FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 40, No 1 (2025), 45-48 https://doi.org/10.22190/FUMI230303004T Original Scientific Paper

A RESULT ON THE CHERMAK-DELGADO MEASURE OF A FINITE GROUP

Marius Tărnăuceanu

Faculty of Mathematics, "Al.I. Cuza" University Iaşi, Romania

ORCID ID: Marius Tărnăuceanu

https://orcid.org/0000-0003-0368-6821

Abstract. In this short note, we describe finite groups all of whose non-trivial cyclic subgroups have the same Chermak-Delgado measure.

Keywords: Chermak-Delgado measure, Chermak-Delgado lattice, subgroup lattice, TH-*p*-group.

1. Introduction

Let G be a finite group and L(G) be the subgroup lattice of G. The Chermak-Delgado measure of a subgroup H of G is defined by

(1.1)
$$m_G(H) = |H||C_G(H)|.$$

Let

 $(1.2)m^*(G) = \max\{m_G(H) \mid H \le G\} \text{ and } \mathcal{CD}(G) = \{H \le G \mid m_G(H) = m^*(G)\}.$

Then the set $\mathcal{CD}(G)$ forms a modular, self-dual sublattice of L(G), which is called the *Chermak-Delgado lattice* of G. It was first introduced by Chermak and Delgado [3], and revisited by Isaacs [5]. In the last years there has been a growing interest in understanding this lattice, especially for p-groups (see e.g. [9]). We recall several important properties of the Chermak-Delgado measure:

• if $H \leq G$ then $m_G(H) \leq m_G(C_G(H))$, and if the measures are equal then $C_G(C_G(H)) = H$;

Corresponding Author: M. Tărnăuceanu

Received: March 03, 2023, revised: March 03, 2023, accepted: August 13, 2024 Communicated by Abdullah Alazemi

E-mail addresses: tarnauc@uaic.ro (M. Tărnăuceanu)

²⁰²⁰ Mathematics Subject Classification. Primary 20D30; Secondary 20D60, 20D99

 $[\]textcircled{O}$ 2025 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

M. Tărnăuceanu

- if $H \in \mathcal{CD}(G)$ then $C_G(H) \in \mathcal{CD}(G)$ and $C_G(C_G(H)) = H$;
- the maximum member M of $\mathcal{CD}(G)$ is characteristic and satisfies $\mathcal{CD}(M) = \mathcal{CD}(G)$, while the minimum member M(G) of $\mathcal{CD}(G)$ (called the *Chermak-Delgado subgroup* of G) is characteristic, abelian and contains Z(G).

In [8], the Chermak-Delgado measure of G has been seen as a function

(1.3)
$$m_G: L(G) \longrightarrow \mathbb{N}^*, H \mapsto m_G(H), \forall H \in L(G),$$

which has at least two distinct values if G is non-trivial. We studied finite groups G such that m_G has exactly k values, with an emphasis on the case k = 2. Also, in [4], finite groups G with $|\mathcal{CD}(G)| = |L(G)| - k$, k = 1, 2, have been determined. Note that a small $|\text{Im}(m_G)|$ or a large $\mathcal{CD}(G)$ mean that many subgroups of G have the same Chermak-Delgado measure. This constitutes the starting point of our discussion.

Our main result is stated as follows. By a *TH-p-group* we will understand a *p*-group *G* all of whose elements of order *p* are central, that is $\Omega_1(G) \leq Z(G)$ (see e.g. [1, 2]).

Theorem 1.1. Let G be a finite group and $C(G)^*$ be the set of non-trivial cyclic subgroups of G. If $m_G(H_1) = m_G(H_2)$ for all $H_1, H_2 \in C(G)^*$, then G is a TH-pgroup with $\Omega_1(G) = Z(G)$. Moreover, if $|G| = p^n$, $\exp(G) = p^m$ and $|Z(G)| = p^k$, then $k \leq n - 2m + 2$.

Obviously, a finite abelian group as in Theorem 1.1 is an elementary abelian p-group. The smallest non-abelian examples are Q_8 , $Q_8 \times C_2$, $C_4 \rtimes C_4$ for p = 2 and $C_9 \rtimes C_9$ for p odd. More generally, we observe that all groups $Q_8 \times C_2^n$ with $n \in \mathbb{N}$ and all groups $C_{p^2} \rtimes C_{p^2}$ with p prime satisfy the hypothesis of Theorem 1.1.

Two particular cases of the above theorem are as follow.

Corollary 1.1. Let G be a finite group. If any of the following two conditions holds

- a) $m_G(H_1) = m_G(H_2) = m^*(G)$, for all $H_1, H_2 \in C(G)^*$,
- b) $m_G(H_1) = m_G(H_2)$, for all non-trivial abelian subgroups H_1, H_2 of G,

then either $G \cong C_p$ for some prime p or $G \cong Q_8$.

Most of our notation is standard and will usually not be repeated here. Elementary notions and results on groups can be found in [5, 7]. For subgroup lattice concepts we refer the reader to [6].

46

2. Proof of the main results

2.1. Proof of Theorem 1.1.

Let $|G| = p_1^{n_1} \cdots p_r^{n_r}$ and $G_i \in \operatorname{Syl}_{p_i}(G)$, i = 1, ..., r. If P_i is a cyclic subgroup of order p_i which is contained in $Z(G_i)$, then $G_i \subseteq C_G(P_i)$ and so $m_G(P_i)$ is divisible by $p_i^{n_i+1}$. Since for $j \neq i$ the maximal power of p_i in $m_G(P_j)$ is $p_i^{n_i}$, we infer that $m_G(P_i) \neq m_G(P_j)$. This shows that we must have r = 1, i.e. G is a p-group.

Next we observe that Z(G) cannot contain elements of order p^s with $s \ge 2$. Indeed, if a is such an element, then $\langle a^p \rangle \neq 1$ and

(2.1)
$$m_G(\langle a \rangle) > m_G(\langle a^p \rangle),$$

contradicting our hypothesis. Thus the common value of $m_G(H)$, $H \in C(G)^*$, is p^{n+1} .

Assume now that there is $H \leq G$ with |H| = p and $H \nsubseteq Z(G)$. Then $C_G(H) \neq G$ and so

$$(2.2) m_G(H) \le p^n < p^{n+1}$$

a contradiction. Consequently, G is a TH-p-group with $\Omega_1(G) = Z(G)$.

Finally, let $b \in G$ with $o(b) = p^m$. Then both $\langle b \rangle$ and Z(G) are contained in $C_G(\langle b \rangle)$, implying that $\langle b \rangle Z(G) \subseteq C_G(\langle b \rangle)$. This shows that

$$(2.3) p^{m+k-1} = |\langle b \rangle Z(G)|$$

divides $|C_G(\langle b \rangle)|$ and therefore p^{2m+k-1} divides $p^{n+1} = m_G(\langle a \rangle)$. It follows that $2m+k-1 \le n+1$, i.e. (2.4) $k \le n-2m+2$,

as desired. $\hfill\square$

2.2. Proof of Corollary 1.2.

Under the hypothesis of Theorem 1.1, we observe that if k = 1, then Z(G) is the unique subgroup of order p of G. By (4.4) of [7], II, it follows that G is either cyclic or a generalized quaternion 2-group. Clearly, if G is cyclic we must have n = 1, that is $G \cong C_p$, where p is a prime. If $G \cong Q_{2^n}$ for some integer $n \ge 3$, then m = n - 1 and therefore the inequality $k \le n - 2m + 2$ leads to $n \le 3$. Thus n = 3and $G \cong Q_8$.

The proof is completed by the remark that each of conditions a) and b) implies k = 1. \Box

M. Tărnăuceanu

$\mathbf{R} \, \mathbf{E} \, \mathbf{F} \, \mathbf{E} \, \mathbf{R} \, \mathbf{E} \, \mathbf{N} \, \mathbf{C} \, \mathbf{E} \, \mathbf{S}$

- D. BUBBOLONI and G. CORSI TANI: p-groups with some regularity properties. Ric. di Mat. 49 (2000), 327-339.
- 2. D. BUBBOLONI and G. CORSI TANI: *p*-groups with all the elements of order *p* in the center. Algebra Colloq. **11** (2004), 181-190.
- 3. A. CHERMAK and A. DELGADO: A measuring argument for finite groups. Proc. AMS 107 (1989), 907-914.
- 4. G. FASOLĂ and M. TĂRNĂUCEANU: *Finite groups with large Chermak-Delgado lattices*. to appear in Bull. Aus. Math. Soc., DOI: https://doi.org/10.1017/S0004972722000806.
- 5. I.M. ISAACS: Finite group theory. Amer. Math. Soc., Providence, R.I., 2008.
- 6. R. SCHMIDT: *Subgroup lattices of groups.* de Gruyter Expositions in Mathematics 14, de Gruyter, Berlin, 1994.
- 7. M. SUZUKI: Group theory. I, II, Springer Verlag, Berlin, 1982, 1986.
- 8. M. TĂRNĂUCEANU: Finite groups with a certain number of values of the Chermak-Delgado measure. J. Algebra Appl. **19** (2020), article ID 2050088.
- A. MORRESI ZUCCARI, V. RUSSO and C.M. SCOPPOLA: The Chermak-Delgado measure in finite p-groups. J. Algebra 502 (2018), 262-276.