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Abstract. The purpose of the present paper is to explore the characteristics of the
Lorentzian φ-symmetric para-Kenmotsu manifold as an Einstein manifold. In this pa-
per, we also study the parallel 2-form on the LP-Kenmotsu manifold (LP-Kenmotsu
manifold is used in lieu of Lorentzian para-Kenmotsu manifold throughout the present
research article). We explain that the conformally flat LP-Kenmotsu manifold is locally
φ-symmetric iff, it has constant scalar curvature.
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1. Introduction

A number of authors have examined the concept of weak local symmetry of Rieman-
nian manifolds with different approaches in distinct areas. Takahashi [15] initiated
the concept of locally φ-symmetry as a weaker form of local symmetry on Sasakian
manifolds. De [4, 5] initiated the concept of φ-recurrent Sasakian manifolds by
generalizing the concept of locally φ-symmetry. Haseeb, Pandey and Prasad stud-
ied solitons on Sasakian manifold [8]. The concept of φ-symmetry in reference to
the contact geometry is initiated and examined by Vanhecke, Buecken and Boeckx
[3]. Alternatively, Kenmotsu manifold has been established by Kenmotsu [10]. He
explained Kenmotsu manifold as a category of contact metric manifold. Kenmotsu
manifold is different from Sasakian manifold. Since divξ = 2n, therefore, Kenmotsu
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manifold is not compact. A Kenmotsu manifold is said to be a locally warped prod-
uct I × f N of an interval I [10], which is Kähler manifold N together with warping
function f(t) = set, here s is a non-zero constant.
We have organized this paper in the following manner:
We mention preliminaries in section-2. Section 3 establishes a result on LP-Kenmotsu
manifold with parallel 2-form. Section 4 gives results on φ-symmetric LP-Kenmotsu
manifold as an Einstein manifold. Section 5 explains that the conformally flat LP-
Kenmotsu manifold is φ-symmetric, iff it has constant scalar curvature.
In the last section of this paper, examples on the φ-symmmetry together with locally
φ-symmetric LP-Kenmotsu manifold are given.

2. Preliminaries

We assume that the Mn (φ, ξ, η, g) be a Lorentzian metric manifold. Here, φ is
(1, 1) tensor field, ξ is characteristic vector field, η is 1-form and g is the Lorentz
metric. We are well acquainted with the results mentioned below:

(2.1) φξ = 0, η(φU) = 0, η(ξ) = −1,

(2.2) φ2U = U + η(U)ξ

(2.3) g(U, ξ) = η(U),

(2.4) g(φU, φV ) = g(U, V ) + η(U)η(V ),

∀ vector fields U, V on M [6],

(2.5) (∇Uφ)V = −g(φU, V )ξ − η(V )φU,

∀ vector fields U, V on M ,

(2.6) ∇Uξ = −U − η(U)ξ,

here, ∇ represents the Levi-Civita connection of g, then M (φ, ξ, η, g) is said to be
a LP-Kenmotsu manifold [6, 7]. Kenmotsu [10], De and Pathak [4], Jun, De and
Pathak [9], Binh, Tamassy, De and Tarafdar [1], Özgür and De [13], Özgür [11, 12]
and other mathematicians have explained the Kenmotsu manifolds.
In LP-Kenmotsu manifolds, the results given below hold:

(2.7) (∇Uη)V = −g(U, V )− η(U)η(V ),

(2.8) η(R(U, V )Z) = g(V,Z)η(U)− g(U,Z)η(V ),

(2.9) R(U, V )ξ = η(V )U − η(U)V,
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(2.10) R(ξ, U)V = g(U, V )ξ − η(V )U,

(2.11) R(ξ, U)ξ = U + η(U)ξ

(2.12) S(U, ξ) = (n− 1)η(U),

(2.13) (∇ZR)(U, V )ξ = g(U,Z)V − g(V,Z)U +R(U, V )Z,

∀ vector fields U, V, Z on M , where R and S denote the Riemannian curvature ten-
sor and the Ricci tensor respectively.

Definition 2.1. An LP-Kenmotsu manifold is called locally φ-symmetric if it sat-
isfies the condition,

(2.14) φ2((∇WR)(U, V )Z) = 0,

∀ vector fields U, V, Z,W orthogonal to ξ.

Takahashi initiated the above concept for a Sasakian manifold [15]. We extend this
concept for LP-Kenmotsu manifold in the above definition.

Definition 2.2. An LP-Kenmotsu manifold is called the φ-symmetric LP-Kenmotsu
manifold if

(2.15) φ2((∇WR)(U, V )Z) = 0,

∀ vector fields U, V, Z, W on M .

Definition 2.3. A second order tensor α is called the parallel tensor, if ∇α = 0,
where, ∇ represents the Levi-Civita connection in the direction of metric g.

3. Parallel 2-form in the LP-Kenmotsu manifolds

Theorem 3.1. There is no non-zero parallel 2-form on a LP-Kenmotsu manifold.

Proof. We assume α to be a (0, 2) type skew symmetric tensor. By definition, α is
parallel tensor, if ∇α = 0. This provides the following relation,

(3.1) α(R(W,U)V,Z) + α(V,R(W,U)Z) = 0,

∀ vector fields U, V, Z,W on M .
Putting W = V = ξ in the equation (3.1), we obtain,

α(R(ξ, U)ξ, Z) + α(ξ,R(ξ, U)Z) = 0.
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Using the equations (2.10) and (2.11), we obtain,

(3.2) α(U,Z) = η(Z)α(ξ, U)− η(U)α(ξ, Z)− g(U,Z)α(ξ, ξ).

Since, α is (0, 2) skew-symmetric tensor, which implies that α(ξ, ξ) = 0, therefore
equation (3.2) reduces to,

(3.3) α(U,Z) = η(Z)α(ξ, U)− η(U)α(ξ, Z).

Now, let A be (1, 1) tensor field, which is metrically equivalent to α, i.e., α(U, V ) =
g(AU, V ), then the equation (3.3) becomes,

g(AU,Z) = η(Z)g(Aξ,U)− η(U)g(Aξ,Z),

which implies that,

(3.4) AU = g(Aξ,U)ξ − η(U)Aξ.

Now, we have the relation,

∇U (Aξ) = (∇UA)ξ +A(∇Uξ).

As, α is parallel, so A is parallel, therefore∇UA = 0. Applying this relation together
with ∇Uξ = −U − η(U)ξ in the above equation, we get,

∇U (Aξ) = A(−U − η(U)ξ),

or
∇U (Aξ) = −AU − η(U)Aξ.

With the help of the equation (3.4), the above equation is reduced to

∇U (Aξ) = −g(Aξ,U)ξ.

By calculation,
g(∇U (Aξ), Aξ) = 0,

for any vector field U on M . Consequently ‖Aξ‖ = constant on M.
From the above equation,

g((∇UA)ξ +A(∇Uξ), Aξ) = 0.

Because A is parallel, the first term in the above equation vanishes, and the above
equation simplifies to become.

g(A(∇Uξ), Aξ) = 0,

or,
α(∇Uξ, Aξ) = 0.
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Since, α(U, V ) = −α(V,U), so the above equation becomes,

−α(Aξ,∇Uξ) = 0,

or,
−g(A2ξ,∇Uξ) = 0,

or,
−g(∇Uξ, A

2ξ) = 0.

As, ∇Uξ = −U − η(U)ξ, the above equation implies,

−g(−U − η(U)ξ, A2ξ) = 0.

or,
g(U,A2ξ) + η(U)g(ξ, A2ξ) = 0,

or
g(U,A2ξ) = −g(ξ, A2ξ)g(ξ, U).

Since, −g(ξ, A2ξ) = −α(Aξ, ξ) = α(ξ, Aξ) = g(Aξ,Aξ) = ‖Aξ‖2, the above equa-
tion becomes,

g(U,A2ξ) = ‖Aξ‖2g(U, ξ),

or,
g(U,A2ξ) = g(U, ‖Aξ‖2ξ),

or,

(3.5) A2ξ = ‖Aξ‖2ξ.

Differentiating covariantly the equation (3.5) along U, we obtain.

∇U (A2ξ) = (∇UA
2)ξ +A2(∇Uξ) = ‖Aξ‖2∇Uξ.

Using ∇UA = 0 and ∇Uξ = −U − η(U)ξ, the above equation becomes,

∇U (A2ξ) = A2(−U − η(U)ξ),

or,
∇U (A2ξ) = −A2U − η(U)A2ξ.

From equation (3.5), the above equation turns into,

∇U (‖Aξ‖2ξ) = −A2U − η(U)‖Aξ‖2ξ,

or,
‖Aξ‖2∇Uξ = −A2U − η(U)‖Aξ‖2ξ,

or,
−‖Aξ‖2U − η(U)‖Aξ‖2ξ = −A2U − η(U)‖Aξ‖2ξ.
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On simplification, the above equation becomes,

(3.6) A2U = ‖Aξ‖2U.

If, ‖Aξ‖ 6= 0, then the equation (3.6) becomes,

(
A

‖Aξ‖
)2U = U.

Let F =
A

‖Aξ‖
, then we have,

(3.7) F 2U = U.

Therefore on M , F defines the almost product structure. Then the fundamental
2-form is given by,

g(FU, V ) = g(
AU

‖Aξ‖
, V ) =

1

‖Aξ‖
g(AU, V ).

Suppose λ =
1

‖Aξ‖
. Using the relation α(U, V ) = g(AU, V ) together with the above

equation, we get
g(FU, V ) = λg(AU, V ) = λα(U, V ).

But the equation (3.3) shows that α is degenerate, which is a contradiction, this
implies,

‖Aξ‖ = 0

and
α = 0.

This completes the proof of the theorem 3.1.

4. φ-symmetric LP-Kenmotsu manifolds

Assuming M is a φ-symmetric LP-Kenmotsu manifold. With the help of equation
(2.2) and (2.14), we get

(4.1) (∇WR)(U, V )Z + η((∇WR)(U, V )Z)ξ = 0.

Let {ei}ni=1 be the orthonormal basis of TpM at any point p of M . Now, contracting
the equation (4.1) along U , we obtain

(4.2)

n∑
i=1

g((∇WR)(ei, V )Z, ei) +

n∑
i=1

g((∇WR)(ei, V )Z, ξ)g(ei, ξ) = 0.

Putting Z = ξ in the above equation, we obtain,

(4.3) (∇WS)(V, ξ) +

n∑
i=1

g((∇WR)(ei, V )ξ, ξ)g(ei, ξ) = 0.
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Second term of the above equation,

(4.4) g((∇WR)(ei), V )ξ, ξ) = g(∇W (R(ei, V )ξ, ξ)− g(R(∇W ei, V )ξ, ξ)

− g(R(ei,∇WV )ξ, ξ)− g(R(ei, V )∇W ξ, ξ).

As, ei is orthonormal basis at p, therefore, ∇W ei = 0. On applying the relation
∇W ei = 0 in the second term together with equation (2.9) in 3rd term of the above
equation, we obtain,

g(R(ei,∇WV )ξ, ξ) = g(η(∇WV )ei − η(ei)∇WV, ξ),

or,

g(R(ei,∇WV )ξ, ξ) = η(∇WV )g(ei, ξ)− η(ei)g(∇WV, ξ),

which again implies,

g(R(ei,∇WV )ξ, ξ) = η(ei)η(∇WV )− η(ei)η(∇WV ),

or,

(4.5) g(R(ei,∇WV )ξ, ξ) = 0.

Using the equation (4.5) into the equation (4.4), we get

(4.6) g((∇WR)(ei), V )ξ, ξ) = g(∇W (R(ei, V )ξ, ξ)− g(R(ei, V )∇W ξ, ξ).

As,

(4.7) g(R(ei, V )ξ, ξ) = −g(R(ξ, ξ)V, ei) = 0,

therefore,

g(R(ei, V )ξ, ξ) = 0.

Differentiating covariantly the above equation with respect to W , we obtain,

(∇W g)(R(ei, V )ξ, ξ) + g(∇WR(ei, V )ξ, ξ) + g(R(ei, V )ξ,∇W ξ) = 0.

On simplification, the above equation is reduced to,

(4.8) g(∇WR(ei, V )ξ, ξ) = −g(R(ei, V )ξ,∇W ξ).

Using (4.8) into (4.6), we find

g((∇WR)(ei, V )ξ, ξ) = −g(R(ei, V )ξ,∇W ξ)− g(R(ei, V )∇W ξ, ξ),

or,

g(∇WR)(ei, V )ξ, ξ) = −g(R(ei, V )ξ,W + η(W )ξ)− g(R(ei, V )(W + η(W )ξ, ξ).
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On evaluation, the above equation becomes,

g((∇WR)(ei, V )ξ, ξ) = −g((R(ei, V )η(W ))ξ), ξ).

Since

(R(ei, V )η(W )) = 0,

so,

g((∇WR)(ei, V )ξ, ξ) = 0.

With the aid of the above equation, the equation (4.3) turns into,

(∇WS)(V, ξ) = 0,

or,

(∇WS)(V, ξ) = ∇W (S(V, ξ))− S(∇WV, ξ)− S(V,∇W ξ).

With the help of the equations (2.6) and (2.12), the above relation provides,

(4.9) S(V,W ) = (n− 1)g(V,W ),

which shows that a φ-symmetric LP-Kenmotsu manifold is an Einstein manifold.
So, we state the following theorem:

Theorem 4.1. : A φ-symmetric LP-Kenmotsu manifold is an Einstein manifold.

5. Conformally flat locally φ-symmetric LP-Kenmotsu manifolds

Let (Mn, g) be an n-dimensional (n > 3) connected pseudo-Riemannian manifold
of class C∞ and ∇ be the Levi-Civita connection, then the conformal curvature
tensor C of (M, g) is defined by

(5.1)

C(U, V )Z = R(U, V )Z − 1

n− 2
[S(V,Z)U −S(U,Z)V + g(V,Z)QU − g(U,Z)QV ]

+
r

(n− 1)(n− 2)
[g(V,Z)U − g(U,Z)V ],

where, r is the scalar curvature, S is the Ricci tensor and Q is the Ricci operator
s.t. S(U, V ) = g(QU, V ) [14, 16]. We assume that the manifold is conformally flat,
so, C(U, V )Z = 0. Hence the equation (5.1) turns into,

(5.2) R(U, V )Z =
1

n− 2
[S(V,Z)U − S(U,Z)V + g(V,Z)QU − g(U,Z)QV ]

− r

(n− 1)(n− 2)
[g(V,Z)U − g(U,Z)V ].
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Replacing U = Z = ξ in the above equation and using (2.11) together with (2.12),
we obtain

(5.3) QU = (
r

n− 1
− 1)U + (

r

n− 1
− n)η(U)ξ.

According to the definition, S(U, V ) = g(QU, V ), we get

(5.4) S = (
r

n− 1
− 1)g + (

r

n− 1
− n)η ⊗ η,

by virtue of the equations (5.3), (5.4), the equation (5.2) turns into

(5.5) R(U, V )Z = (
1

n− 2
)(

r

n− 1
− 2)[g(V,Z)U − g(U,Z)V ]

+ (
1

n− 2
)(

r

n− 1
− n)[g(V,Z)η(U)ξ − g(U,Z)η(V )ξ]

+ (
1

n− 2
)(

r

n− 1
− n)[η(V )η(Z)U − η(U)η(Z)V ].

Differentiating covariantly the equation (5.5) with respect to W , we find

(5.6) (∇WR)(U, V )Z = (
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)U − g(U,Z)V ]

+ (
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)η(U)ξ − g(U,Z)η(V )ξ + η(V )η(Z)U − η(U)η(Z)V )]

+ (
1

n− 2
)(

r

n− 1
− n)[g(V,Z)(∇W η)(U)ξ+ g(V,Z)η(U)∇W ξ− g(U,Z)(∇W η)(V )ξ

− g(U,Z)η(V )∇W ξ + (∇W η)(V )η(Z)U + η(V )(∇W η)(Z)U

− (∇W η)(U))η(Z)V − η(U)(∇W η)(Z)V ].

Now, operating φ2 on both sides of the equation (5.6), we get

(5.7) φ2((∇WR)(U, V )Z) = φ2((
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)U − g(U,Z)V ]

+ (
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)η(U)ξ − g(U,Z)η(V )ξ + η(V )η(Z)U − η(U)η(Z)V )]

+ (
1

n− 2
)(

r

n− 1
− n)[g(V,Z)(∇W η)(U)ξ+ g(V,Z)η(U)∇W ξ− g(U,Z)(∇W η)(V )ξ

− g(U,Z)η(V )∇W ξ + (∇W η)(V )η(Z)U + η(V )(∇W η)(Z)U

− (∇W η)(U)η(Z)V − η(U)(∇W η)(Z)V ]).
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On simplification, the above equation becomes,

(5.8)

φ2((∇WR)(U, V )Z) = (
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)U − g(U,Z)V + g(V,Z)η(U)ξ−

g(U,Z)η(V )ξ − η(U)η(Z)V + η(V )η(Z)U ]

+ (
1

n− 2
)(

r

n− 1
− n)[(∇W η)(V )η(Z)U + η(V )(∇W η)(Z)U−

(∇W η)(U)η(Z)V − η(U)(∇W η(Z)V ) + (∇W η)(V )η(U)η(Z)ξ−
(∇W η)(U)η(V )η(Z)ξ + g(U,Z)η(V )W − g(V,Z)η(U)W

+ g(U,Z)η(V )η(W )ξ − g(V,Z)η(U)η(W )ξ].

Let U, V, Z be orthogonal to ξ, therefore the equation (5.8) becomes,

(5.9) φ2((∇WR)(U, V )Z) = (
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)U − g(U,Z)V ].

If M is locally φ-symmetric, then the equation (5.9) reduces to

(5.10) (
1

n− 2
)
dr(W )

(n− 1)
[g(V,Z)U − g(U,Z)V ] = 0.

Hence, we state the following theorem:

Theorem 5.1. A conformally flat LP-Kenmotsu manifold is locally φ-symmetric,
iff the scalar curvature is constant.

Let (Mn, g) be an n-dimensional (n > 3) connected pseudo-Riemannian mani-
fold of class C∞ and ∇ be the Levi-Civita connection, then the conformal curvature
tensor C of (M, g) is defined by,

(5.11)

C(U, V )Z = R(U, V )Z − 1

n− 2
[S(V,Z)U −S(U,Z)V + g(V,Z)QU − g(U,Z)QV ]

+
r

(n− 1)(n− 2)
[g(V,Z)U − g(U,Z)V ],

where, r, S and Q are scalar curvature, Ricci tensor and Ricci operator, respectively,
such that S(U, V ) = g(QU, V ).
If M is φ-symmetric, then from the theorem 4.1 together with the equation (4.9),
S is found as,

(5.12) S(U, V ) = (n− 1)g(U, V ).

Using S(U, V ) = g(QU, V ) in the equation(5.12) we yield,

(5.13) QU = (n− 1)U.
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Contracting the equation (5.12),

(5.14) r = n(n− 1).

Using equations (5.12), (5.13) and (5.14) in the equation (5.11), we get

C(U, V )Z = R(U, V )Z − (n2 − 3n+ 2)

(n− 1)(n− 2)
[g(V,Z)U − g(U,Z)V ],

or,

(5.15) C(U, V )Z = R(U, V )Z − {g(V,Z)U − g(U,Z)V }.

We assume that M is conformally flat, i.e. C ≡ 0. Hence, from this result, the
equation (5.15) reduces to

(5.16) R(U, V )Z = {g(V,Z)U − g(U,Z)V }.

Thus, we state the following theorem:

Theorem 5.2. φ-symmetric conformally flat LP-Kenmotsu manifold M of dimen-
sion greater than 3 is a space of constant curvature 1.

6. example

Example 6.1. Conformally flat LP-Kenmotsu manifold M of dimension n (n > 3),
together with scalar curvature r = n(n− 1), is φ-symmetric.

Example 6.2. We take a 3-dimensional smooth manifold M3 = {(u, v, w) ∈ R3 :
(u, v, w) 6= (0, 0, 0)}, where (u, v, w) is the standard coordinates in 3-dimensional real
space R3. Consider the set {ē1, ē2, ē3} of vector fields at every point of M3, which are
linearly independent, are defined as,

ē1 = eu+w ∂

∂u
, ē2 = ev+w ∂

∂v
, ē3 =

∂

∂w
.

We define the Lorentz metric g on M3 as:

gij = g(ēi, ēj) =


0 if i 6= j

−1 if i = j = 3

1 i = j = 1 or 2,

Assume η to be the 1-form corresponding to the Lorentz metric g by

η(U) = g(U, ē3),

for any U ∈ Γ (M3), where Γ (M3) is the set of all smooth vector fields on M3. We define
the (1, 1)-tensor field φ as follows:

φ(ē1) = ē1, φ(ē2) = ē2, φ(ē3) = 0.
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From linearity property of φ and g, we simply prove the results given below:

η(ē3) = −1, φ2(U) = U + η(U)ē3, g(φU, φV ) = g(U, V ) + η(U)η(V ),

∀ U, V ∈ Γ (M3). This implies that ē3 = ξ, the structure (φ, ξ, η, g) goes to a Lorentzian
paracontact structure and the manifold M3 equipped with the Lorentzian paracontact
structure is called the Lorentzian paracontact manifold of dimension 3.
We represent [U, V ] as the Lie-derivative of vector fields U and V , defined by [U, V ] =
UV − V U . The non-zero constituents of the Lie-bracket are calculated as:

[ē1, ē3] = −ē1, [ē2, ē3] = −ē2.

Let Levi-Civita connection with respect to the Lorentzian metric tensor g be denoted by
∇. Then for ē3 = ξ, the Koszul’s formula

2g(∇UV,Z) = Ug(V,Z) + V g(Z,U)− Zg(U, V )

− g([V,Z], U) + g([Z,U ], V ) + g([U, V ], Z)

gives,
∇ē1 ē1 = −ē3, ∇ē1 ē2 = 0, ∇ē1 ē3 = −ē1,

∇ē2 ē1 = 0, ∇ē2 ē2 = −ē3, ∇ē2 ē3 = −ē2,

∇ē3 ē1 = 0, ∇ē3 ē2 = 0, ∇ē3 ē3 = 0.

Let U ∈ Γ (M3). So, U =
∑3

i=1 U
iēi = U1ē1 + U2ē2 + U3ē3. From the above equations,

it can be verified that ∇U ē3 = −{U + η(U)ē3} holds for each U ∈ Γ (M3). Hence, the
Lorentzian paracontact manifold is a LP-Kenmotsu manifold of dimension 3. From the
above equations, the non-zero constituents of R are evaluated underneath:

R(ē1, ē2)ē2 = ē1, R(ē2, ē3)ē2 = −ē3,

R(ē1, ē3)ē3 = −ē1, R(ē2, ē3)ē3 = −ē2,

R(ē2, ē1)ē1 = ē2, R(ē1, ē3)ē1 = −ē3.

The above relations indicates that the M3 under consideration is locally φ-symmetric. We
have

R(U, V )Z = g(V,Z)U − g(U,Z)V,

so, it is the space of constant curvature 1.
The definition of the Ricci tensor S of M3 gives,

S(U, V ) = ε1g(R(ē1, U)V, ē1) + ε2g(R(ē2, U)V, ē2) + ε3g(R(ē3, U)V, ē3)

where, εi = g(ēi, ēi), i ∈ {1, 2, 3}.
The matrix representation of S is given by

S =

2 0 0
0 2 0
0 0 −2


and the scalar curvature r = ε1S(ē1, ē1)+ε2S(ē2, ē2)+ε3S(ē3, ē3) = 6, where, εi = g(ēi, ēi),
i ∈ {1, 2, 3}. This shows that the manifold under consideration possesses the constant
scalar curvature 6.
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