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1. Introduction

In this paper we consider some stronger versions of separability in hyperspaces.
In [27], Marion Scheepers introduced a general notation for selection principles as
follows:

Let A and B be families of sets of an infinite set X. Then,
e S, (A, B) is the selection hypothesis: for each sequence {A, : n € N} of elements of
A there is a sequence {b, : n € N} such that for each n,b, € A, and {b, : n € N}
is an element of B.
¢ S,..(A, B) is the selection hypothesis: for each sequence {A, : n € N} of elements
of A there is a sequence {B,, : n € N} of finite sets such that for each n, B, C A, ,
and U B, eB.
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If A and B stand for the family of all dense subsets of X (where we denote the set
of all dense subsets of X by D), then S, (D, D) is called the selective separability
of X. 1. Juhdsz and S. Shelah in their paper [13] proved that a compact space X
has countable m-weight whenever every dense subspace of X is separable. Selective
separability of X follows from countable m-weight of X and implies that all dense
subspaces of X are separable. Therefore, the above-mentioned theorem of Juhész
and Shelah implies that, in compact spaces, selective separability coincides with
countable m-weight.

In [3], spaces X satisfying S,, (D,D) or S, (D, D) are called M-separable and
R-separable, respectively. Also, X is said to be H-separable if for every sequence
{D;,, : n € N} of elements of D, one can pick finite F;, C D,, so that for every
nonempty open subset O of X, the intersection O N F;, is nonempty for all but
finitely many n. Naturally, M-, R-, and H-, are motivated by analogy with well-
known Menger, Rothberger, and Hurewicz properties. Recall that X is Menger if for
every sequence {U,, : n € N} of open covers of X, there exist finite V,, C Uy,, n € N,
so that | J{V,, : n € N} covers X; X is Rothberger if for every sequence {U,, : n € N}
of open covers of X, there exist U, € U,, n € N, so that {U,, : n € N} covers X;
X is Hurewicz if for every sequence {U,, : n € N} of open covers of X, there exist
finite V,, C Uy, n € N, so that for every x € X, x € |JV,, for all but finitely many
n. Also a family P of open sets in X is called a w-base for X if every nonempty
open set in X contains a nonempty element of P; where 7w(X) = min{|P|: P is a
m-base for X} is the m-weight of X. The following implications are obvious:

R-separable
e N
Separable <— M-separable Countable m-weight

N v

separable

Let us now recall some backgrounds of hyperspace topology. Given a Hausdorff
non-compact space X, we denote the family of nonempty closed subsets (resp.,
closed subsets, compact subsets) of a topological space X by CL(X) (resp., 2X7
K(X)). For a subset U C X and a family U of subsets of X, we write:

U ={AeCL(X): AnU # ¢},
U ={AeCL(X): AC U},
U'=X\U,

U ={U :Ucuy.

The most known and popular among the topologies on 2" are Fell topology
and Vietoris topology. J. M. G. Fell [11] introduced a topology 7, on 2" having a
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subbase consisting of all sets of the form V', where V is an open subset of X plus
all sets of the form (K C)+, where K is a compact subset of X. The Fell topology

n
T, has a basic open subset of the form (ﬂ Vo)n (KC)+, where V,, V,,...,V are
i=1
open subsets of X and K is a compact subset of X.
If compact subsets in the definition above are replaced by closed sets, we obtain
the stronger Vietoris topology 7., [21]. A basic open subset of the Vietoris topology

7, is of the form: < U,,U,,...U, >={A €2 :Ac |JU,ANU, # ¢, for
i=1
1 <i<n}, where U,,U,,,U, are open subsets of X, for n € N.

Let A be a subset of 2" closed for finite unions and containing all singletons. The
upper A-topology, denoted by A+, is the topology whose subbase is the collection
{(D)" : D e A} U {2X}. If A is the family of all finite subsets of X (resp.,
the collection of compact subsets of X), the corresponding A+—t0pology known as
co-finite topology (resp., co-compact topology) will be denoted by A (resp., F+).

We have the inclusions: VAl C F’ Cr.CrT,.

Let A C CL(X) be a subfamily of CL(X) closed under finite unions and con-
taining all singletons. Then, the hit-and-miss topology on C'L(X) with respect to
A (first studied in the abstract in [23] and then in [7]), denoted by 7}, has as a
base, the family

{(m VI)N(BY)T: BeAandV, €7 fori€{1,2,..,m}, me N}
i=1

m

Following [32], the basic element (ﬂ V:,O)N(B")T will be denoted by (V4 ..., Vm);
i=1

Two important cases of the hit-and-miss topology are the Vietoris topology, 7, ,

when A = CL(X) ([31], [21]) and the Fell topology, 7,., when A = K(X) ([11]).

By a cover, we mean a nontrivial one, that is, I/ is a cover of X if X = U U and
X € U. k-covers and w-covers play important roles in selection principles [2], [14],
[15]. Different A-covers exposed many dualities in hyperspace topologies such as
Fell topology, Vietoris topology, Z , ' ([5], [15], [16], [19], [10], [9], [8], [22], [26]).

Throughout the paper all spaces are assumed to be Hausdorff, non-compact.
Along this paper, unless we say the opposite, we will take a family A C CL(X) that
is closed under finite unions. Also we shall use [X]<“ to denote all finite subsets of
X.

2. Definitions and Results
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Let us recall that an open cover U of a space X is called an w-cover [12] (respec-
tively, a k-cover [20]) if every finite (respectively, compact) subset of X is contained
in a member of U and X is not a member of /. An open cover U of X is called a
~-cover [12] if it is infinite and each = € X belongs to all but finitely many elements
of U. Notice that it is equivalent to the assertion: Each finite subset of X belongs
to all but finitely many members of #. Also Lj. D. R. Koc¢inac in his paper [16]
introduced a stronger version of «-cover as: an open cover U of a space X is called
a v,-cover of X if each compact subset of X is contained in all but finitely many
elements of U and X is not a member of the cover.

For a space (X, 7) and a point € X we use

e O : the collection of open covers of X;

e () : the collection of w-covers of X;

e K : the collection of k-covers of X;

e I' : the collection of all y-covers of X;

o I', : the collection of all v, -covers of X;

e, ={AC X :zeClA};

e D_ : the collection of all dense subsets of the space (X, 7).

AsF' and Z' are miss type hyperspace topologies, they are dual to k-covers
and w-covers in selection principles. The Fell topology and the Vietoris topology
are hit-and-miss topologies of types of subbasic open sets: those that hit a variable
open subset plus those that miss a compact subset (in case of Fell topology) or a
closed subset (in case of Vietoris topology). Z. Li in his paper [19] introduced the
definitions of hit-and-miss type covers to study the selection principles in CL(X)
under 7, and 7,. The following definition of hit-and-miss type covers has been
introduced in [6].

Definition 2.1. [6] Let (X, 7) be a topological space. A family & C A” is called
a ca(A)-cover of X, if for any D € A and open subsets Vi,...,V,, of X, with
D NV; # ¢, for any i € {1,...,m}, there exist U € U and F € [X]|<¥ such that
D CU, FNU = ¢ and for each i € {1,....,m}, FNV; # ¢. The family of all
ea(A)-covers of X will be denoted by Ca(A).

Next we recall the relative version of the above type of covers as follows.

Definition 2.2. [29] Let (X, 7) be a topological space and Y C X with YV # X.
A family ¢ C A" is called a ca(A)-cover of Y, if for any D € A with D C Y and
open subsets Vi, ..., Vy, of X, with Y NV; # ¢, for any i € {1,...,m}, there exist
UelU and F € [X]<% such that D C U, FNU = ¢ and for each i € {1,...,m},
FNV; #¢. We denote by C,(A) the family of all ca(A)-covers of Y C X, with
Y # X.

Lemma 2.1. [29] Let Y be an open subset of a space X withY # X and U C A°
be a cover of Y. Then the following statements are equivalent:
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(i) U is a ca(A)-cover of Y.
(i) Y* € Cl+(U").
A

—+
Lemma 2.2. For a space X, E € A and a collection A C A, A € Q2> implies

{(AUE) : A € A} is a ca(M)-cover of E°, where QEX ={ACCL(X):E€
Clyg ().

Proof. Let D € A be such that D ¢ E° and let Vi, ..., V,, be open sets in X with
EnV;, # ¢, foralli=1,..,m. Then (V1,..., Vm)+ is a TZ—neighbourhood of E. As

D

A
Ae€ Q;A, there exists A € A such that A € (V, ..., Vm);. Now choose z; € ANV,
for 1 < ¢ < m and consider the set F = {x; : 1 <i < m}. Then F € [X]|<¥ with
FNVi# ¢, foralll <i<m. Also D C (AUE)" and (AUE)"NF = ¢. Hence
{(AUE)" : A€ A} is a ca(A)-cover of E°. O

We next recall the definition of Av-covers of a space as follows.

Definition 2.3. [29] Let (X, 7) be a topological space. A family & C A" is called
a A~v-cover of X, if each B € A belongs to all but finitely many elements of U/
and for any B € A and open subsets Vi,...,V,, of X, with B NV, # ¢ for any
i€ {1,...,m}, there exist U € Y and F € [X]<¥ such that BC U, FNU = ¢ and
for each i € {1,...,m}, FNV; # ¢. The set of all Ay-covers of X is denoted by AT.

Next recall the relative version of the above type of covers as follows.

Definition 2.4. [28] Let (X, 7) be a topological space and Y C X with YV # X.
A family & C A” is called a Ay-cover of Y, if each B C Y with B € A belongs
to all but finitely many elements of & and for any B C Y with B € A and open
subsets Vi, ..., Vi, of X, with Y" NV, # ¢ for any i € {1,...,m}, there exist U € U
and F € [X]<“ such that B C U, FNU = ¢ and for each i € {1,...,m}, FNV; # ¢.
The set of all Ay-covers of Y C X is denoted by AT .

Remark 2.1. If we consider A = K(X) and A = CL(X) (resp., A = A = CL(X)) in
Definitions 2.3 and 2.4 above, we get the definitions of ~yx,-covers (resp., e, -covers) of X
and also the definitions of i -covers (resp., e, -covers) of a subset Y of X, with Y # X.

It is easy to observe that AT' C Ca(A).

Lemma 2.3. [28] Let X be a topological space, Y be an open subset of X and
U={U,:neN} CA" bea cover of Y. Then the following statements are equiva-
lent:

(i) U is a Ay-cover of Y.
(ii) {U,, : n € N} converges to Y in (A,TZ).
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Recall now that an open cover U of a space X is called
(i) w-groupable [15], [17] (k-groupable [9]) if it can be expressed as a countable
union of finite, pairwise disjoint subfamilies & , n € N, such that for each finite
(compact) set C' C X, for all but finitely many n there is an U € U, such that
CccU,
(ii) weakly groupable [2] (k-weakly groupable [9]) if there is a partition of I into
countably many finite, pairwise disjoint sets U, for n € N, such that each finite
(compact) subset of X is contained in (JU,, for some n.

Also recall that a countable element D from D is said to be groupable [17], [18]
if there is a partition D = U D, into finite pairwise disjoint sets such that each

neN

nonempty open set of the space intersects D, for all but finitely many n. Let D"
denote the family of groupable elements of D.

For a space X, we denote:

e O’ - the family of w-groupable covers of X;

e K’ - the family of k-groupable covers of X;

e O""" the family of weakly groupable covers of X;

e 0" """ the family of k-weakly groupable covers Ef X;

o+ ,
e (©2,%)” - the family of groupable elements of Q .

Following Definitions 5.1 and 5.5 of [19], where the classes K of k,.-groupable
covers and C‘g/p of ¢, -groupable covers are introduced, we define the general notion
of a A-groupable ca (A)-cover as follows.

Definition 2.5. A ca(A)-cover U of a space X is said to be A-groupable if it
can be expressed as a union of infinitely many finite, pairwise disjoint subfamilies
U, C U such that for any subset B of X with B € A, open sets V1, Vs, ..., V,, of X
with V; N B® # ¢ (1 < i < m), there exists n, € N so that for each n > n,, there
exist U,, € U,, and a finite set F,, with F;, N V; # ¢ (1 <1i < m) such that B C U,
and F,, NU,, = ¢. We denote the family of all A-groupable covers of X by C, (A)”.

Definition 2.6. Let (X,7) be a topological space and ¥ C X with ¥ # X. A
ea(A)-cover U of YV is said to be A-groupable if it can be expressed as a union of
infinitely many finite, pairwise disjoint subfamilies ¢,, C U such that for any subset
B CY with B € A, open sets Vi, Vs, ...,V of X with V,NY" # ¢ (1 <i < m),
there exists n, € N so that for each n > n,, there exist U,, € U,, and a finite set F,
with F,, N V; # ¢ (1 <i < m) such that B C U, and F,, NU,, = ¢. We denote the
family of all A-groupable covers of Y C X with Y # X by C; (M),

ot
Lemma 2.4. For a space X, E € A and a collection AC A, Ae (Q.° V" implies
{(AUE)" : A€ A} is a A-groupable cover of E°.
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Proof. Let A = U B, be a partition of A into finite, pairwise disjoint sets such
neN
that each TZ—neighbourhood of E meets B,, for all but finitely many n. Then by
Lemma 2.2, U = {(AUE)" : A € A} is a ca(A)-cover of E°. Write U = U Vi,
neN
where for each n € N, V,, = {(BU E) : B € B,}. Let D € A be such that
D C E° and let Vi, ..., V,,, be open sets in X with ENV; # ¢, for all i = 1,...,m.

Then (V7, ...,Vm); is a T:—neighbourhood of E. Hence there exists n, € N such

that for each n > n,, there exists B, € B, such that B, &€ (Vl,...,Vm);. Now
choose x; € B, NV;, for 1 < ¢ < m and consider the set FF = {x; : 1 < i < m}.
Then F € [X]|<“ with FNV; # ¢, forall 1 <i < m. Also D C (B, UE)" and

(BUE)*NF = ¢. Hence {(AUE)" : A€ A} is a A-groupable cover of E*. [

Definition 2.7. A cover U of a space X is weakly A-groupable if it can be ex-
pressed as a union of infinitely many finite, pairwise disjoint subfamilies U,, C U
such that for any subset B of X with B € A, open sets Vi, V5, ..., V,,, of X with
ViNB® # ¢ (1 <i < m), there exist U,, and a finite set F with FNV; # ¢ (1 < i < m)
such that B C UU,, and FFN (U U,) = ¢. We denote the family of all weakly A-

wgp

groupable covers of X by C, .

Lemma 2.5. [6] A familyUd C A" is a ca(A)-cover of X if and only if the family
U is a dense subset of (A,TZ).

Lemma 2.6. For a space X and a countable subset A C CL(X), the following
statements are equivalent:

+

(i) A is a groupable dense subset of (CL(X), T, ).
(ii) A" is a A-groupable cover of X.

Proof. (i) = (ii): Let A = U B, be a partition into finite pairwise disjoint sets
neN

such that each open set of (CL(X ),TZ) intersects B, for all but finitely many n.

We claim that A" = U BZ is a A-groupable cover of X. Indeed, let K € A be a

neN

subset of X and V,,...,V. be open in X with (X \ K)NV, # ¢, for 1 <i < m.
Then (V4, ..., Vm); is a TZ—open set in CL(X). Hence there exists n, € N such that
for all n > n,, there exists B, € B, such that B, € (V4, ...7Vm);. Let U, = B,
for n > n,. Then U, € Bc Choose xin) eV.NB,, for 1 <i<m and consieder
F = {xin) :1 <i<m}. Then F is a finite subset of X with F'NV; # ¢, for all
1<i<m. Also K CU, and FNU, = ¢. Hence BZ is a ea(CL(X))-cover of X.

(ii) = (i): Let A" = U U, be a partition of A" that witnesses (ii). We claim

neN

that A is a groupable dense subset of (CL(X), TZ) Let (V4, ..., Vm); be a TZ—open
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set in (CL(X), TZ) Then there exists n, € N such that for all n > n,, there exist

U, € U, and F,, € [X]|<¥ with F,, NV, # ¢, for all i = 1,...,m such that D C U,

and U, NF,, = ¢. Hence U € (V1, ..., Vm);, for all n > n, so that A is a groupable
+

dense subset of (CL(X),7,). O

3. Selective separability of the hyperspace (A,TZ)

In this section we first SJ‘Eart with the relationships between closure-type proper-
ties of the hyperspace (A, 7, ) and covering properties of that of X. We then discuss

about the selective separability and variations of separability in (A, TZ)

Theorem 3.1. Let x € {1, fin}. Then for a space X the following statements are
equivalent:

(i) X satisfies S, (Ca(A),Ca(A)).
(i) (A,TZ) satisfies S, (D D

Cp (M) CA(A))'

(where DCA (n) denotes the family of dense subsets of (A, 7).

Proof. We prove the theorem for x = fin, the other part being similar.

(i) = (ii): Let {D, : ¢ € N} be a family of dense subsets of (A,TZ) such
that D, € DCA (A), for each i € N. Then by Lemma 2.5, {D’ : i € N} is a
family of open covers of X such that Dc € C,(A), for all i € N. As X satisfies
S, (C,(A),C,(A)), there exists a sequence {A, : i € N} of finite sets such that
A, C D and U A, € C,(A), for each i € N. Then U A €D,

€N i€N

(ii) =(i): Assume that {4, : n € N} is a family of open covers of X such that
U, € C,(A). Consider A, = Z/{;, for each n € N. Then by Lemma 2.5, A is a
dense subset of (A, TZ) for each n € N such that A € D, (- As (A, TZ) satisfies
S...(D D , there exists a sequence {4, : n € N} of finite subsets such

fi'n.( NS CA(A))
that A, C A _, for each n € N and U A, eD Then U, = A:/, for n € N is

NS

INCSh
ieN
such that U U, is an open cover of X and U U,eC,(A). O
neN neN

Corollary 3.1. (Theorem 3.6 in [19]) For a space X, the following are equivalent:

(i) (CL(X),T,) satisfies S, (D, D).
(ii) X satisfies S,(C,,C,).

Corollary 3.2. (Theorem 3.4 in [19]) For a space X, the following are equivalent:

(i) (CL(X),1,) satisfies S, (D, D).
(ii) X satisfies S, (K, ,K,).
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Corollary 3.3. (Theorem 4.4 in [19]) For a space X, the following are equivalent:

(i) (CL(X),T,) satisfies S,, (D, D).
(ii) X satisfies S, (C,,C, ).

Corollary 3.4. (Theorem 4.2 in [19]) For a space X, the following are equivalent:

(i) (CL(X), ) satisfies S, (D,D).
(ii) X satisfies S, (K., K.).

Recall here that a space X is M-separable [3] if for every sequence {D,, : n € N}
of dense subspaces of X one can select finite F,, C D,, so that J{F, : n € N} is
dense in X. Thus we have the following theorem.

Theorem 3.2. For a space X, (A,’TZ) is M-separable if and only if X satisfies
S#in(Ca(A),Ca(A)).

Again a space X is R-separable [3] if for every sequence {D,, : n € N} of dense
subspaces of X one can pick z,, € D,, so that {z,, : n € N} is dense in X. Thus we
have the following theorem.

Theorem 3.3. For a space X, (A,TZ) is R-separable if and only if X satisfies
S1(Ca(A),Ca(h)).

Theorem 3.4. Let &, ¥ € {AT",C,(A)},x € {1, fin}. Then for a space X the
following statements are equivalent:

(i) Each open set Y C X with Y € A" has the property S, (®, ).

(i) Each E € (A,TZ) satisfies S, (®,, T ,).

(where @, denotes the ® family of covers of E and ¥, denotes the ¥ family of
covers of E).

Proof. We prove the theorem for * = 1, the other parts being similar.

(i) = (ii): Let E € A and let {4 : n € N} be a sequence such that for each
neN, A € ®,. Then {.A; :n € N} is a sequence of open covers of E* such that
for each n € N, .AZ € ®. As E" has the property S, (®, ¥), there exists a sequence
{A’ :n € N} such that for eachn € N, A° € A" and {4’ :n € N} is an open cover
of E” such that {4’ :n €N} € U. Hence {A, :n €N} € T,.

(ii) = (i): Let Y be an open subset of X with Y € A” and {F, : n € N} be
a sequence of open covers of Y such that 7, € ®,, forn € N. Let E = X \ Y.
Put A, = F ,n € N. Then A, C A and A, € &, for n € N. As E satisfies
S, (®,,¥,), there exists a sequence {4 : n € N} such that A, € A _, for each
neNand {4, :neN} eV, Hence {F, =A :neN}el. O

n?
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Recall that a space X has countable fan tightness [1] if whenever z € ClA,, for
all n € N, one can choose finite F,, C A,, so that x € CI(U{F,, : n € N}) and X
has countable strong fan tightness [25] if whenever « € ClA,, for n € N, there are
Zn € A, such that x € Cl({x,, : n € N}). In view of these definitions we can restate
the above theorem as follows.

Theorem 3.5. For a space X, (A,TZ) has countable strong fan tightness if and
only if each open subset Y C X with Y € A satisfies S, (C,(A),CA(A)).

Proof. First let Y C X be open in X with Y¢ € A and {4, : n € N} be a
sequence of ca(A)-covers of Y. Then by Lemma 2.1, Y° € Cly (Ug). As (A,T:)

has countable strong fan tightness, there exists US € U, for n € N such that

Y¢eCCl,,, ({Uy :n € N}). Hence {U, : n € N} is a ca(A)-cover of Y.

Conversely, let E € A be such that E € Cl(U,,). Then by Lemma 2.1, {U :
n € N} is a sequence of ca(A)-covers of E¢. By the given condition, there exists
U: € US, for n € N such that {US : n € N} is a ca(A)-cover of E°. Hence
E e lez({Un :n € N}), so that (A, 7':) has countable strong fan tightness. O

Theorem 3.6. For a space X, (A,TZ) has countable fan tightness if and only if
each open subset Y C X with Y € A satisfies S, (CA(A),CL(A)).

Proof. Firstlet Y C X be open in X with Y € A and {U,, : n € N} be a sequence of
ea(A)-covers of Y. Then by Lemma 2.1, Y° € Cly (Ug). As (A, TZ) has countable

fan tightness, there exist finite V;, C Uy, for n € N, such that Y € Cl,,  (U{Vy :
n € N}). Hence | J{V,, : n € N} is a ca(A)-cover of Y.

Conversely, let E € A be such that E € Cl(U,). Then by Lemma 2.1, {Uf :
n € N} is a sequence of ca(A)-covers of E°. By the given condition, there exist
finite VS C UE, for n € N, such that [J{V: : n € N} is a ca(A)-cover of E€. Hence
E e CZTI(U{VH :neN}). O
Corollary 3.5. (Theorem 3.2 of [19]) For a space X, the following are equivalent:

(i) (CL(X),1,) has countable strong fan tightness.
(i) Each open subset Y of X with Y C X satisfies S, ((C;,(C*V).

Corollary 3.6. (Theorem 3.1 of [19]) For a space X, the following are equivalent:

(i) (CL(X),1,) has countable strong fan tightness.
(ii) Each open subset Y of X with Y C X satisfies S, (K, , K. ).

Corollary 3.7. (Theorem 4.3 of [19]) For a space X, the following are equivalent:

(i) (CL(X), 1) has countable fan tightness.
(ii) Each open subset Y of X with Y C X satisfies S,,,(C, ,C.).



Variations of Separability and Supertightness of Hyperspaces 257
Corollary 3.8. (Theorem 4.1 of [19]) For a space X, the following are equivalent:

(i) (CL(X),7,) has countable fan tightness.
(ii) Each open subset Y of X with Y C X satisfies S,,, (K, ,K,).

Theorem 3.7. For a space X, the following statements are equivalent:

(i) X satisfies S, (Ca(CL(X)),Ca(CL(X))"").
(ii) (CL(X),T,) satisfies S,(D ,, D" ).
40T
Proof. (i) = (ii): Let {D, : n € N} be a sequence of dense subsets of (CL(X), TZ)
Foreachn e N, put Y, = DZ. Then U is a ca(CL(X))-cover of X, for each n € N.
By (i) applied to {U, : n € N}, there exists a sequence {D’ : n € N} such that for

each n € N, DZ € U, and {DZ : n € N} is a A-groupable cover of X. Hence by

+

Lemma 2.6, {D, : n € N} is a groupable dense subset of (CL(X),7, ).

(ii) = (i): Let {U, : n € N} be a sequence of ca(CL(X))-covers of X. Put
A = Z/l;, n € N. Then by Lemma 2.5 for each n € N, A is a sequence of dense
subsets of (CL(X), TZ) By (ii), there exists a sequence {4, : n € N} such that for
eachneN A €A and B={A, :neN} e Dgi . Again by Lemma 2.6, B is a

A
A-groupable cover of X. Hence {A~ : n € N} guarantees for {U, : n € N} that X
satisfies S, (Ca(CL(X)),Ca(CL(X))™). O

Next recall that a space X is H-separable [3] if for every sequence {D,, : n € N}
of dense subspaces of X, one can pick finite F;, C D,, so that for every nonempty
open set O C X, the intersection O N F, is nonempty for all but finitely many n.
Thus we have the following theorem.

Theorem 3.8. For a space X, (OL(X),TZ) is H-separable if and only if X sat-
isfies S, (CA(CL(X)),CA(CL(X))%).

Proof. First let, (CL(X),TZ) be H-separable and {U, : n € N} be a sequence of
ea(CL(X))-covers of X. Then by Lemma 2.5, {US : n € N} is a sequence of dense
subsets of CL(X). By H-separability of (CL(X),TZ), there exist finite V5 C U,
n € N, such that for every non-empty open set W of CL(X), W NVS # ¢, for all
but finitely many n € N. We claim that |V, is a A-groupable cover of X. Indeed,
Let D € A and Vi,...,V,,, be open in X with DNV, # ¢, for all 1 <i < m. Then
(Vi,...; Vi) F is a 7{-open set in CL(X) and hence there exists ng € N such that

D

Vi, Vi) E VS # ¢, for all n > ng. Choose V¢ € (Vi,..., V)T N Vg, for all
n > ng. Next choose xz(") e (W1, ..., Vm)g NV, for all 1 < ¢ < m and consider the
set F,, = {xgn) :1<i<m}. Then F, € [X]|<¥ with F,, N V; # ¢, for all 1 <i < m.
Also, D C V,, and V;, N F,, = ¢, for all n > ngy. Hence |V, is a A-groupable cover
of X.
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Conversely, let {D,, : n € N} be a sequence of dense subsets of CL(X). By
Lemma 2.5, {D¢ : n € N'} is a sequence of ca(CL(X))-covers of X. As X satisfies
S, (CA(CL(X)),CA(CL(X))9), there exist finite B, C Dy, n € N, such that
U B¢ is a A-groupable cover of X. Then every 7X-open set intersects all but finitey
manyB3,,. Hence (CL(X),7X) is H-separable. [0

Corollary 3.9. (Theorem 5.4 of [19]) For a space X, the following statements are
equivalent:

(i) (CL(X),T,)) satisfies S1(D,D’").
(it) X satisfies 51(C,,C}’).

Corollary 3.10. (Theorem 5.2 of [19]) For a space X, the following statements
are equivalent:

(i) (CL(X),T,) satisfies S1(D,D"").
(it) X satisfies 51(K,,K).

Theorem 3.9. For a space X, the following statements are equivalent:

(i) (CL(X),T:) satisfies: for each sequence {D, : n € N} of dense subsets of

(CL(X),T:) there is a finite B, C D, such that U B, can be partitioned into a
neN

. neN, so that {ﬂCn :n € N} is dense in (CL(X),TZ).

(ii) X satisfies S,,, (Ca(CL(X)),CA").

union of finite sets C

Proof. (i) = (ii): Let {U, : n € N} be a sequence of ca(CL(X))-open covers of

X. Then for eachn € N, A = L{; is a dense subset of (CL(X),TZ). By (i), there

exist finite B, C A _, for each n € N, such that B = U B, is a union of finite
neN

pairwise disjoint sets C_ and {(\C, : n € N} is dense in (CL(X),TZ). Let V = B°

and W, = CZ, for each n € N. We now claim that V = U W, is a weakly A-
neN
groupable cover of X. Let K € A, Vi, Va, ..., V,, be open sets of X with V;N K" # ¢

(1 <4 < m). Then there exists a n, € N such that ﬂC’no e (W, ...,Vm);. Choose
x, €V, N (ﬂCno), for 1 < i < m. Now consider F = {z, : 1 < i < m}. Hence
Kc(ne, ) =Uw,, and FA(UW, ) =o.

(ii) = (i): Let {D, : n € N} be a sequence of dense subsets of (C'L(X), 7':) For
eachn e N, let U = D; Then {U, : n € N} is a sequence of ca(CL(X))-covers of
X. By (ii), for each n € N, there is a finite subset ¥V of U, such that V = U vV,

neN
is a weakly A-groupable cover of X. Thus V = U W, is a union of countably
neN

n?
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many finite pairwise disjoint sets W, satisfying: for each subset K € A, open sets
Vi,Va, ..., Vin of X with V; N K" # ¢ (1 <4 <'m), there exist a n, and a finite set
Fwith FOV, = ¢, for 1 <4 < m such that K ¢ JW, and F'n(UW, )= ¢.
Hence (\Cpy € (Vi, ..., Vi) . Let B, =V and C, = W', for each n € N. Then B,
is finite set of D, such that U B, can be partitioned into a union U C,, of finite

neN neN
sets C_, for n € N, such that {(C, : n € N} is dense in (CL(X),TZ). O

Recall that a space X is weakly Fréchet in the strict sense [24] if whenever
x € ClA, for all n € N, there are finite F,, C A,, such that every neighbourhood of
x intersects all but finitely many F,.

Theorem 3.10. For a space X, (A,TZ) is weakly Fréchet in the strict sense if
and only if each open subset Y C X withY" € A has S,,, (CA(A),Ca(A)™).

Proof. First let Y C X be such that Y° € A and {{, : n € N} be a sequence of
ca(A)-covers of Y. Then by Lemma 2.1, {t/ : n € N} is a sequence of subsets of

(A, 7':) such that Y € C’ZT+Z/{:, for each n € N. Since (A,TZ) is weakly Fréchet in
e,

the strict sense, there exist finite VC C Z/IC n € N, such that each neighbourhood of
Y intersects all but finitely many V' . We now show that U{V, :neN}isaA-
groupable cover of Y. Let BCY with B € A and Vi, ..., Vi be open subsets of X
with Y NV, # ¢, for 1 <i < mso that (Vi ..., Vj, )BﬂA isa TZ—neighbourhood of Y°
in the space (A, TZ) Thus there exists n, € N such that (V71,..., Vm); NV NA # ¢,
for all n > n,. Let V' € V' be such that V. € (V4,..., Vi, )+ NnA and choose
xﬁ”) ev n VZ, for 1 < i < m. Now form the set F), {xln), } Then
F, € [X]<‘*’W1thF NVi# ¢, forl <i<m, F,NV, —(bandBCVn,forall
n=ng.

Conversely, let { A :n € N} be a sequence of subsets of A and E € A be such
that £ € Cl_+(A,), for n € N. Then {4 :n € N} is a sequence of ca (A)-covers of

A

E", for each n € N. Hence by the given condition there exist finite BZ C AZ, n €N,

such that JB' is a A-groupable cover of E. Hence (A,TZ) is weakly Fréchet in
the strict sense. [

4. Supertightness of (A,TZ)

In [29], the authors have posed an open problem as: “Is it possible to characterize
the supertightness of the hyperspace A by means of ca(A)-covers of Y, for some
open subset Y C X 7”7 In this section we give an affirmative answer to the question.
Let us first recall that a family P of nonempty subsets of a space X is said to be a
m-network at p [30] if every neighbourhood of p contains some member of P.
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Definition 4.1. [30, 24] A space X is said to have countable supertightness if
p € X and P is a m-network at p consisting of finite subsets of X, then there is a
countable subfamily F C P such that F is a m-network at p.

We now define the following.

Definition 4.2. Let Y be a subspace of X. A partitioned ¢, (A)-cover Y = U U,

acA
(where U C A°) is called a finite p-c, (A)-cover of YV if each U is finite and for any

subset B C Y with B € A, open sets Vi, Va, ..., Vi, of X with V;NB" # ¢ (1 <i <
m), there exists @ € A and F € [X]<¥ with F NV, # ¢, for all i = 1,2, ...,m such
that BC U and FNU = ¢, foreach U € U,.

Theorem 4.1. For a space X, the following are equivalent:

(i) (AJZ) has countable supertightness.
(ii) For each open subset Y C X with Y°¢ € A and each finite p-c, (A)-cover

u= U U, of Y, there exists a countable subset A’ C A such that U U, is a
acA acA’
finite p-c, (A)-cover of Y.

Proof. (i) = (ii): Let Y € X be an open subset of X with Y € A and Y = U u,
acA
be a finite p-c, (A)-cover of Y. Then {L{: ta € A} is a m-network at Y. Indeed let

Y e (W, ...,Vm); N A. Then there exists « € A and F € [X]|<¥ with FNV; # ¢,
for all ¢ = 1,...,m such that D C U and FNU = ¢, for all U € U_ . Then
U ¢ (Vl,...,Vm); N A, for each U € U,. Hence {U : a € A} is a m-network at
Y" consisting of finite subsets of A. As (A, TZ) has countable supertightness, there
exists a countable subset A’ C A such that {Z/la ca € A'} is a m-network at Y.
Hence U U, is a finite p-c, (A)-cover of Y.
acA’

(ii) = (i): Let £ € A and {A_ : a € A} be a m-network at E, where each A_
is a finite subset of A. Then for any neighbourhood (V4 ..., Vm); N A of E, there
exists a € A such that A, C (V4,..., Vm); NA. Let

A'={a€A:E NF" #¢, foreach Fec A_}.

Then A" # ¢ and {A_ : « € A’} is a m-network at A. Hence U AZ is a finite
acA’
p-c, (A)-cover of E”. By (ii), there exists a countable family {A, neNtC{A, :
a € A’} such that U AZ is a finite p-c, (A)-cover of E°. Hence {A, :n €N} is
neN
a m-network at E, so that (A, TZ) has countable supertightness. [
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Definition 4.3. [4] A space X is supertight at p € X if whenever P is a m-network
at p consisting of countable subsets of X, there is a countable subfamily F C P such
that F is a m-network at p. A space is supertight if all its points are supertight.

Definition 4.4. Let Y be a subspace of X. A partitioned ¢, (A)-cover Y = U U,

acA
(where U C A°) is called a countable p-c, (A)-cover of Y if each U is countable and

for any subset B C Y with B € A, open sets V1, Va, ..., Vi, of X with V;NB" # p(1 <
i < m), there exists « € A and F € [X]<% with F NV, # ¢, for all i =1,2,....m
such that B C U and FNU = ¢, for each U € U,,.

Theorem 4.2. For a space X, the following are equivalent:

i A,T+ 18 supertight.
A g
(ii) For each open subsetY C X withY # X and each countable p-c, (A)-groupable

cover U = U U, of Y, there exists a countable subset A" C A such that U U, is

acA acA’
a countable p-c, (A)-cover of Y.

Proof. Same as Theorem 4.1. [
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