torsion tensor on a Rieman-

Received February 07, 2023, revised: May 27, 2023, accepted: June 04, 2023 Communicated by Uday Chand De

Corresponding Author: Shraddha Patel. E-mail addresses: abhi.rmlau@gmail.com (A. Singh), ldas@kent.edu (L. S. Das), pankaj.fellow@yahoo.co.in (Pankaj), shraddhapatelbbk@gmail.com (S. Patel)

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53D15, 53D10

^{© 2024} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

nian manifold. Agashe and Chafle [2] define a semi-symmetric non-metric connection in Riemannian manifold. This was further studied by Agashe and Chafle [3], S. K. Chaubey and A. C. Pandey [11] and many other geometers like [8, 14, 18]. Sengupta, De and Binh [21], De and Sengupta [13] define new type of semi-symmetric non-metric connection on Riemannian manifold. Inline with this S. K. Chaubey and A. Yildiz [9] define another new type of semi-symmetric non-metric connection and studied different geometrical properties. On Riemannian manifold $(\Omega_{2n+1}, \mathfrak{g}_1)$, a linear connection $\widetilde{\nabla}$ is semi-symmetric if $\widetilde{\mathcal{T}}(\mathfrak{J}_1, \mathfrak{J}_2) = \overline{\eta}(\mathfrak{J}_2)\mathfrak{J}_1 - \overline{\eta}(\mathfrak{J}_1)\mathfrak{J}_2, \forall \mathfrak{J}_1, \mathfrak{J}_2 \in$ $\Gamma\Omega_{2n+1}$, where $\overline{\eta}$ is 1-form. Particularly, if $\mathfrak{J}_1 = \varphi \mathfrak{J}_1$ and $\mathfrak{J}_2 = \varphi \mathfrak{J}_2$, then the semi-symmetric connection $\widetilde{\nabla}$ is metric if $\widetilde{\nabla}_{\mathfrak{g}_1} = 0$ & if $\widetilde{\nabla}_{\mathfrak{g}_1} \neq 0$, then it is nonmetric. Since then, the properties of the semi-symmetric non-metric connection on different structures have been studied by many geometers [22, 12].

On the other hand, the almost hyperbolic (f, ξ, η, g) -structure was defined and studied by Upadhay and Dube [23]. Dube and Bhatt [7] studied CR-submanifold of trans-hyperbolic Sasakian manifold. Pankaj, S. K. Chaubey and Giilhanayar [20] studied Yamabe and gradient Yamabe soliton on 3-dimensional hyperbolic Kenmotsu manifolds. Mobin Ahmad and Kashif Ali [1] also studied CR-submanifold of a nearly hyperbolic Kenmotsu manifold admitting a quarter-symmetric non-metric connection. In the present article, it is initiated as follows: In section 2; contains some basic results of hyperbolic Kenmotsu manifolds. In section 3; we find some required results of the semi-symmetric non-metric connection. In section 4; we establish the relation between curvature tensor and semi-symmetric non-metric connection. The properties of semi-symmetric studied in section 5. Some results of locally φ -symmetric studied in section 6 and Ricci semi-symmetric hyperbolic Kenmatsu manifold equipped with semi-symmetric non-metric connection are investigated in section 7. We provided an example in section 8 and we also verified our results.

2. Hyperbolic Kenmotsu Manifold

Let $(\Omega_{2n+1}, \mathfrak{g}_1)$ be a contact manifold equipped with structure $(\varphi, \xi^{\flat}, \bar{\eta}, \mathfrak{g}_1)$, where φ is a (1, 1)-tensor field, ξ^{\flat} is a vector field, $\bar{\eta}$ is 1-form and \mathfrak{g}_1 is a Riemannian metric [20] such that-

(2.1)
$$\varphi^2 \mathfrak{J}_1 = \mathfrak{J}_1 + \bar{\eta}(\mathfrak{J}_1)\xi^{\flat}, \qquad \bar{\eta}(\xi^{\flat}) = -1, \qquad \varphi\xi^{\flat} = 0, \qquad \bar{\eta}(\varphi\mathfrak{J}_1) = 0,$$

(2.2)
$$\mathfrak{g}_{1}\left(\varphi\mathfrak{J}_{1},\varphi\mathfrak{J}_{2}\right) = -\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{2}\right) - \bar{\eta}\left(\mathfrak{J}_{1}\right)\bar{\eta}\left(\mathfrak{J}_{2}\right),$$

(2.3)
$$\mathfrak{g}_{1}(\varphi\mathfrak{J}_{1},\mathfrak{J}_{2}) = -\mathfrak{g}_{1}(\mathfrak{J}_{1},\varphi\mathfrak{J}_{2}), \qquad \mathfrak{g}_{1}(\mathfrak{J}_{1},\xi^{\flat}) = \bar{\eta}(\mathfrak{J}_{1}),$$

for all $\mathfrak{J}_1, \mathfrak{J}_2 \in \Gamma\Omega_{2n+1}$. A contact manifold Ω_{2n+1} is hyperbolic Kenmotsu manifold iff

(2.4)
$$(\nabla_{\mathfrak{J}_{1}}\varphi)\mathfrak{J}_{2} = \mathfrak{g}_{1}(\varphi\mathfrak{J}_{1},\mathfrak{J}_{2})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{2})\varphi\mathfrak{J}_{1},$$

where ∇ is Levi-Civita connection on Ω_{2n+1} . From (2.1), (2.2), (2.3) and (2.4), we find

(2.5)
$$d\bar{\eta} = 0, \qquad \nabla_{\mathfrak{J}_1} \xi^{\flat} = -\mathfrak{J}_1 - \bar{\eta} (\mathfrak{J}_1) \xi^{\flat},$$

(2.6)
$$(\nabla_{\mathfrak{J}_1}\bar{\eta})\mathfrak{J}_2 = \mathfrak{g}_1(\varphi\mathfrak{J}_1,\varphi\mathfrak{J}_2) = -\mathfrak{g}_1(\mathfrak{J}_1,\mathfrak{J}_2) - \bar{\eta}(\mathfrak{J}_1)\bar{\eta}(\mathfrak{J}_2).$$

Also the hyperbolic Kenmotsu manifold hold the following relations:

(2.7)
$$\bar{\eta} \left(\mathcal{R} \left(\mathfrak{J}_{1}, \mathfrak{J}_{2} \right) \mathfrak{J}_{3} \right) = \mathfrak{g}_{1} \left(\mathfrak{J}_{2}, \mathfrak{J}_{3} \right) \bar{\eta} \left(\mathfrak{J}_{1} \right) - \mathfrak{g}_{1} \left(\mathfrak{J}_{1}, \mathfrak{J}_{3} \right) \bar{\eta} \left(\mathfrak{J}_{2} \right),$$

(2.8)
$$\mathcal{R}(\mathfrak{J}_1,\mathfrak{J}_2)\,\xi^{\flat} = \bar{\eta}\,(\mathfrak{J}_2)\,\mathfrak{J}_1 - \bar{\eta}\,(\mathfrak{J}_1)\,\mathfrak{J}_2$$

(2.9)
$$\mathcal{R}(\xi^{\flat},\mathfrak{J}_{1})\mathfrak{J}_{2} = \mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{2})\,\xi^{\flat} - \bar{\eta}\,(\mathfrak{J}_{2})\,\mathfrak{J}_{1},$$

(2.10)
$$\mathcal{R}(\xi^{\flat},\mathfrak{J}_{1})\xi^{\flat} = -\mathfrak{J}_{1} - \bar{\eta}(\mathfrak{J}_{1})\xi^{\flat},$$

(2.11)
$$\mathcal{S}^{\flat}(\mathfrak{J}_{1},\xi^{\flat}) = 2n\bar{\eta}\left(\mathfrak{J}_{1}\right),$$

(2.12)
$$\mathcal{S}^{\flat}(\xi^{\flat},\xi^{\flat}) = -2n,$$

(2.13)
$$\mathcal{Q}^{\flat}(\xi^{\flat}) = -2n\xi^{\flat},$$

 \mathcal{S}^{\flat} and \mathcal{Q}^{\flat} are related by

(2.14)
$$\mathcal{S}^{\flat}(\mathfrak{J}_{1},\mathfrak{J}_{2}) = \mathfrak{g}_{1}(\mathcal{Q}^{\flat}\mathfrak{J}_{1},\mathfrak{J}_{2}).$$

Definition 2.1. An almost contact manifold Ω_{2n+1} is an η -Einstein manifold (η -EM) if Ricci-tensor S^{\flat} is of the form

(2.15)
$$\mathcal{S}^{\flat}\left(\mathfrak{J}_{1},\mathfrak{J}_{2}\right) = a_{1}\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{2}\right) + a_{2}\bar{\eta}\left(\mathfrak{J}_{1}\right)\bar{\eta}(\mathfrak{J}_{2}),$$

where a_1 and a_2 are smooth functions on Ω_{2n+1} . If $a_2 = 0$, then manifold Ω_{2n+1} is an Einstein manifold (EM).

3. A new type of semi-symmetric non-metric connection

Let Ω_{2n+1} be hyperbolic Kenmotsu manifold. A linear connection $\widetilde{\nabla}$ on Ω_{2n+1} is given as

(3.1)
$$\widetilde{\nabla}_{\mathfrak{J}_{1}}\mathfrak{J}_{2} = \nabla_{\mathfrak{J}_{1}}\mathfrak{J}_{2} + \frac{1}{2}\left[\bar{\eta}\left(\mathfrak{J}_{2}\right)\mathfrak{J}_{1} - \bar{\eta}\left(\mathfrak{J}_{1}\right)\mathfrak{J}_{2}\right]$$

is known as a semi-symmetric non-metric connection $\widetilde{\nabla}$ if it satisfies

(3.2)
$$\mathcal{T}(\mathfrak{J}_1,\mathfrak{J}_2) = \bar{\eta}(\mathfrak{J}_2)\mathfrak{J}_1 - \bar{\eta}(\mathfrak{J}_1)\mathfrak{J}_2$$

and (3.3)

$$(\widetilde{\nabla}_{\mathfrak{J}_{1}}\mathfrak{g}_{1})(\mathfrak{J}_{2},\mathfrak{J}_{3}) = \frac{1}{2} \left[2\bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3}) - \bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3}) - \bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{2}) \right].$$

Now,

(3.4)
$$(\widetilde{\nabla}_{\mathfrak{J}_{1}}\varphi)(\mathfrak{J}_{2}) = \frac{1}{2} \left[2 \left(\nabla_{\mathfrak{J}_{1}}\varphi \right) \mathfrak{J}_{2} - \bar{\eta} \left(\mathfrak{J}_{2} \right) \left(\varphi \mathfrak{J}_{1} \right) \right],$$

(3.5)
$$(\widetilde{\nabla}_{\mathfrak{J}_1}\overline{\eta})(\mathfrak{J}_2) = (\nabla_{\mathfrak{J}_1}\overline{\eta})(\mathfrak{J}_2),$$

(3.6)
$$(\widetilde{\nabla}_{\mathfrak{J}_{1}}\mathfrak{g}_{1}) (\varphi \mathfrak{J}_{2}, \mathfrak{J}_{3}) = \frac{1}{2} \left[2\bar{\eta} (\mathfrak{J}_{1}) \mathfrak{g}_{1} (\varphi \mathfrak{J}_{2}, \mathfrak{J}_{3}) - \bar{\eta} (\mathfrak{J}_{3}) \mathfrak{g}_{1} (\mathfrak{J}_{1}, \varphi \mathfrak{J}_{2}) \right].$$

Changing \mathfrak{J}_2 by ξ^{\flat} in (3.1), we have

(3.7)
$$\widetilde{\nabla}_{\mathfrak{J}_1}\xi^{\flat} = \nabla_{\mathfrak{J}_1}\xi^{\flat} - \frac{1}{2}\varphi^2\mathfrak{J}_1.$$

Replacing \mathfrak{J}_1 by ξ^{\flat} in (3.3), we get

$$(3.8) \qquad (\widetilde{\nabla}_{\xi^{\flat}}\mathfrak{g}_{1})(\mathfrak{J}_{2},\mathfrak{J}_{3}) = \mathfrak{g}_{1}(\varphi\mathfrak{J}_{2},\varphi\mathfrak{J}_{3}) = -\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3}) - \bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3}).$$

4. Curvature tensor of a hyperbolic Kenmotsu manifold endowed with semi-symmetric non-metric connection

The curvature tensor $\widetilde{\mathcal{R}}$ with $\widetilde{\nabla}$ defined as follows:

(4.1)
$$\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3 = \widetilde{\nabla}_{\mathfrak{J}_1}\widetilde{\nabla}_{\mathfrak{J}_2}\mathfrak{J}_3 - \widetilde{\nabla}_{\mathfrak{J}_2}\widetilde{\nabla}_{\mathfrak{J}_1}\mathfrak{J}_3 - \widetilde{\nabla}_{[\mathfrak{J}_1,\mathfrak{J}_2]}\mathfrak{J}_3,$$

Using (3.1) in (4.1), we obtain

$$\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = \mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} + \frac{1}{2}[(\nabla_{\mathfrak{J}_{1}}\bar{\eta})(\mathfrak{J}_{3})\mathfrak{J}_{2} - (\nabla_{\mathfrak{J}_{1}}\bar{\eta})(\mathfrak{J}_{2})\mathfrak{J}_{3} \\
- (\nabla_{\mathfrak{J}_{2}}\bar{\eta})(\mathfrak{J}_{3})\mathfrak{J}_{1} + (\nabla_{\mathfrak{J}_{2}}\bar{\eta})(\mathfrak{J}_{1})\mathfrak{J}_{3}] \\
+ \frac{1}{4}[\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{1} - \bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2}],$$
(4.2)

where,

(4.3)
$$\mathcal{R}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3 = \nabla_{\mathfrak{J}_1}\nabla_{\mathfrak{J}_2}\mathfrak{J}_3 - \nabla_{\mathfrak{J}_2}\nabla_{\mathfrak{J}_1}\mathfrak{J}_3 - \nabla_{[\mathfrak{J}_1,\mathfrak{J}_2]}\mathfrak{J}_3.$$

Now, using (2.6) in (4.2), we find

$$(4.4) \qquad \widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = \mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} + \frac{1}{2}\left[\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\mathfrak{J}_{1} - \mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{2}\right] \\ + \frac{3}{4}\left[\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{1} - \bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2}\right].$$

Contracting equation (4.4) along \mathfrak{J}_1 , we get

(4.5)
$$\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{2},\mathfrak{J}_{3}) = \mathcal{S}^{\flat}(\mathfrak{J}_{2},\mathfrak{J}_{3}) + n\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3}) + \frac{3n}{2}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3}).$$

By virtue of (2.14) and (4.5) gives

(4.6)
$$\widetilde{\mathcal{Q}}^{\flat}(\mathfrak{J}_2) = \mathcal{Q}^{\flat}(\mathfrak{J}_2) + n(\mathfrak{J}_2) + \frac{3n}{2}\bar{\eta}(\mathfrak{J}_2)\xi^{\flat}.$$

Again, contracting (4.5), we get

(4.7)
$$\widetilde{\tau} = \tau + n(2n - \frac{1}{2}).$$

Where $\widetilde{\mathcal{R}}$; \mathcal{R} , $\widetilde{\mathcal{S}}^{\flat}$; \mathcal{S}^{\flat} , $\widetilde{\mathcal{Q}}^{\flat}$; \mathcal{Q}^{\flat} and $\widetilde{\tau}$; τ are curvature tensor, Ricci tensor, Ricci operators and scalar curvature respectively equipped with $\widetilde{\nabla}$ and Levi-Civita connection ∇ .

Replacing $\mathfrak{J}_1 = \xi^{\flat}$ in (4.4) and using (2.1), (2.3), we get

(4.8)

$$\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{2})\mathfrak{J}_{3} = \mathcal{R}(\xi^{\flat},\mathfrak{J}_{2})\mathfrak{J}_{3} + \frac{1}{2}[\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2}] + \frac{3}{4}[\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\xi^{\flat} + \bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2}].$$

Using (2.9) in above equation (4.8), we get

(4.9)
$$\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{2})\mathfrak{J}_{3} = \frac{3}{2}\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\xi^{\flat} + \frac{3}{4}[\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2}].$$

Fix $\mathfrak{J}_3 = \xi^{\flat}$ in (4.4) and using (2.1), (2.3), (2.8), we get

(4.10)
$$\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\xi^{\flat} = \frac{3}{4}\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\xi^{\flat} \\ = \frac{3}{4}(\bar{\eta}(\mathfrak{J}_{2})\mathfrak{J}_{1} - \bar{\eta}(\mathfrak{J}_{1})\mathfrak{J}_{2})$$

Remark 4.1. Equation (4.10) shows that the manifold endowed with $\widetilde{\nabla}$ is regular.

In view of (2.3), (2.8), (4.4) and $\mathfrak{g}_{1}(\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2},\mathfrak{J}_{3}),\mathfrak{J}_{4}) = -\mathfrak{g}_{1}(\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2},\mathfrak{J}_{4}),\mathfrak{J}_{3})$, we have

(4.11)
$$\bar{\eta}(\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3) = \frac{3}{2}[\bar{\eta}(\mathfrak{J}_1)\mathfrak{g}_1(\mathfrak{J}_2,\mathfrak{J}_3) - \bar{\eta}(\mathfrak{J}_2)\mathfrak{g}_1(\mathfrak{J}_1,\mathfrak{J}_3)].$$

Contracting (4.10) with \mathfrak{J}_1 , we find

(4.12)
$$\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{2},\xi^{\flat}) = \frac{3n}{2}\bar{\eta}\left(\mathfrak{J}_{2}\right).$$

Taking $\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3=0$ in equation (4.4), we get

(4.13)
$$\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = \frac{1}{2} [\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{2} - \mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\mathfrak{J}_{1}] \\ + \frac{3}{4} [\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2} - \bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{1}].$$

4

In view of $\mathcal{R}(\mathfrak{J}_1,\mathfrak{J}_2,\mathfrak{J}_3,\mathfrak{J}_4) = \mathfrak{g}_1(\mathcal{R}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3,\mathfrak{J}_4)$ and (4.13), we yields

Contracting above equation along \mathfrak{J}_1 and \mathfrak{J}_4 , we get

(4.15)
$$\mathcal{S}^{\flat}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right) = -n\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right) - \frac{3n}{2}\bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{3}\right).$$

Theorem 4.1. A hyperbolic Kenmotsu manifold Ω_{2n+1} is an η -EM, if Riemannian curvature tensor endowed with $\widetilde{\nabla}$ is vanished.

5. Semi-symmetric hyperbolic Kenmotsu manifold equipped with connection $\widetilde{\nabla}$

A contact manifold Ω_{2n+1} with connection $\widetilde{\nabla}$ is semi-symmetric if

$$(\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2).\widetilde{\mathcal{R}})(\mathfrak{J}_3,\mathfrak{J}_4)\mathfrak{J}_5=0.$$

Then, we have

$$\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\mathfrak{J}_{4})\mathfrak{J}_{5} - \widetilde{\mathcal{R}}(\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3},\mathfrak{J}_{4})\mathfrak{J}_{5}$$

$$(5.1) \qquad -\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{4})\mathfrak{J}_{5} - \widetilde{\mathcal{R}}(\mathfrak{J}_{3},\mathfrak{J}_{4})\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{5} = 0.$$

On changing $\mathfrak{J}_1 = \xi^{\flat}$ in (5.1), we get

(5.2)
$$\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{2})\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\mathfrak{J}_{4})\mathfrak{J}_{5} - \widetilde{\mathcal{R}}(\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{2})\mathfrak{J}_{3},\mathfrak{J}_{4})\mathfrak{J}_{5} - \widetilde{\mathcal{R}}(\mathfrak{J}_{3},\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{2})\mathfrak{J}_{4})\mathfrak{J}_{5} - \widetilde{\mathcal{R}}(\mathfrak{J}_{3},\mathfrak{J}_{4})\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{2})\mathfrak{J}_{5} = 0.$$

In view of (4.9), we obtain \sim

$$\begin{aligned} 2\mathfrak{g}_{1}(\mathfrak{J}_{2},\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\mathfrak{J}_{4})\mathfrak{J}_{5}) &= -\bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right)\mathfrak{J}_{5}) - \bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right)\mathfrak{J}_{5}) \\ &- 2\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)\bar{\eta}(\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{4})\mathfrak{J}_{5}) - \bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{3}\right)\bar{\eta}(\widetilde{\mathcal{R}}(\xi^{\flat},\mathfrak{J}_{4})\mathfrak{J}_{5}) \\ &+ \bar{\eta}\left(\mathfrak{J}_{3}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)\mathfrak{J}_{5}) - 2\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)\bar{\eta}(\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\xi^{\flat})\mathfrak{J}_{5}) \\ &- \bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{4}\right)\bar{\eta}(\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\xi^{\flat})\mathfrak{J}_{5}) + \bar{\eta}\left(\mathfrak{J}_{4}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{2}\right)\mathfrak{J}_{5}) \\ &- 2\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{5}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right)\xi^{\flat}) - \bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{5}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right)\xi^{\flat}) \end{aligned}$$

Hyperbolic Kenmotsu Manifold

(5.3)
$$+\bar{\eta}\left(\mathfrak{J}_{5}\right)\bar{\eta}(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right)\mathfrak{J}_{2}).$$

Using (2.1), (2.3), (4.9), (4.10) and (4.11) in (5.3), we get

$$\begin{aligned} & \tilde{\mathcal{R}}\left(\mathfrak{J}_{3},\mathfrak{J}_{4},\mathfrak{J}_{5},\mathfrak{J}_{2}\right) &= \frac{3}{2}[\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)\mathfrak{g}_{1}\left(\mathfrak{J}_{4},\mathfrak{J}_{5}\right) - \mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)\mathfrak{g}_{1}\left(\mathfrak{J}_{3},\mathfrak{J}_{5}\right)] \\ & + \frac{3}{4}[\bar{\eta}\left(\mathfrak{J}_{4}\right)\bar{\eta}\left(\mathfrak{J}_{5}\right)\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right) - \bar{\eta}\left(\mathfrak{J}_{3}\right)\bar{\eta}\left(\mathfrak{J}_{5}\right)\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)]. \end{aligned}$$

Hence, we have

(5.5)
$$\widetilde{\mathcal{R}}(\mathfrak{J}_{3},\mathfrak{J}_{4})\mathfrak{J}_{5} = \frac{3}{2} [\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{5})\mathfrak{J}_{3} - \mathfrak{g}_{1}(\mathfrak{J}_{3},\mathfrak{J}_{5})\mathfrak{J}_{4}] \\ + \frac{3}{4} [\bar{\eta}(\mathfrak{J}_{4})\bar{\eta}(\mathfrak{J}_{5})\mathfrak{J}_{3} - \bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{5})\mathfrak{J}_{4}].$$

Contracting (5.5) with \mathfrak{J}_3 , we get

(5.6)
$$\widetilde{\mathcal{S}}^{\flat}\left(\mathfrak{J}_{4},\mathfrak{J}_{5}\right) = 3n\mathfrak{g}_{1}\left(\mathfrak{J}_{4},\mathfrak{J}_{5}\right) + \frac{3n}{2}\bar{\eta}\left(\mathfrak{J}_{4}\right)\bar{\eta}\left(\mathfrak{J}_{5}\right)$$

and

(5.7)
$$\widetilde{\mathcal{Q}}^{\flat}(\mathfrak{J}_4) = 3n\mathfrak{J}_4 + \frac{3n}{2}\bar{\eta}(\mathfrak{J}_4)\xi^{\flat}.$$

Again contracting (5.6), we have

(5.8)
$$\widetilde{\tau} = \frac{3n}{2}[4n+1].$$

By virtue (2.15) and equation (5.6), we state:

Theorem 5.1. A semi-symmetric hyperbolic Kenmotsu manifold Ω_{2n+1} equipped with $\widetilde{\nabla}$, then Ω_{2n+1} is an η -EM.

Now, using (4.5), (4.6), (4.7) in (5.6), (5.7) and (5.8), we obtain

(5.9)
$$\mathcal{S}^{\flat}\left(\mathfrak{J}_{4},\mathfrak{J}_{5}\right) = 2n\mathfrak{g}_{1}\left(\mathfrak{J}_{4},\mathfrak{J}_{5}\right),$$

(5.10)
$$\mathcal{Q}^{\flat}\mathfrak{J}_4 = 2n(\mathfrak{J}_4)$$

and

Corollary 5.1. A semi-symmetric hyperbolic Kenmotsu manifold Ω_{2n+1} endowed with $\widetilde{\nabla}$ is an EM with semi-symmetric non-metric connection $\widetilde{\nabla}$.

The conformal curvature tensor $\widetilde{\mathcal{L}}^{\dagger}$ endowed with $\widetilde{\nabla}$ is defined as

$$\widetilde{\mathcal{L}}^{\dagger}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = \widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} - \frac{1}{2n-1}[\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{2},\mathfrak{J}_{3})\mathfrak{J}_{1} - \widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{2}
+\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\widetilde{\mathcal{Q}}^{\flat}\mathfrak{J}_{1} - \mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\widetilde{\mathcal{Q}}^{\flat}\mathfrak{J}_{2}]
+\frac{\widetilde{\tau}}{2n(2n-1)}[\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\mathfrak{J}_{1} - \mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{2}].$$
(5.12)

Using (5.5), (5.6), (5.7) and (5.8) in (5.12), we find

$$\widetilde{\mathcal{L}}^{\dagger}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = \frac{3}{4(2n-1)}[\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{2} - \mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\mathfrak{J}_{1} \\
+ \bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{2} - \bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{J}_{1}] \\
(5.13) \qquad - \frac{3}{2(2n-1)}[\bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\xi^{\flat}].$$

Taking $\mathfrak{J}_3 = \xi^{\flat}$ in (5.13), we obtain

(5.14)
$$\widetilde{\mathcal{L}}^{\dagger}(\mathfrak{J}_{1},\mathfrak{J}_{2})\,\xi^{\flat} = 0.$$

Then, we have following result

Theorem 5.2. A semi-symmetric hyperbolic Kenmotsu manifold Ω_{2n+1} admitting connection $\widetilde{\nabla}$ is ξ^{\flat} -conformally flat with $\widetilde{\nabla}$.

6. Locally $\varphi\text{-symmetric hyperbolic Kenmotsu manifold admitting a connection <math display="inline">\widetilde{\nabla}$

Definition 6.1. A manifold Ω_{2n+1} endowed with $\widetilde{\nabla}$ is locally φ -symmetric [4] if

$$\varphi^2((\widetilde{\nabla}_{\mathfrak{J}_4}\widetilde{\mathcal{R}})(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3)=0.$$

All vector fields $\mathfrak{J}_1, \mathfrak{J}_2, \mathfrak{J}_3, \mathfrak{J}_4$ orthogonal to ξ^{\flat} .

We know that

$$(\widetilde{\nabla}_{\mathfrak{J}_{4}}\mathcal{R})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = \widetilde{\nabla}_{\mathfrak{J}_{4}}\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} - \mathcal{R}(\widetilde{\nabla}_{\mathfrak{J}_{4}}\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} -\mathcal{R}(\mathfrak{J}_{1},\widetilde{\nabla}_{\mathfrak{J}_{4}}\mathfrak{J}_{2})\mathfrak{J}_{3} - \mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})(\widetilde{\nabla}_{\mathfrak{J}_{4}}\mathfrak{J}_{3}).$$

Using (3.1) and (2.7) in (6.1), we get

$$(\widetilde{\nabla}_{\mathfrak{J}_{4}}\mathcal{R}) (\mathfrak{J}_{1},\mathfrak{J}_{2}) \mathfrak{J}_{3} = (\nabla_{\mathfrak{J}_{4}}\mathcal{R}) (\mathfrak{J}_{1},\mathfrak{J}_{2}) \mathfrak{J}_{3} + \frac{1}{2} [2\bar{\eta} (\mathfrak{J}_{4}) \mathcal{R} (\mathfrak{J}_{1},\mathfrak{J}_{2}) \mathfrak{J}_{3} - \bar{\eta} (\mathfrak{J}_{1}) \mathcal{R} (\mathfrak{J}_{4},\mathfrak{J}_{2}) \mathfrak{J}_{3} - \bar{\eta} (\mathfrak{J}_{2}) \mathcal{R} (\mathfrak{J}_{1},\mathfrak{J}_{4}) \mathfrak{J}_{3} - \bar{\eta} (\mathfrak{J}_{3}) \mathcal{R} (\mathfrak{J}_{1},\mathfrak{J}_{2}) \mathfrak{J}_{4} + \bar{\eta} (\mathfrak{J}_{1}) \mathfrak{g}_{1} (\mathfrak{J}_{2},\mathfrak{J}_{3}) \mathfrak{J}_{4}$$

Hyperbolic Kenmotsu Manifold

(6.2)
$$-\bar{\eta}\left(\mathfrak{J}_{2}\right)\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{3}\right)\mathfrak{J}_{4}].$$

Covariant differentiation of (4.4) with respect to $\widetilde{\nabla}$ along \mathfrak{J}_4 and using (2.6), (3.5), (6.2), we obtain

$$(\widetilde{\nabla}_{\mathfrak{J}_{4}}\widetilde{\mathcal{R}})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} = (\nabla_{\mathfrak{J}_{4}}\mathcal{R})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} + \frac{1}{2}[2\bar{\eta}(\mathfrak{J}_{4})\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} \\ -\bar{\eta}(\mathfrak{J}_{1})\mathcal{R}(\mathfrak{J}_{4},\mathfrak{J}_{2})\mathfrak{J}_{3} - \bar{\eta}(\mathfrak{J}_{2})\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{4})\mathfrak{J}_{3} \\ -\bar{\eta}(\mathfrak{J}_{3})\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{4} + \mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{1})\mathfrak{J}_{4} \\ -\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{2})\mathfrak{J}_{4} + \mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{J}_{1} \\ -\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{2} + 2\bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{2} \\ -2\bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{1} + 2\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{2} \\ -2\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{2})\mathfrak{J}_{1} - 3\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{J}_{1} \\ +3\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{J}_{2}].$$

Applying φ^2 on both side of equation (6.3) and using (2.1), (2.2), (2.3), we obtain

$$\begin{aligned}
\varphi^{2}((\widetilde{\nabla}_{\mathfrak{J}_{4}}\widetilde{\mathcal{R}})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3}) &= \varphi^{2}((\nabla_{\mathfrak{J}_{4}}\mathcal{R})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3}) + \frac{1}{2}[2\bar{\eta}(\mathfrak{J}_{4})\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3} \\
&+ 2\bar{\eta}(\mathfrak{J}_{4})\bar{\eta}(\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{1})\mathcal{R}(\mathfrak{J}_{4},\mathfrak{J}_{2})\mathfrak{J}_{3} \\
&- \bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathcal{R}(\mathfrak{J}_{4},\mathfrak{J}_{2})\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{2})\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{4})\mathfrak{J}_{3} \\
&- \bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{4})\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{3})\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{4} \\
&- \bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathcal{R}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{4})\xi^{\flat} + \bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\mathfrak{J}_{4} \\
&+ 2\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{4} \\
&- \bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathcal{J}_{4})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathfrak{J}_{4} \\
&- 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{4} \\
&- 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{4} \\
&- 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\xi^{\flat} - \bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{4} \\
&- 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{2} - 2\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{1} \\
&- 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{2} - 2\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{1} \\
&- 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\xi^{\flat} - 2\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\mathfrak{J}_{1} \\
&+ 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\xi^{\flat} + 3\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{J}_{2} \\
&+ 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{4},\mathfrak{J}_{3})\xi^{\flat} + 3\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\tilde{\eta}(\mathfrak{J}_{4})\mathfrak{J}_{2} \\
&+ 2\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{3})\tilde{\eta}(\mathfrak{J}_{4})\mathfrak{J}_{1}.
\end{aligned}$$

Taking $\mathfrak{J}_1, \mathfrak{J}_2, \mathfrak{J}_3$ and \mathfrak{J}_4 orthogonal to ξ^{\flat} , then (6.4) yields

(6.5)
$$\varphi^{2}((\widetilde{\nabla}_{\mathfrak{J}_{4}}\widetilde{\mathcal{R}})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3}) = \varphi^{2}((\nabla_{\mathfrak{J}_{4}}\mathcal{R})(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3}).$$

Hence, the following theorem

Theorem 6.1. The necessary and sufficient condition for manifold Ω_{2n+1} to be locally φ -symmetric equipped with ∇ is that it is also locally φ -symmetric endowed with $\overline{\nabla}$.

7. Ricci semi-symmetric hyperbolic Kenmotsu manifold admitting a connection $\widetilde{\nabla}$

A contact metric manifold Ω_{2n+1} endowed with $\widetilde{\nabla}$ is Ricci semi-symmetric if $(\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2).\widetilde{\mathcal{S}}^{\flat})(\mathfrak{J}_3,\mathfrak{J}_4) = 0$, then we have

(7.1)
$$\widetilde{\mathcal{S}}^{\flat}(\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{3},\mathfrak{J}_{4}) + \widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{3},\widetilde{\mathcal{R}}(\mathfrak{J}_{1},\mathfrak{J}_{2})\mathfrak{J}_{4}) = 0.$$

Replacing \mathfrak{J}_1 by ξ^{\flat} and using (4.9), we have

$$(7.2) \begin{aligned} \frac{3}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)\widetilde{\mathcal{S}}^{\flat}(\xi^{\flat},\mathfrak{J}_{4}) + \frac{3}{4}\bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{3}\right)\widetilde{\mathcal{S}}^{\flat}(\xi^{\flat},\mathfrak{J}_{4}) - \frac{3}{4}\bar{\eta}\left(\mathfrak{J}_{3}\right)\widetilde{\mathcal{S}}^{\flat}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right) \\ + \frac{3}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{3},\xi^{\flat}) + \frac{3}{4}\bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{4}\right)\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{3},\xi^{\flat}) \\ - \frac{3}{4}\bar{\eta}\left(\mathfrak{J}_{4}\right)\widetilde{\mathcal{S}}^{\flat}\left(\mathfrak{J}_{3},\mathfrak{J}_{2}\right) = 0. \end{aligned}$$

Equations (4.12) and (7.2) reduce to

(7.3)
$$\frac{9n}{4}\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3}) + \frac{9n}{8}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{4}) - \frac{3}{4}\bar{\eta}(\mathfrak{J}_{3})\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{2},\mathfrak{J}_{4}) \\
+ \frac{9n}{4}\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{4}) + \frac{9n}{8}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\bar{\eta}(\mathfrak{J}_{4}) \\
- \frac{3}{4}\bar{\eta}(\mathfrak{J}_{4})\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{2}) = 0.$$

Taking $\mathfrak{J}_4 = \xi^{\flat}$ and using (4.12), we have

(7.4)
$$\widetilde{\mathcal{S}}^{\flat}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right) = 3n\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right) + \frac{3n}{2}\bar{\eta}\left(\mathfrak{J}_{2}\right)\bar{\eta}\left(\mathfrak{J}_{3}\right).$$

Using (4.5) in (7.4), we have

(7.5)
$$\mathcal{S}^{\flat}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)=2n\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right).$$

Hence, we have the following theorem

Theorem 7.1. A Ricci semi-symmetric hyperbolic Kenmotsu manifold Ω_{2n+1} equipped with $\widetilde{\nabla}$ is an η -EM.

Now, we have

(7.6)
$$(\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2).\widetilde{\mathcal{S}}^{\flat})(\mathfrak{J}_3,\mathfrak{J}_4) = -\widetilde{\mathcal{S}}^{\flat}(\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_3,\mathfrak{J}_4) \\ -\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_3,\widetilde{\mathcal{R}}(\mathfrak{J}_1,\mathfrak{J}_2)\mathfrak{J}_4).$$

Using (4.4), (4.5) in (7.6), we have

$$\left(\widetilde{\mathcal{R}}\left(\mathfrak{J}_{1},\mathfrak{J}_{2}\right).\widetilde{\mathcal{S}}^{\flat}\right)\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right) = \left(\mathcal{R}\left(\mathfrak{J}_{1},\mathfrak{J}_{2}\right).\mathcal{S}^{\flat}\right)\left(\mathfrak{J}_{3},\mathfrak{J}_{4}\right) - \frac{1}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)\mathcal{S}^{\flat}\left(\mathfrak{J}_{1},\mathfrak{J}_{4}\right)$$

Hyperbolic Kenmotsu Manifold

$$(7.7) + \frac{1}{2}\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3})\mathcal{S}^{\flat}(\mathfrak{J}_{2},\mathfrak{J}_{4}) - \frac{3}{4}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathcal{S}^{\flat}(\mathfrak{J}_{1},\mathfrak{J}_{4}) \\ + \frac{3}{4}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathcal{S}^{\flat}(\mathfrak{J}_{2},\mathfrak{J}_{4}) - \frac{1}{2}\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{4})\mathcal{S}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{1}) \\ + \frac{1}{2}\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{4})\mathcal{S}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{2}) - \frac{3}{4}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{4})\mathcal{S}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{1}) \\ + \frac{3}{4}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{4})\mathcal{S}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{2}) + \frac{3n}{2}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{4}) \\ + \frac{3n}{2}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{4}) - \frac{3n}{2}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3}) \\ - \frac{3n}{2}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3}),$$

We suppose that $\widetilde{\mathcal{R}}.\widetilde{\mathcal{S}}^{\flat} = \mathcal{R}.\mathcal{S}^{\flat}$, then (7.7) can be expressed as

$$\begin{aligned} &-\frac{1}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)\mathcal{S}^{\flat}\left(\mathfrak{J}_{1},\mathfrak{J}_{4}\right)+\frac{1}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{3}\right)\mathcal{S}^{\flat}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)-\frac{3}{4}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathcal{S}^{\flat}\left(\mathfrak{J}_{1},\mathfrak{J}_{4}\right)\\ &+\frac{3}{4}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathcal{S}^{\flat}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)-\frac{1}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)\mathcal{S}^{\flat}\left(\mathfrak{J}_{3},\mathfrak{J}_{1}\right)+\frac{1}{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{4}\right)\mathcal{S}^{\flat}\left(\mathfrak{J}_{3},\mathfrak{J}_{2}\right)\\ &-\frac{3}{4}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{4})\mathcal{S}^{\flat}\left(\mathfrak{J}_{3},\mathfrak{J}_{1}\right)+\frac{3}{4}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{4})\mathcal{S}^{\flat}\left(\mathfrak{J}_{3},\mathfrak{J}_{2}\right)+\frac{3n}{2}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{4}\right)\\ &+\frac{3n}{2}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{3})\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{4}\right)-\frac{3n}{2}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right)\\ &\left(7.8\right) & -\frac{3n}{2}\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{4})\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{3}\right)=0. \end{aligned}$$

Replacing \mathfrak{J}_4 by ξ^{\flat} in the (7.8) and using (2.1), (2.2), (2.3) and (2.11), we obtain

(7.9)
$$\frac{n}{2}\bar{\eta}(\mathfrak{J}_{1})\mathfrak{g}_{1}(\mathfrak{J}_{2},\mathfrak{J}_{3}) + \frac{5n}{2}\bar{\eta}(\mathfrak{J}_{2})\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{3}) + \frac{1}{4}\bar{\eta}(\mathfrak{J}_{2})\mathcal{S}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{1}) \\ -\frac{1}{4}\bar{\eta}(\mathfrak{J}_{1})\mathcal{S}^{\flat}(\mathfrak{J}_{3},\mathfrak{J}_{2}) + \frac{3n}{2}\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{2})\bar{\eta}(\mathfrak{J}_{3}) = 0.$$

Putting $\mathfrak{J}_1 = \xi^{\flat}$ in (7.9), we find

(7.10)
$$S^{\flat}(\mathfrak{J}_2,\mathfrak{J}_3) = 2n\mathfrak{g}_1(\mathfrak{J}_2,\mathfrak{J}_3) - 6n\bar{\eta}(\mathfrak{J}_2)\bar{\eta}(\mathfrak{J}_3) \Rightarrow r = 4n(n+2).$$

Hence, we conclude the following theorem

Theorem 7.2. A hyperbolic Kenmotsu manifold Ω_{2n+1} equipped with $\widetilde{\nabla}$ satisfies $\widetilde{\mathcal{R}}.\widetilde{\mathcal{S}}^{\flat} - \mathcal{R}.\mathcal{S}^{\flat} = 0$, then manifold Ω_{2n+1} is an η -EM.

Definition 7.1. A Ricci soliton $(\mathfrak{g}_1, V_{\mathfrak{b}}, \lambda)$ on a Riemannian manifold is defined as

(7.11)
$$(\pounds_{V_{\mathfrak{b}}}\mathfrak{g}_{\mathfrak{1}})(\mathfrak{J}_{1},\mathfrak{J}_{2})+2\mathcal{S}^{\flat}(\mathfrak{J}_{1},\mathfrak{J}_{2})+2\lambda\mathfrak{g}_{\mathfrak{1}}(\mathfrak{J}_{1},\mathfrak{J}_{2})=0,$$

where $\pounds_{V_{\flat}}$ is a Lie-derivative along V_{\flat} and λ is a constant. A triplet $(\mathfrak{g}_1, V_{\flat}, \lambda)$ is shrinking, steady and expanding according to $\lambda < 0$, $\lambda = 0$, $\lambda > 0$ respectively [5].

We have two situations regarding the vector field $V_{\flat} : V_{\flat} \in Span\xi^{\flat}$ and $V_{\flat} \perp \xi^{\flat}$. We investigate only the case $V_{\flat} = \xi^{\flat}$. The Ricci soliton of data $(\mathfrak{g}_1, \xi^{\flat}, \lambda)$ on manifold Ω_{2n+1} equipped with $\widetilde{\nabla}$ can be defined by

(7.12)
$$(\widetilde{\mathscr{X}}_{\xi^{\flat}}\mathfrak{g}_{1})(\mathfrak{J}_{1},\mathfrak{J}_{2})+2\widetilde{\mathscr{S}}^{\flat}(\mathfrak{J}_{1},\mathfrak{J}_{2})+2\lambda\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{2})=0,$$

A straightforward calculation gives

(7.13)
$$(\widetilde{\mathscr{L}}_{\xi^{\flat}}\mathfrak{g}_{1})(\mathfrak{J}_{1},\mathfrak{J}_{2}) = (\widetilde{\nabla}_{\xi^{\flat}}\mathfrak{g}_{1})(\mathfrak{J}_{1},\mathfrak{J}_{2}) - \mathfrak{g}_{1}(\widetilde{\nabla}_{\mathfrak{J}_{1}}\xi^{\flat},\mathfrak{J}_{2}) - \mathfrak{g}_{1}(\mathfrak{J}_{1},\widetilde{\nabla}_{\mathfrak{J}_{2}}\xi^{\flat}).$$

Now using (2.1), (2.5), (3.7) and (3.8) in (7.13), we have

(7.14)
$$(\hat{\mathcal{L}}_{\xi^{\flat}}\mathfrak{g}_{1})(\mathfrak{J}_{1},\mathfrak{J}_{2}) = 2[\mathfrak{g}_{1}(\mathfrak{J}_{1},\mathfrak{J}_{2}) + \bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{2})].$$

From (4.5), (5.9), (7.5) and (7.12), we yields

(7.15)
$$(1+3n+\lambda)\mathfrak{g}_{\mathfrak{l}}(\mathfrak{J}_{1},\mathfrak{J}_{2}) + (1+\frac{3n}{2})\bar{\eta}(\mathfrak{J}_{1})\bar{\eta}(\mathfrak{J}_{2}) = 0.$$

Taking $\mathfrak{J}_1 = \mathfrak{J}_2 = \xi^{\flat}$ in (7.15), we get

$$\lambda = -\frac{3n}{2} < 0.$$

Thus, we state the following theorem

Theorem 7.3. A triplet $(\mathfrak{g}_1, \xi^{\flat}, \lambda)$ on manifold Ω_{2n+1} endowed with $\widetilde{\nabla}$ is always shrinking.

8. Example of hyperbolic Kenmotsu Manifold

Example 8.1. Let $\Omega_3 = (x, y, z) \in \mathbb{R}^3$: $z \neq 0$ be a 3-dimensional manifold with the standard coordinates (x, y, z) of \mathbb{R}^3 [20]. Let $\varsigma_1 = e^z \frac{\partial}{\partial x}, \varsigma_2 = e^z \frac{\partial}{\partial y}, \varsigma_3 = \frac{\partial}{\partial z} = \xi^{\flat}$ be linear independent vector fields.

Suppose \mathfrak{g}_1 be the Ω_3 Riemannian metric specified by

$$\mathfrak{g}_{\mathfrak{l}}(\varsigma_{1},\varsigma_{2}) = \mathfrak{g}_{\mathfrak{l}}(\varsigma_{2},\varsigma_{3}) = \mathfrak{g}_{\mathfrak{l}}(\varsigma_{3},\varsigma_{1}) = 0,$$

$$\mathfrak{g}_{\mathfrak{l}}(\varsigma_{1},\varsigma_{1}) = 1, \quad \mathfrak{g}_{\mathfrak{l}}(\varsigma_{2},\varsigma_{2}) = \mathfrak{g}_{\mathfrak{l}}(\varsigma_{3},\varsigma_{3}) = -1,$$
(8.1)

where

$$\mathfrak{g}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

and φ is (1,1)-tensor field defined by

(8.2)
$$\varphi(\varsigma_1) = \varsigma_2, \varphi(\varsigma_2) = \varsigma_1, \varphi(\varsigma_3) = 0.$$

By using linearity of φ and $\mathfrak{g}_{\mathtt{l}},$ we have

(8.3)
$$\bar{\eta}(\varsigma_3) = -1, \quad \varphi^2 \mathfrak{J}_1 = \mathfrak{J}_1 + \bar{\eta}(\mathfrak{J}_1)\varsigma_3, \\ \mathfrak{g}_1(\varphi \mathfrak{J}_1, \varphi \mathfrak{J}_2) = -\mathfrak{g}_1(\mathfrak{J}_1, \mathfrak{J}_2) - \bar{\eta}(\mathfrak{J}_1)\bar{\eta}(\mathfrak{J}_2)$$

Here $\bar{\eta}(\mathfrak{J}_1) = \mathfrak{g}_1(\mathfrak{J}_1, \varsigma_3)$ defines a 1-form on Ω_3 . Hence for $\xi^{\flat} = \varsigma_3$, the structure $(\varphi, \xi^{\flat}, \bar{\eta}, \mathfrak{g}_1)$ defined on Ω_3 . By applying definition $[\mathfrak{J}_1, \mathfrak{J}_2] = \mathfrak{J}_1(\mathfrak{J}_2 f) - \mathfrak{J}_2(\mathfrak{J}_1 f)$, the Lie bracket can be computed

 $[\varsigma_1, \varsigma_1] = 0, \quad [\varsigma_1, \varsigma_2] = 0, \quad [\varsigma_1, \varsigma_3] = -\varsigma_1,$

(8.4) $[\varsigma_2, \varsigma_1] = 0, \quad [\varsigma_2, \varsigma_2] = 0, \quad [\varsigma_2, \varsigma_3] = -\varsigma_2,$ $[\varsigma_3, \varsigma_1] = \varsigma_1, \quad [\varsigma_3, \varsigma_2] = \varsigma_2, \quad [\varsigma_3, \varsigma_3] = 0.$

Koszul's formula is given as

$$\begin{array}{ll} 2\mathfrak{g}_{1}\left(\nabla_{\mathfrak{J}_{1}}\mathfrak{J}_{2},\mathfrak{J}_{3}\right) &=& \mathfrak{J}_{1}\mathfrak{g}_{1}\left(\mathfrak{J}_{2},\mathfrak{J}_{3}\right) + \mathfrak{J}_{2}\mathfrak{g}_{1}\left(\mathfrak{J}_{3},\mathfrak{J}_{1}\right) - \mathfrak{J}_{3}\mathfrak{g}_{1}\left(\mathfrak{J}_{1},\mathfrak{J}_{2}\right) \\ (8.5) & & +\mathfrak{g}_{1}\left(\left[\mathfrak{J}_{1},\mathfrak{J}_{2}\right],\mathfrak{J}_{3}\right) - \mathfrak{g}_{1}\left(\left[\mathfrak{J}_{2},\mathfrak{J}_{3}\right],\mathfrak{J}_{1}\right) + \mathfrak{g}_{1}\left(\left[\mathfrak{J}_{3},\mathfrak{J}_{1}\right],\mathfrak{J}_{2}\right). \end{array}$$

Now utilizing the above equation, we can compute

 $\nabla_{\varsigma_1}\varsigma_1=-\varsigma_3,\quad \nabla_{\varsigma_1}\varsigma_2=0,\quad \nabla_{\varsigma_1}\varsigma_3=-\varsigma_1,$

(8.6)
$$\nabla_{\varsigma_2}\varsigma_1 = 0, \qquad \nabla_{\varsigma_2}\varsigma_2 = \varsigma_3, \quad \nabla_{\varsigma_2}\varsigma_3 = -\varsigma_2,$$

$$\nabla_{\varsigma_3}\varsigma_1 = 0, \qquad \nabla_{\varsigma_3}\varsigma_2 = 0, \quad \nabla_{\varsigma_3}\varsigma_3 = 0.$$

Also $\mathfrak{J}_1 = \mathfrak{J}_1^1 \varsigma_1 + \mathfrak{J}_1^2 \varsigma_2 + \mathfrak{J}_1^3 \varsigma_3$ and $\xi^{\flat} = \varsigma_3$, then we have

(8.7)

$$\nabla_{\mathfrak{J}_{1}}\xi^{\flat} = \nabla_{\mathfrak{J}_{1}^{1}\varsigma_{1}+\mathfrak{J}_{1}^{2}\varsigma_{2}+\mathfrak{J}_{1}^{3}\varsigma_{3}}\varsigma_{3} \\
= \mathfrak{J}_{1}^{1}\nabla_{\varsigma_{1}}\varsigma_{3} + \mathfrak{J}_{1}^{2}\nabla_{\varsigma_{2}}\varsigma_{3} + \mathfrak{J}_{1}^{3}\nabla_{\varsigma_{3}}\varsigma_{3} \\
= -\mathfrak{J}_{1}^{1}\varsigma_{1} - \mathfrak{J}_{1}^{2}\varsigma_{2}$$

and

$$\begin{aligned} -\mathfrak{J}_{1} - \bar{\eta}(\mathfrak{J}_{1})\xi^{\flat} &= -\left(\mathfrak{J}_{1}^{1}\varsigma_{1} + \mathfrak{J}_{1}^{2}\varsigma_{2} + \mathfrak{J}_{1}^{3}\varsigma_{3}\right) - \mathfrak{g}_{1}\left(\mathfrak{J}_{1}^{1}\varsigma_{1} + \mathfrak{J}_{1}^{2}\varsigma_{2} + \mathfrak{J}_{1}^{3}\varsigma_{3},\varsigma_{3}\right)\varsigma_{3} \\ &= -\mathfrak{J}_{1}^{1}\varsigma_{1} - \mathfrak{J}_{1}^{2}\varsigma_{2} - \mathfrak{J}_{1}^{3}\varsigma_{3} + \mathfrak{J}_{1}^{3}\varsigma_{3} \\ (8.8) &= -\mathfrak{J}_{1}^{1}\varsigma_{1} - \mathfrak{J}_{1}^{2}\varsigma_{2}, \end{aligned}$$

where $\mathfrak{J}_1^1, \mathfrak{J}_1^2, \mathfrak{J}_1^3$ are scalars. From (8.7) and (8.8), the structure $(\varphi, \xi^{\flat}, \bar{\eta}, \mathfrak{g}_1)$ is hyperbolic Kenmotsu structure. Therefore $\Omega_3(\varphi, \xi^{\flat}, \bar{\eta}, \mathfrak{g}_1)$ is hyperbolic Kenmotsu

manifold. In reference of (2.1), (2.3), (3.1) and (8.6), we get

$$\widetilde{\nabla}_{\varsigma_1}\varsigma_1 = -\varsigma_3, \quad \widetilde{\nabla}_{\varsigma_1}\varsigma_2 = 0, \qquad \widetilde{\nabla}_{\varsigma_1}\varsigma_3 = -\frac{3}{2}\varsigma_1,$$

(8.9) $\widetilde{\nabla}_{\varsigma_2}\varsigma_1 = 0, \qquad \widetilde{\nabla}_{\varsigma_2}\varsigma_2 = \varsigma_3, \qquad \widetilde{\nabla}_{\varsigma_2}\varsigma_3 = -\frac{3}{2}\varsigma_2,$

$$\widetilde{\nabla}_{\varsigma_3}\varsigma_1 = \frac{1}{2}\varsigma_1, \quad \widetilde{\nabla}_{\varsigma_3}\varsigma_2 = \frac{1}{2}\varsigma_2, \quad \widetilde{\nabla}_{\varsigma_3}\varsigma_3 = 0.$$

From (3.2) and (3.3), we yields

$$\widetilde{\mathcal{T}}(\varsigma_1,\varsigma_3) = \bar{\eta}(\varsigma_3)\varsigma_1 - \bar{\eta}(\varsigma_1)\varsigma_3 = -\varsigma_1 \neq 0$$

and

$$(\widetilde{\nabla}_{\varsigma_1}\mathfrak{g}_1)(\varsigma_1,\varsigma_3) = \frac{1}{2} [2\bar{\eta}(\varsigma_1)\mathfrak{g}_1(\varsigma_1,\varsigma_3) - \bar{\eta}(\varsigma_1)\mathfrak{g}_1(\varsigma_1,\varsigma_3) - \bar{\eta}(\varsigma_3)\mathfrak{g}_1(\varsigma_1,\varsigma_1)] \\ = \frac{1}{2} \neq 0.$$

Consequently, a new type of semi-symmetric non-metric connection defined in (3.1). Also,

Equation (3.7) can be verified by using (8.7) and (8.10).

The components of $\mathcal R$ with connection ∇ are given as

$$\mathcal{R}(\varsigma_1,\varsigma_2)\varsigma_1 = -\varsigma_2, \quad \mathcal{R}(\varsigma_1,\varsigma_3)\varsigma_1 = -\varsigma_3, \quad \mathcal{R}(\varsigma_2,\varsigma_3)\varsigma_1 = 0,$$

 $(8.11) \qquad \mathcal{R}\left(\varsigma_{1},\varsigma_{2}\right)\varsigma_{2}=-\varsigma_{1}, \quad \mathcal{R}\left(\varsigma_{1},\varsigma_{3}\right)\varsigma_{2}=0, \qquad \mathcal{R}\left(\varsigma_{2},\varsigma_{3}\right)\varsigma_{2}=\varsigma_{3},$

$$\mathcal{R}\left(\varsigma_{1},\varsigma_{2}\right)\varsigma_{3}=0,\qquad \mathcal{R}\left(\varsigma_{1},\varsigma_{3}\right)\varsigma_{3}=-\varsigma_{1},\quad \mathcal{R}\left(\varsigma_{2},\varsigma_{3}\right)\varsigma_{3}=-\varsigma_{2},$$

also $\mathcal{R}(\varsigma_i, \varsigma_i) \varsigma_i = 0; i = 1, 2, 3$ from simple calculations. We can verify (2.7), (2.8), (2.9), (2.10) and (2.11).

Similarly, the component of $\widetilde{\mathcal{R}}$ endowed with connection $\widetilde{\nabla}$ are as under:

$$\widetilde{\mathcal{R}}(\varsigma_1,\varsigma_2)\varsigma_1 = -\frac{3}{2}\varsigma_2, \quad \widetilde{\mathcal{R}}(\varsigma_1,\varsigma_3)\varsigma_1 = -\frac{3}{2}\varsigma_3, \quad \widetilde{\mathcal{R}}(\varsigma_2,\varsigma_3)\varsigma_1 = 0,$$

(8.12) $\widetilde{\mathcal{R}}(\varsigma_1, \varsigma_2)\varsigma_2 = -\frac{3}{2}\varsigma_1, \quad \widetilde{\mathcal{R}}(\varsigma_1, \varsigma_3)\varsigma_2 = 0, \qquad \widetilde{\mathcal{R}}(\varsigma_2, \varsigma_3)\varsigma_2 = \frac{3}{2}\varsigma_3,$

$$\widetilde{\mathcal{R}}\left(\varsigma_{1},\varsigma_{2}\right)\varsigma_{3}=0,\qquad \widetilde{\mathcal{R}}\left(\varsigma_{1},\varsigma_{3}\right)\varsigma_{3}=-\frac{3}{4}\varsigma_{1},\quad \widetilde{\mathcal{R}}\left(\varsigma_{2},\varsigma_{3}\right)\varsigma_{3}=-\frac{3}{4}\varsigma_{2}$$

along with $\widetilde{\mathcal{R}}(\varsigma_i, \varsigma_i) \varsigma_i = 0; i = 1, 2, 3$. Thus, we can verify (4.4), (4.8), (4.9), (4.10) and (4.11).

The Ricci tensor $S^{\flat}(\mathfrak{J}_1,\mathfrak{J}_2)$ of connection ∇ can be derived by using (8.11) in $S^{\flat}(\mathfrak{J}_1,\mathfrak{J}_2) = \sum_{i=1}^{3} \mathfrak{g}_1 \left(\mathcal{R}\left(e_i,\mathfrak{J}_1\right)\mathfrak{J}_2, e_i \right)$. As follows:

(8.13)
$$\mathcal{S}^{\flat}(\varsigma_1,\varsigma_1) = 2, \quad \mathcal{S}^{\flat}(\varsigma_2,\varsigma_2) = -2, \quad \mathcal{S}^{\flat}(\varsigma_3,\varsigma_3) = -2$$

The Ricci tensor $\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_1,\mathfrak{J}_2)$ endowed with $\widetilde{\nabla}$ can be derived by using (8.12) in $\widetilde{\mathcal{S}}^{\flat}(\mathfrak{J}_1,\mathfrak{J}_2) = \sum_{i=1}^{3} \mathfrak{g}_1(\widetilde{\mathcal{R}}(e_i,\mathfrak{J}_1)\mathfrak{J}_2,e_i)$. It is as follows:

(8.14)
$$\widetilde{\mathcal{S}}^{\flat}(\varsigma_1,\varsigma_1) = 3, \quad \widetilde{\mathcal{S}}^{\flat}(\varsigma_2,\varsigma_2) = -3, \quad \widetilde{\mathcal{S}}^{\flat}(\varsigma_3,\varsigma_3) = -\frac{3}{2}.$$

In view of (8.13) and (8.14), the scalar curvature can be calculated as under:

$$\tau = \sum_{i=1}^{3} \mathcal{S}^{\flat}(e_{i}, e_{i}) = \mathcal{S}^{\flat}(\varsigma_{1}, \varsigma_{1}) - \mathcal{S}^{\flat}(\varsigma_{2}, \varsigma_{2}) - \mathcal{S}^{\flat}(\varsigma_{3}, \varsigma_{3}) = 6,$$

$$\tilde{\tau} = \sum_{i=1}^{3} \widetilde{\mathcal{S}}^{\flat}(e_{i}, e_{i}) = \widetilde{\mathcal{S}}^{\flat}(\varsigma_{1}, \varsigma_{1}) - \widetilde{\mathcal{S}}^{\flat}(\varsigma_{2}, \varsigma_{2}) - \widetilde{\mathcal{S}}^{\flat}(\varsigma_{3}, \varsigma_{3}) = \frac{15}{2}.$$

Therefore, we can say that the example I provided completely correspond to our investigations.

REFERENCES

- M. AHMAD and K. ALI: CR-submanifolds of a nearly hyperbolic Kenmotsu manifold admitting a quarter-symmetric non-metric connection, J. Math. Comput. Sci. 3(2013), no. 3, 905-917.
- N. S. AGASHE and M. R. CHAFLE: A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23(1992), 399-409.

- 3. N. S. AGASHE and M. R. CHAFLE: On submanifolds of a Riemannian manifold with semi-symmetric non-metric connection, Tensor N. S., **55(2)**(1994), 120-130.
- A. BARMAN: On P-Sasakian manifolds admitting semi-symmetric metric connection, Publication de L' inst. Math., 95(2014), 239-247.
- C. S. BAGEWADI and G. INGALAHALLI: Ricci Solitons in Lorentzian α-Sasakian manifolds, Acta Math. Acad. P. N., 28(2012), 59-68.
- E. BARTOLOTTI: Sulla geometria della variata a connection affine, Ann. diMat. 4(8)(1930), 53-101.
- L. BHATT and K. K. DUBE: CR-submanifolds of trans-hyperbolic Sasakian manifold, Acta Ciencialndica, 31(2003), 91-96.
- 8. B. B. CHATURVEDI and P. N. PANDEY: Semi-symmetric non-metric connection on a *Kahler manifold*, Differential Geometry-Dynamical Systems, **10**(2008), 86-90.
- S. K. CHAUBEY and A. YILDIZ: Riemannian manifold admitting a new type semisymmetric non-metric connection, Turkish Journal of Mathematics, 43(2019), 1887-1904.
- S. K. CHAUBEY: On semi-symmetric non-metric connection, Prog. of Math, 41-42(2007), 11-20.
- S. K. CHAUBEY and A. C. PANDEY: Some properties of a semi-symmetric non-metric connection on a Sasakian manifold, Int. J. Contemp. Math. Sciences, 8(2013), no. 16, 789-799.
- 12. U. C. DE and D. KAMILYA: Hypersurfaces of a Riemannian manifold with semisymmetric non-metric connection, J. Indian Inst. Sci., **75** (1995), 707-710.
- U. C. DE and J. SENGUPTA: On a type of semi-symmetric non-metric connection, Bull. Cal. Math. Soc., 92(2000), no. 5, 375-384.
- L. DAS, M. AHMAD and A. HASEEB: On semi-symmetric submanifolds of a nearly Sasakian manifold admitting a semi symmetric non-metric connection, Journal of Applied Analysis, USA, 17(2011), pp.1-12.
- L. DAS and M. AHMAD: CR-submanifolds of a Lorenzian Para Sasakian Manifold enbowed with a quarter symmetric non-metric connection, Math Science Research Journal, 13(7)(2009), 161-169.
- A. FRIEDMANN and A. SCHOUTEN: Über die Geometric der halbsymmetrischen Übertragung, Math. Zeitschr., 21(1924), 211-223.
- H. A. HAYDEN: Subspaces of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
- L. K. PANDEY and R. H. OJHA: Semi-symmetric metric and non-metric connections in Lorentzian paracontact manifold, Bull. Cal. Math. Soc., 93(2001), no. 6, 497-504.
- PANKAJ, S. K. CHAUBEY and R. PRASAD: Sasakian manifolds with admitting a nonsymmetric non-metric connection, Palestine Journal of Mathematics, 9(2)(2020), 698-710.
- PANKAJ, S. K. CHAUBEY and G. AYAR: Yamabe and gradient Yamabe solitons on 3dimensional hyperbolic Kenmotsu manofolds, Balkan Society of Geometers, 23(2021), 175-188.
- J. SENGUPTA, U. C. DE and T. Q. BINH: On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 31(2000), no.(1-2), 1659-1670.

- M. M. TRIPATHI and N. KAKKAR: On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Cal. Math. Soc., 16(2001), no. 4, 323-330.
- 23. M. D. UPADHYAY and K. K. DUBE: Almost contact hyperbolic (ϕ, ξ, η, g) -structure, Acta. Math. Acad. Scient. Hung. Tomus, **28**(1976), 1-4.