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properties of the hyperspace (Λ, τ
+

∆
) and covering properties of that of X have been

studied. We then investigate selective separability and some variations of this property.

Finally supertightness of (Λ, τ
+

∆
) has been studied.
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1. Introduction

In this paper we consider some stronger versions of separability in hyperspaces.
In [27], Marion Scheepers introduced a general notation for selection principles as
follows:

Let A and B be families of sets of an infinite set X. Then,
• S1(A,B) is the selection hypothesis: for each sequence {An : n ∈ N} of elements of
A there is a sequence {bn : n ∈ N} such that for each n, bn ∈ An , and {bn : n ∈ N}
is an element of B.
• S

fin
(A,B) is the selection hypothesis: for each sequence {An : n ∈ N} of elements

of A there is a sequence {Bn : n ∈ N} of finite sets such that for each n,Bn ⊆ An ,

and
∪
n∈N

Bn ∈ B.
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If A and B stand for the family of all dense subsets of X (where we denote the set
of all dense subsets of X by D), then Sfin(D,D) is called the selective separability
of X. I. Juhász and S. Shelah in their paper [13] proved that a compact space X
has countable π-weight whenever every dense subspace of X is separable. Selective
separability of X follows from countable π-weight of X and implies that all dense
subspaces of X are separable. Therefore, the above-mentioned theorem of Juhász
and Shelah implies that, in compact spaces, selective separability coincides with
countable π-weight.

In [3], spaces X satisfying S
fin

(D,D) or S
1
(D,D) are called M-separable and

R-separable, respectively. Also, X is said to be H-separable if for every sequence
{Dn : n ∈ N} of elements of D, one can pick finite Fn ⊂ Dn so that for every
nonempty open subset O of X, the intersection O ∩ Fn is nonempty for all but
finitely many n. Naturally, M-, R-, and H-, are motivated by analogy with well-
known Menger, Rothberger, and Hurewicz properties. Recall thatX is Menger if for
every sequence {Un : n ∈ N} of open covers of X, there exist finite Vn ⊂ Un, n ∈ N,
so that

∪
{Vn : n ∈ N} covers X; X is Rothberger if for every sequence {Un : n ∈ N}

of open covers of X, there exist Un ∈ Un, n ∈ N, so that {Un : n ∈ N} covers X;
X is Hurewicz if for every sequence {Un : n ∈ N} of open covers of X, there exist
finite Vn ⊂ Un, n ∈ N, so that for every x ∈ X, x ∈

∪
Vn, for all but finitely many

n. Also a family P of open sets in X is called a π-base for X if every nonempty
open set in X contains a nonempty element of P; where πw(X) = min{|P| : P is a
π-base for X} is the π-weight of X. The following implications are obvious:

Separable← M-separable

↙
R-separable

↖

↖ H-separable↙
Countable π-weight

Let us now recall some backgrounds of hyperspace topology. Given a Hausdorff
non-compact space X, we denote the family of nonempty closed subsets (resp.,

closed subsets, compact subsets) of a topological space X by CL(X) (resp., 2
X

,
K(X)). For a subset U ⊂ X and a family U of subsets of X, we write:

U
−
= {A ∈ CL(X) : A ∩ U ̸= ϕ},

U
+

= {A ∈ CL(X) : A ⊂ U},

U
c

= X \ U ,

U c

= {U c

: U ∈ U}.

The most known and popular among the topologies on 2
X

are Fell topology

and Vietoris topology. J. M. G. Fell [11] introduced a topology τF on 2
X

having a
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subbase consisting of all sets of the form V
−
, where V is an open subset of X plus

all sets of the form (K
c

)
+

, where K is a compact subset of X. The Fell topology

τF has a basic open subset of the form (

n∩
i=1

V
−

i
) ∩ (K

c

)
+

, where V1 , V2 , ..., Vn are

open subsets of X and K is a compact subset of X.

If compact subsets in the definition above are replaced by closed sets, we obtain
the stronger Vietoris topology τV [21]. A basic open subset of the Vietoris topology

τ
V

is of the form: < U1 , U2 , ..., Un >= {A ∈ 2
X

: A ⊂
n∪

i=1

Ui , A ∩ Ui ̸= ϕ, for

1 ≤ i ≤ n}, where U1 , U2 ,, Un are open subsets of X, for n ∈ N.
Let ∆ be a subset of 2

X

closed for finite unions and containing all singletons. The
upper ∆-topology, denoted by ∆

+

, is the topology whose subbase is the collection

{(Dc

)
+

: D ∈ ∆} ∪ {2X}. If ∆ is the family of all finite subsets of X (resp.,

the collection of compact subsets of X), the corresponding ∆
+

-topology known as

co-finite topology (resp., co-compact topology) will be denoted by Z
+

(resp., F
+

).

We have the inclusions: Z
+ ⊆ F

+ ⊆ τF ⊆ τV .

Let ∆ ⊆ CL(X) be a subfamily of CL(X) closed under finite unions and con-
taining all singletons. Then, the hit-and-miss topology on CL(X) with respect to
∆ (first studied in the abstract in [23] and then in [7]), denoted by τ+

∆
, has as a

base, the family

{(
m∩
i=1

V −
i
) ∩ (Bc)+ : B ∈ ∆ and V

i
∈ τ for i ∈ {1, 2, ...,m}, m ∈ N}.

Following [32], the basic element (
m∩
i=1

V −
i )∩(B

c

)+ will be denoted by (V1, ..., Vm)
+

B
.

Two important cases of the hit-and-miss topology are the Vietoris topology, τ
V
,

when ∆ = CL(X) ([31], [21]) and the Fell topology, τF , when ∆ = K(X) ([11]).

By a cover, we mean a nontrivial one, that is, U is a cover of X if X = ∪ U and
X ̸∈ U . k-covers and ω-covers play important roles in selection principles [2], [14],
[15]. Different ∆-covers exposed many dualities in hyperspace topologies such as

Fell topology, Vietoris topology, Z
+

, F
+

([5], [15], [16], [19], [10], [9], [8], [22], [26]).

Throughout the paper all spaces are assumed to be Hausdorff, non-compact.
Along this paper, unless we say the opposite, we will take a family Λ ⊆ CL(X) that
is closed under finite unions. Also we shall use [X]<ω to denote all finite subsets of
X.

2. Definitions and Results
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Let us recall that an open cover U of a space X is called an ω-cover [12] (respec-
tively, a k-cover [20]) if every finite (respectively, compact) subset of X is contained
in a member of U and X is not a member of U . An open cover U of X is called a
γ-cover [12] if it is infinite and each x ∈ X belongs to all but finitely many elements
of U . Notice that it is equivalent to the assertion: Each finite subset of X belongs
to all but finitely many members of U . Also Lj. D. R. Kočinac in his paper [16]
introduced a stronger version of γ-cover as: an open cover U of a space X is called
a γ

k
-cover of X if each compact subset of X is contained in all but finitely many

elements of U and X is not a member of the cover.

For a space (X, τ) and a point x ∈ X we use

• O : the collection of open covers of X;
• Ω : the collection of ω-covers of X;
• K : the collection of k-covers of X;
• Γ : the collection of all γ-covers of X;
• Γ

k
: the collection of all γ

k
-covers of X;

• Ωx = {A ⊂ X : x ∈ ClA};
• Dτ : the collection of all dense subsets of the space (X, τ).

As F
+

and Z
+

are miss type hyperspace topologies, they are dual to k-covers
and ω-covers in selection principles. The Fell topology and the Vietoris topology
are hit-and-miss topologies of types of subbasic open sets: those that hit a variable
open subset plus those that miss a compact subset (in case of Fell topology) or a
closed subset (in case of Vietoris topology). Z. Li in his paper [19] introduced the
definitions of hit-and-miss type covers to study the selection principles in CL(X)
under τ

F
and τ

V
. The following definition of hit-and-miss type covers has been

introduced in [6].

Definition 2.1. [6] Let (X, τ) be a topological space. A family U ⊆ Λ
c

is called
a c∆(Λ)-cover of X, if for any D ∈ ∆ and open subsets V1, ..., Vm of X, with
D

c ∩ Vi ̸= ϕ, for any i ∈ {1, ...,m}, there exist U ∈ U and F ∈ [X]<ω such that
D ⊆ U , F ∩ U = ϕ and for each i ∈ {1, ...,m}, F ∩ Vi ̸= ϕ. The family of all
c∆(Λ)-covers of X will be denoted by C∆(Λ).

Next we recall the relative version of the above type of covers as follows.

Definition 2.2. [29] Let (X, τ) be a topological space and Y ⊆ X with Y ̸= X.
A family U ⊆ Λ

c

is called a c∆(Λ)-cover of Y , if for any D ∈ ∆ with D ⊆ Y and
open subsets V1, ..., Vm of X, with Y

c ∩ Vi ̸= ϕ, for any i ∈ {1, ...,m}, there exist
U ∈ U and F ∈ [X]<ω such that D ⊆ U , F ∩ U = ϕ and for each i ∈ {1, ...,m},
F ∩ Vi ̸= ϕ. We denote by C∗

∆(Λ) the family of all c∆(Λ)-covers of Y ⊆ X, with
Y ̸= X.

Lemma 2.1. [29] Let Y be an open subset of a space X with Y ̸= X and U ⊆ Λ
c

be a cover of Y . Then the following statements are equivalent:
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(i) U is a c∆(Λ)-cover of Y .
(ii) Y

c ∈ Clτ+

∆

(U c

).

Lemma 2.2. For a space X, E ∈ Λ and a collection A ⊂ Λ, A ∈ Ω
τ+
∆

E
implies

{(A ∪ E)
c

: A ∈ A} is a c∆(Λ)-cover of E
c

, where Ω
τ+
∆

E = {A ⊂ CL(X) : E ∈
Clτ+

∆
(A)}.

Proof. Let D ∈ ∆ be such that D ⊂ E
c

and let V1, ..., Vm be open sets in X with
E ∩ Vi ̸= ϕ, for all i = 1, ...,m. Then (V1, ..., Vm)

+

D
is a τ

+

∆
-neighbourhood of E. As

A ∈ Ω
τ+
∆

E
, there exists A ∈ A such that A ∈ (V1, ..., Vm)

+

D
. Now choose xi ∈ A ∩ Vi,

for 1 ≤ i ≤ m and consider the set F = {xi : 1 ≤ i ≤ m}. Then F ∈ [X]<ω with
F ∩ Vi ̸= ϕ, for all 1 ≤ i ≤ m. Also D ⊂ (A ∪ E)

c

and (A ∪ E)
c ∩ F = ϕ. Hence

{(A ∪ E)
c

: A ∈ A} is a c∆(Λ)-cover of E
c

.

We next recall the definition of ∆γ-covers of a space as follows.

Definition 2.3. [29] Let (X, τ) be a topological space. A family U ⊆ Λ
c

is called
a ∆γ-cover of X, if each B ∈ ∆ belongs to all but finitely many elements of U
and for any B ∈ ∆ and open subsets V1, ..., Vm of X, with B

c ∩ Vi ̸= ϕ for any
i ∈ {1, ...,m}, there exist U ∈ U and F ∈ [X]<ω such that B ⊆ U , F ∩ U = ϕ and
for each i ∈ {1, ...,m}, F ∩Vi ̸= ϕ. The set of all ∆γ-covers of X is denoted by ∆Γ.

Next recall the relative version of the above type of covers as follows.

Definition 2.4. [28] Let (X, τ) be a topological space and Y ⊆ X with Y ̸= X.
A family U ⊆ Λ

c

is called a ∆γ-cover of Y , if each B ⊆ Y with B ∈ ∆ belongs
to all but finitely many elements of U and for any B ⊆ Y with B ∈ ∆ and open
subsets V1, ..., Vm of X, with Y

c ∩ Vi ̸= ϕ for any i ∈ {1, ...,m}, there exist U ∈ U
and F ∈ [X]<ω such that B ⊆ U , F ∩U = ϕ and for each i ∈ {1, ...,m}, F ∩Vi ̸= ϕ.
The set of all ∆γ-covers of Y ⊆ X is denoted by ∆Γ

∗
.

Remark 2.1. If we consider ∆ = K(X) and Λ = CL(X) (resp., ∆ = Λ = CL(X)) in
Definitions 2.3 and 2.4 above, we get the definitions of γkF -covers (resp., γcV -covers) of X
and also the definitions of γkF -covers (resp., γcV -covers) of a subset Y of X, with Y ̸= X.

It is easy to observe that ∆Γ ⊂ C∆(Λ).

Lemma 2.3. [28] Let X be a topological space, Y be an open subset of X and
U = {Un : n ∈ N} ⊆ Λ

c

be a cover of Y . Then the following statements are equiva-
lent:

(i) U is a ∆γ-cover of Y .

(ii) {U c

n : n ∈ N} converges to Y
c

in (Λ, τ
+

∆
).
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Recall now that an open cover U of a space X is called
(i) ω-groupable [15], [17] (k-groupable [9]) if it can be expressed as a countable
union of finite, pairwise disjoint subfamilies Un , n ∈ N, such that for each finite
(compact) set C ⊂ X, for all but finitely many n there is an U ∈ Un such that
C ⊂ U ,
(ii) weakly groupable [2] (k-weakly groupable [9]) if there is a partition of U into
countably many finite, pairwise disjoint sets Un , for n ∈ N, such that each finite
(compact) subset of X is contained in

∪
Un , for some n.

Also recall that a countable element D from D is said to be groupable [17], [18]

if there is a partition D =
∪
n∈N

Dn into finite pairwise disjoint sets such that each

nonempty open set of the space intersects Dn , for all but finitely many n. Let Dgp

denote the family of groupable elements of D.

For a space X, we denote:

• Ωgp

- the family of ω-groupable covers of X;
• Kgp

- the family of k-groupable covers of X;
• Owgp

the family of weakly groupable covers of X;

• Ok−wgp

the family of k-weakly groupable covers of X;

• (Ω
τ+
∆

E
)
gp

- the family of groupable elements of Ω
τ+
∆

E
.

Following Definitions 5.1 and 5.5 of [19], where the classes Kgp

F
of k

F
-groupable

covers and Cgp

V
of c

V
-groupable covers are introduced, we define the general notion

of a ∆-groupable c∆(Λ)-cover as follows.

Definition 2.5. A c∆(Λ)-cover U of a space X is said to be ∆-groupable if it
can be expressed as a union of infinitely many finite, pairwise disjoint subfamilies
Un ⊂ U such that for any subset B of X with B ∈ ∆, open sets V1, V2, ..., Vm of X
with Vi ∩ B

c ̸= ϕ (1 ≤ i ≤ m), there exists n0 ∈ N so that for each n ≥ n0 , there
exist Un ∈ Un and a finite set Fn with Fn ∩ Vi ̸= ϕ (1 ≤ i ≤ m) such that B ⊂ Un

and Fn∩Un = ϕ. We denote the family of all ∆-groupable covers of X by C∆(Λ)
gp

.

Definition 2.6. Let (X, τ) be a topological space and Y ⊆ X with Y ̸= X. A
c∆(Λ)-cover U of Y is said to be ∆-groupable if it can be expressed as a union of
infinitely many finite, pairwise disjoint subfamilies Un ⊂ U such that for any subset
B ⊆ Y with B ∈ ∆, open sets V1, V2, ..., Vm of X with Vi ∩ Y

c ̸= ϕ (1 ≤ i ≤ m),
there exists n0 ∈ N so that for each n ≥ n0 , there exist Un ∈ Un and a finite set Fn

with Fn ∩ Vi ̸= ϕ (1 ≤ i ≤ m) such that B ⊂ Un and Fn ∩ Un = ϕ. We denote the
family of all ∆-groupable covers of Y ⊆ X with Y ̸= X by C∗

∆
(Λ)

gp

.

Lemma 2.4. For a space X, E ∈ Λ and a collection A ⊂ Λ, A ∈ (Ω
τ+
∆

E
)
gp

implies

{(A ∪ E)
c

: A ∈ A} is a ∆-groupable cover of E
c

.
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Proof. Let A =
∪
n∈N
Bn be a partition of A into finite, pairwise disjoint sets such

that each τ
+

∆
-neighbourhood of E meets Bn for all but finitely many n. Then by

Lemma 2.2, U = {(A ∪ E)
c

: A ∈ A} is a c∆(Λ)-cover of E
c

. Write U =
∪
n∈N

Vn,

where for each n ∈ N, Vn = {(B ∪ E)
c

: B ∈ Bn}. Let D ∈ ∆ be such that
D ⊂ E

c

and let V1, ..., Vm be open sets in X with E ∩ Vi ̸= ϕ, for all i = 1, ...,m.
Then (V1, ..., Vm)

+

D
is a τ

+

∆
-neighbourhood of E. Hence there exists n0 ∈ N such

that for each n ≥ n0 , there exists Bn ∈ Bn such that Bn ∈ (V1, ..., Vm)
+

D
. Now

choose xi ∈ Bn ∩ Vi, for 1 ≤ i ≤ m and consider the set F = {xi : 1 ≤ i ≤ m}.
Then F ∈ [X]<ω with F ∩ Vi ̸= ϕ, for all 1 ≤ i ≤ m. Also D ⊂ (Bn ∪ E)

c

and
(B ∪ E)c ∩ F = ϕ. Hence {(A ∪ E)

c

: A ∈ A} is a ∆-groupable cover of E
c

.

Definition 2.7. A cover U of a space X is weakly ∆-groupable if it can be ex-
pressed as a union of infinitely many finite, pairwise disjoint subfamilies Un ⊂ U
such that for any subset B of X with B ∈ ∆, open sets V1, V2, ..., Vm of X with
Vi∩B

c ̸= ϕ (1 ≤ i ≤ m), there exist Un and a finite set F with F∩Vi ̸= ϕ (1 ≤ i ≤ m)
such that B ⊂ ∪ Un and F ∩ (∪ Un) = ϕ. We denote the family of all weakly ∆-
groupable covers of X by Cwgp

∆
.

Lemma 2.5. [6] A family U ⊆ Λ
c

is a c∆(Λ)-cover of X if and only if the family

U c

is a dense subset of (Λ, τ
+

∆
).

Lemma 2.6. For a space X and a countable subset A ⊂ CL(X), the following
statements are equivalent:

(i) A is a groupable dense subset of (CL(X), τ
+

∆
).

(ii) Ac

is a ∆-groupable cover of X.

Proof. (i) ⇒ (ii): Let A =
∪
n∈N

Bn be a partition into finite pairwise disjoint sets

such that each open set of (CL(X), τ
+

∆
) intersects Bn for all but finitely many n.

We claim that Ac

=
∪
n∈N
B

c

n
is a ∆-groupable cover of X. Indeed, let K ∈ ∆ be a

subset of X and V1 , ..., Vm be open in X with (X \ K) ∩ Vi ̸= ϕ, for 1 ≤ i ≤ m.

Then (V1, ..., Vm)
+

K
is a τ

+

∆
-open set in CL(X). Hence there exists n0 ∈ N such that

for all n ≥ n0 , there exists Bn ∈ Bn such that Bn ∈ (V1, ..., Vm)
+

K
. Let Un = B

c

n
,

for n ≥ n0 . Then Un ∈ B
c

n
. Choose x

(n)

i
∈ Vi ∩ Bn , for 1 ≤ i ≤ m and consieder

F = {x(n)

i
: 1 ≤ i ≤ m}. Then F is a finite subset of X with F ∩ Vi ̸= ϕ, for all

1 ≤ i ≤ m. Also K ⊂ Un and F ∩ Un = ϕ. Hence Bc

n
is a c∆(CL(X))-cover of X.

(ii) ⇒ (i): Let Ac

=
∪
n∈N

Un be a partition of Ac

that witnesses (ii). We claim

that A is a groupable dense subset of (CL(X), τ
+

∆
). Let (V1, ..., Vm)

+

D
be a τ

+

∆
-open
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set in (CL(X), τ
+

∆
). Then there exists n0 ∈ N such that for all n ≥ n0 , there exist

Un ∈ Un and Fn ∈ [X]<ω with Fn ∩ Vi ̸= ϕ, for all i = 1, ...,m such that D ⊆ Un

and Un∩Fn = ϕ. Hence U c
n ∈ (V1, ..., Vm)

+

D
, for all n ≥ n0 , so that A is a groupable

dense subset of (CL(X), τ
+

∆
).

3. Selective separability of the hyperspace (Λ, τ
+

∆
)

In this section we first start with the relationships between closure-type proper-
ties of the hyperspace (Λ, τ

+

∆
) and covering properties of that of X. We then discuss

about the selective separability and variations of separability in (Λ, τ
+

∆
).

Theorem 3.1. Let ⋆ ∈ {1, fin}. Then for a space X the following statements are
equivalent:

(i) X satisfies S
⋆
(C∆(Λ),C∆(Λ)).

(ii) (Λ, τ
+

∆
) satisfies S⋆(DC

∆
(Λ)

,DC
∆

(Λ)
).

(where DC
∆
(Λ) denotes the family of dense subsets of (Λ, τ+∆)).

Proof. We prove the theorem for ⋆ = fin, the other part being similar.

(i) ⇒ (ii): Let {Di : i ∈ N} be a family of dense subsets of (Λ, τ
+

∆
) such

that Di ∈ DC
∆
(Λ), for each i ∈ N. Then by Lemma 2.5, {Dc

i
: i ∈ N} is a

family of open covers of X such that D
c

i
∈ C∆(Λ), for all i ∈ N. As X satisfies

S
fin

(C∆(Λ),C∆(Λ)), there exists a sequence {Ai : i ∈ N} of finite sets such that

Ai ⊆ D
c

i
and

∪
i∈N

Ai ∈ C∆(Λ), for each i ∈ N. Then
∪
i∈N

A
c

i
∈ DC

∆
(Λ)

.

(ii) ⇒(i): Assume that {Un : n ∈ N} is a family of open covers of X such that
Un ∈ C∆(Λ). Consider An = U c

n
, for each n ∈ N. Then by Lemma 2.5, An is a

dense subset of (Λ, τ
+

∆
) for each n ∈ N such that An ∈ DC

∆
(Λ)

. As (Λ, τ
+

∆
) satisfies

S
fin

(DC
∆

(Λ)
,DC

∆
(Λ)

), there exists a sequence {An : n ∈ N} of finite subsets such

that An ⊆ An , for each n ∈ N and
∪
i∈N

Ai ∈ DC
∆

(Λ)
. Then Un = A

c

n
, for n ∈ N is

such that
∪
n∈N

Un is an open cover of X and
∪
n∈N

Un ∈ C∆(Λ).

Corollary 3.1. (Theorem 3.6 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τV ) satisfies S1(D,D).
(ii) X satisfies S1(CV

,C
V
).

Corollary 3.2. (Theorem 3.4 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
F
) satisfies S1(D,D).

(ii) X satisfies S1(KF ,KF ).
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Corollary 3.3. (Theorem 4.4 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
V
) satisfies S

fin
(D,D).

(ii) X satisfies S
fin

(CV ,CV ).

Corollary 3.4. (Theorem 4.2 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τF ) satisfies S
fin

(D,D).
(ii) X satisfies S

fin
(K

F
,K

F
).

Recall here that a space X is M-separable [3] if for every sequence {Dn : n ∈ N}
of dense subspaces of X one can select finite Fn ⊂ Dn so that

∪
{Fn : n ∈ N} is

dense in X. Thus we have the following theorem.

Theorem 3.2. For a space X, (Λ, τ
+

∆
) is M-separable if and only if X satisfies

Sfin(C∆(Λ),C∆(Λ)).

Again a space X is R-separable [3] if for every sequence {Dn : n ∈ N} of dense
subspaces of X one can pick xn ∈ Dn so that {xn : n ∈ N} is dense in X. Thus we
have the following theorem.

Theorem 3.3. For a space X, (Λ, τ
+

∆
) is R-separable if and only if X satisfies

S1(C∆(Λ),C∆(Λ)).

Theorem 3.4. Let Φ,Ψ ∈ {∆Γ
∗
,C∗

∆(Λ)}, ⋆ ∈ {1, fin}. Then for a space X the
following statements are equivalent:

(i) Each open set Y ⊂ X with Y ∈ Λ
c

has the property S⋆(Φ,Ψ).

(ii) Each E ∈ (Λ, τ
+

∆
) satisfies S⋆(ΦE

,Ψ
E
).

(where Φ
E

denotes the Φ family of covers of E and Ψ
E

denotes the Ψ family of
covers of E).

Proof. We prove the theorem for ⋆ = 1, the other parts being similar.

(i) ⇒ (ii): Let E ∈ Λ and let {A
n
: n ∈ N} be a sequence such that for each

n ∈ N, An ∈ Φ
E
. Then {Ac

n
: n ∈ N} is a sequence of open covers of E

c

such that

for each n ∈ N, Ac

n
∈ Φ. As E

c

has the property S1(Φ,Ψ), there exists a sequence

{Ac

n
: n ∈ N} such that for each n ∈ N, Ac

n
∈ Ac

n
and {Ac

n
: n ∈ N} is an open cover

of E
c

such that {Ac

n
: n ∈ N} ∈ Ψ. Hence {An : n ∈ N} ∈ ΨE .

(ii) ⇒ (i): Let Y be an open subset of X with Y ∈ Λ
c

and {Fn : n ∈ N} be
a sequence of open covers of Y such that Fn ∈ Φ

Y
, for n ∈ N. Let E = X \ Y .

Put An = F c

n
, n ∈ N. Then An ⊂ Λ and An ∈ ΦE , for n ∈ N. As E satisfies

S1(ΦE
,Ψ

E
), there exists a sequence {An : n ∈ N} such that An ∈ An , for each

n ∈ N and {An : n ∈ N} ∈ ΨE . Hence {Fn = A
c

n
: n ∈ N} ∈ Ψ.
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Recall that a space X has countable fan tightness [1] if whenever x ∈ ClAn for
all n ∈ N, one can choose finite Fn ⊂ An so that x ∈ Cl(∪{Fn : n ∈ N}) and X
has countable strong fan tightness [25] if whenever x ∈ ClAn for n ∈ N, there are
xn ∈ An such that x ∈ Cl({xn : n ∈ N}). In view of these definitions we can restate
the above theorem as follows.

Theorem 3.5. For a space X, (Λ, τ
+

∆
) has countable strong fan tightness if and

only if each open subset Y ( X with Y c ∈ Λ satisfies S1(C
∗

∆(Λ),C
∗

∆(Λ)).

Proof. First let Y ( X be open in X with Y c ∈ Λ and {Un : n ∈ N} be a

sequence of c∆(Λ)-covers of Y . Then by Lemma 2.1, Y c ∈ Clτ+
∆
(Uc

n). As (Λ, τ
+

∆
)

has countable strong fan tightness, there exists U c
n ∈ Uc

n, for n ∈ N such that
Y c ∈ Clτ∆+ ({U c

n : n ∈ N}). Hence {Un : n ∈ N} is a c∆(Λ)-cover of Y .

Conversely, let E ∈ Λ be such that E ∈ Cl(Un). Then by Lemma 2.1, {Uc
n :

n ∈ N} is a sequence of c∆(Λ)-covers of Ec. By the given condition, there exists
U c
n ∈ Uc

n, for n ∈ N such that {U c
n : n ∈ N} is a c∆(Λ)-cover of Ec. Hence

E ∈ Clτ+
∆
({Un : n ∈ N}), so that (Λ, τ

+

∆
) has countable strong fan tightness.

Theorem 3.6. For a space X, (Λ, τ
+

∆
) has countable fan tightness if and only if

each open subset Y ( X with Y c ∈ Λ satisfies S
fin

(C∗

∆(Λ),C
∗

∆(Λ)).

Proof. First let Y ( X be open in X with Y c ∈ Λ and {Un : n ∈ N} be a sequence of

c∆(Λ)-covers of Y . Then by Lemma 2.1, Y c ∈ Clτ+
∆
(Uc

n). As (Λ, τ
+

∆
) has countable

fan tightness, there exist finite Vc
n ⊂ Uc

n, for n ∈ N, such that Y c ∈ Clτ∆+ (
∪
{Vc

n :
n ∈ N}). Hence

∪
{Vn : n ∈ N} is a c∆(Λ)-cover of Y .

Conversely, let E ∈ Λ be such that E ∈ Cl(Un). Then by Lemma 2.1, {Uc
n :

n ∈ N} is a sequence of c∆(Λ)-covers of Ec. By the given condition, there exist
finite Vc

n ⊂ Uc
n, for n ∈ N, such that

∪
{Vc

n : n ∈ N} is a c∆(Λ)-cover of E
c. Hence

E ∈ Clτ+
∆
(
∪
{Vn : n ∈ N}).

Corollary 3.5. (Theorem 3.2 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τV ) has countable strong fan tightness.
(ii) Each open subset Y of X with Y ⊂ X satisfies S1(C

∗

V
,C∗

V
).

Corollary 3.6. (Theorem 3.1 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
F
) has countable strong fan tightness.

(ii) Each open subset Y of X with Y ⊂ X satisfies S1(K
∗

F
,K∗

F
).

Corollary 3.7. (Theorem 4.3 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
V
) has countable fan tightness.

(ii) Each open subset Y of X with Y ⊂ X satisfies S
fin

(C∗

V
,C∗

V
).
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Corollary 3.8. (Theorem 4.1 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
F
) has countable fan tightness.

(ii) Each open subset Y of X with Y ⊂ X satisfies S
fin

(K∗

F
,K∗

F
).

Theorem 3.7. For a space X, the following statements are equivalent:

(i) X satisfies S1(C∆(CL(X)),C∆(CL(X))
gp

).

(ii) (CL(X), τ
+

∆
) satisfies S1(D

τ
+

∆

,Dgp

τ
+

∆

).

Proof. (i) ⇒ (ii): Let {Dn : n ∈ N} be a sequence of dense subsets of (CL(X), τ
+

∆
).

For each n ∈ N, put Un = Dc

n
. Then Un is a c∆(CL(X))-cover of X, for each n ∈ N.

By (i) applied to {Un : n ∈ N}, there exists a sequence {Dc

n
: n ∈ N} such that for

each n ∈ N, Dc

n
∈ Un and {Dc

n
: n ∈ N} is a ∆-groupable cover of X. Hence by

Lemma 2.6, {Dn : n ∈ N} is a groupable dense subset of (CL(X), τ
+

∆
).

(ii) ⇒ (i): Let {Un : n ∈ N} be a sequence of c∆(CL(X))-covers of X. Put
An = U c

n
, n ∈ N. Then by Lemma 2.5 for each n ∈ N, An is a sequence of dense

subsets of (CL(X), τ
+

∆
). By (ii), there exists a sequence {An : n ∈ N} such that for

each n ∈ N, An ∈ An and B = {An : n ∈ N} ∈ Dgp

τ
+

∆

. Again by Lemma 2.6, Bc

is a

∆-groupable cover of X. Hence {Ac

n
: n ∈ N} guarantees for {Un : n ∈ N} that X

satisfies S1(C∆(CL(X)),C∆(CL(X))
gp

).

Next recall that a space X is H-separable [3] if for every sequence {Dn : n ∈ N}
of dense subspaces of X, one can pick finite Fn ⊂ Dn so that for every nonempty
open set O ⊂ X, the intersection O ∩ Fn is nonempty for all but finitely many n.
Thus we have the following theorem.

Theorem 3.8. For a space X, (CL(X), τ
+

∆
) is H-separable if and only if X sat-

isfies S
fin

(C∆(CL(X)),C∆(CL(X))gp).

Proof. First let, (CL(X), τ
+

∆
) be H-separable and {Un : n ∈ N} be a sequence of

c∆(CL(X))-covers of X. Then by Lemma 2.5, {Uc
n : n ∈ N} is a sequence of dense

subsets of CL(X). By H-separability of (CL(X), τ
+

∆
), there exist finite Vc

n ⊂ Uc
n,

n ∈ N, such that for every non-empty open set W of CL(X), W ∩ Vc
n ̸= ϕ, for all

but finitely many n ∈ N. We claim that
∪
Vn is a ∆-groupable cover of X. Indeed,

Let D ∈ ∆ and V1, ..., Vm be open in X with Dc ∩ Vi ̸= ϕ, for all 1 ≤ i ≤ m. Then
(V1, ..., Vm)+

D
is a τ+∆ -open set in CL(X) and hence there exists n0 ∈ N such that

(V1, ..., Vm)+
D
∩ Vc

n ̸= ϕ, for all n ≥ n0. Choose V c
n ∈ (V1, ..., Vm)+

D
∩ Vc

n, for all

n ≥ n0. Next choose x
(n)
i ∈ (V1, ..., Vm)+

D
∩ V c

n , for all 1 ≤ i ≤ m and consider the

set Fn = {x(n)
i : 1 ≤ i ≤ m}. Then Fn ∈ [X]<ω with Fn ∩Vi ̸= ϕ, for all 1 ≤ i ≤ m.

Also, D ⊂ Vn and Vn ∩ Fn = ϕ, for all n ≥ n0. Hence
∪
Vn is a ∆-groupable cover

of X.
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Conversely, let {Dn : n ∈ N} be a sequence of dense subsets of CL(X). By
Lemma 2.5, {Dc

n : n ∈ N} is a sequence of c∆(CL(X))-covers of X. As X satisfies
S

fin
(C∆(CL(X)),C∆(CL(X))gp), there exist finite Bc

n ⊂ Dc
n, n ∈ N, such that∪

Bcn is a ∆-groupable cover of X. Then every τ+∆ -open set intersects all but finitey
manyBn. Hence (CL(X), τ+∆ ) is H-separable.

Corollary 3.9. (Theorem 5.4 of [19]) For a space X, the following statements are
equivalent:

(i) (CL(X), τV )) satisfies S1(D,D
gp

).
(ii) X satisfies S1(CV

,Cgp

V
).

Corollary 3.10. (Theorem 5.2 of [19]) For a space X, the following statements
are equivalent:

(i) (CL(X), τF ) satisfies S1(D,D
gp

).
(ii) X satisfies S1(KF

,Kgp

F
).

Theorem 3.9. For a space X, the following statements are equivalent:

(i) (CL(X), τ
+

∆
) satisfies: for each sequence {Dn : n ∈ N} of dense subsets of

(CL(X), τ
+

∆
) there is a finite Bn ⊂ Dn such that

∪
n∈N
Bn can be partitioned into a

union of finite sets Cn , n ∈ N, so that {
∩
Cn : n ∈ N} is dense in (CL(X), τ

+

∆
).

(ii) X satisfies S
fin

(C∆(CL(X)),Cwgp

∆ ).

Proof. (i) ⇒ (ii): Let {U
n
: n ∈ N} be a sequence of c∆(CL(X))-open covers of

X. Then for each n ∈ N, A
n
= U c

n
is a dense subset of (CL(X), τ

+

∆
). By (i), there

exist finite Bn ⊂ An , for each n ∈ N, such that B =
∪
n∈N

Bn is a union of finite

pairwise disjoint sets Cn and {
∩
Cn : n ∈ N} is dense in (CL(X), τ

+

∆
). Let V = Bc

and W
n
= Cc

n
, for each n ∈ N. We now claim that V =

∪
n∈N

W
n
is a weakly ∆-

groupable cover of X. Let K ∈ ∆, V1, V2, ..., Vm be open sets of X with Vi∩K
c ̸= ϕ

(1 ≤ i ≤ m). Then there exists a n0 ∈ N such that
∩
Cn0
∈ (V1, ..., Vm)

+

K
. Choose

xi ∈ Vi ∩ (
∩
Cn0

), for 1 ≤ i ≤ m. Now consider F = {xi : 1 ≤ i ≤ m}. Hence

K ⊂ (
∩
Cn0

)
c

=
∪
Wn0

and F ∩ (
∪
Wn0

) = ϕ.

(ii)⇒ (i): Let {Dn : n ∈ N} be a sequence of dense subsets of (CL(X), τ
+

∆
). For

each n ∈ N, let Un = Dc

n
. Then {Un : n ∈ N} is a sequence of c∆(CL(X))-covers of

X. By (ii), for each n ∈ N, there is a finite subset Vn of Un such that V =
∪
n∈N
Vn

is a weakly ∆-groupable cover of X. Thus V =
∪
n∈N

Wn is a union of countably
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many finite pairwise disjoint sets Wn satisfying: for each subset K ∈ ∆, open sets
V1, V2, ..., Vm of X with Vi ∩K

c ̸= ϕ (1 ≤ i ≤ m), there exist a n0 and a finite set
F with F ∩ Vi = ϕ, for 1 ≤ i ≤ m such that K ⊂

∪
Wn0

and F ∩ (
∪
Wn0

) = ϕ.

Hence
∩
Cn0 ∈ (V1, ..., Vm)+K . Let Bn = Vc

n
and Cn =Wc

n
, for each n ∈ N. Then Bn

is finite set of Dn such that
∪
n∈N

Bn can be partitioned into a union
∪
n∈N

Cn of finite

sets Cn , for n ∈ N, such that {
∩
Cn : n ∈ N} is dense in (CL(X), τ

+

∆
).

Recall that a space X is weakly Fréchet in the strict sense [24] if whenever
x ∈ ClAn for all n ∈ N, there are finite Fn ⊂ An such that every neighbourhood of
x intersects all but finitely many Fn.

Theorem 3.10. For a space X, (Λ, τ
+

∆
) is weakly Fréchet in the strict sense if

and only if each open subset Y ( X with Y
c ∈ Λ has S

fin
(C∗

∆(Λ),C∗
∆(Λ)

gp

).

Proof. First let Y ( X be such that Y
c ∈ Λ and {Un : n ∈ N} be a sequence of

c∆(Λ)-covers of Y . Then by Lemma 2.1, {U c

n
: n ∈ N} is a sequence of subsets of

(Λ, τ
+

∆
) such that Y c ∈ Clτ+

∆

U c

n
, for each n ∈ N. Since (Λ, τ

+

∆
) is weakly Fréchet in

the strict sense, there exist finite Vc

n
⊂ U c

n
, n ∈ N, such that each neighbourhood of

Y
c

intersects all but finitely many Vc

n
. We now show that

∪
{Vn : n ∈ N} is a ∆-

groupable cover of Y . Let B ⊆ Y with B ∈ ∆ and V1, ..., Vm be open subsets of X
with Y

c∩Vi ̸= ϕ, for 1 ≤ i ≤ m so that (V1, ..., Vm)
+

B
∩Λ is a τ

+

∆
-neighbourhood of Y

c

in the space (Λ, τ
+

∆
). Thus there exists n0 ∈ N such that (V1, ..., Vm)

+

B
∩Vc

n
∩Λ ̸= ϕ,

for all n ≥ n0 . Let V
c

n
∈ Vc

n
be such that V

c

n
∈ (V1, ..., Vm)

+

B
∩ Λ and choose

x
(n)
i ∈ V

c

n
∩ Vi, for 1 ≤ i ≤ m. Now form the set Fn = {x(n)

1 , ..., x
(n)
m }. Then

Fn ∈ [X]<ω with Fn ∩ Vi ̸= ϕ, for 1 ≤ i ≤ m, Fn ∩ Vn = ϕ and B ⊆ Vn, for all
n ≥ n0 .

Conversely, let {An : n ∈ N} be a sequence of subsets of Λ and E ∈ Λ be such
that E ∈ Clτ+

∆

(An), for n ∈ N. Then {Ac

n
: n ∈ N} is a sequence of c∆(Λ)-covers of

E
c

, for each n ∈ N. Hence by the given condition there exist finite Bc

n
⊂ Ac

n
, n ∈ N,

such that
∪
Bc

n
is a ∆-groupable cover of E

c

. Hence (Λ, τ
+

∆
) is weakly Fréchet in

the strict sense.

4. Supertightness of (Λ, τ
+

∆
)

In [29], the authors have posed an open problem as: “Is it possible to characterize
the supertightness of the hyperspace Λ by means of c∆(Λ)-covers of Y , for some
open subset Y ⊆ X ?” In this section we give an affirmative answer to the question.
Let us first recall that a family P of nonempty subsets of a space X is said to be a
π-network at p [30] if every neighbourhood of p contains some member of P.
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Definition 4.1. [30, 24] A space X is said to have countable supertightness if
p ∈ X and P is a π-network at p consisting of finite subsets of X, then there is a
countable subfamily F ⊂ P such that F is a π-network at p.

We now define the following.

Definition 4.2. Let Y be a subspace of X. A partitioned c∆(Λ)-cover U =
∪
α∈A

Uα

(where U ⊆ Λc) is called a finite p-c∆(Λ)-cover of Y if each Uα is finite and for any
subset B ⊆ Y with B ∈ ∆, open sets V1, V2, ..., Vm of X with Vi ∩B

c ̸= ϕ (1 ≤ i ≤
m), there exists α ∈ A and F ∈ [X]<ω with F ∩ Vi ̸= ϕ, for all i = 1, 2, ...,m such
that B ⊂ U and F ∩ U = ϕ, for each U ∈ Uα .

Theorem 4.1. For a space X, the following are equivalent:

(i) (Λ, τ
+

∆
) has countable supertightness.

(ii) For each open subset Y ( X with Y c ∈ Λ and each finite p-c∆(Λ)-cover

U =
∪
α∈A

Uα of Y , there exists a countable subset A′ ⊂ A such that
∪

α∈A′

Uα is a

finite p-c∆(Λ)-cover of Y .

Proof. (i) ⇒ (ii): Let Y ( X be an open subset of X with Y c ∈ Λ and U =
∪
α∈A

Uα

be a finite p-c∆(Λ)-cover of Y . Then {U c

α
: α ∈ A} is a π-network at Y

c

. Indeed let

Y
c ∈ (V1, ..., Vm)

+

D
∩ Λ. Then there exists α ∈ A and F ∈ [X]<ω with F ∩ Vi ̸= ϕ,

for all i = 1, ...,m such that D ⊂ U and F ∩ U = ϕ, for all U ∈ Uα . Then

U
c ∈ (V1, ..., Vm)

+

D
∩ Λ, for each U ∈ Uα . Hence {U c

α
: α ∈ A} is a π-network at

Y
c

consisting of finite subsets of Λ. As (Λ, τ
+

∆
) has countable supertightness, there

exists a countable subset A′ ⊂ A such that {U c

α
: α ∈ A′} is a π-network at Y

c

.

Hence
∪

α∈A′

Uα is a finite p-c∆(Λ)-cover of Y .

(ii) ⇒ (i): Let E ∈ Λ and {Aα : α ∈ A} be a π-network at E, where each Aα

is a finite subset of A. Then for any neighbourhood (V1, ..., Vm)
+

D
∩ Λ of E, there

exists α ∈ A such that Aα ⊂ (V1, ..., Vm)
+

D
∩ Λ. Let

A′ = {α ∈ A : E
c ∩ F

c ̸= ϕ, for each F ∈ Aα}.

Then A′ ̸= ϕ and {Aα : α ∈ A′} is a π-network at A. Hence
∪

α∈A′

A
c

α
is a finite

p-c∆(Λ)-cover of E
c

. By (ii), there exists a countable family {Aαn
: n ∈ N} ⊂ {Aα :

α ∈ A′} such that
∪
n∈N

A
c

αn
is a finite p-c∆(Λ)-cover of E

c. Hence {Aαn
: n ∈ N} is

a π-network at E, so that (Λ, τ
+

∆
) has countable supertightness.
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Definition 4.3. [4] A space X is supertight at p ∈ X if whenever P is a π-network
at p consisting of countable subsets of X, there is a countable subfamily F ⊂ P such
that F is a π-network at p. A space is supertight if all its points are supertight.

Definition 4.4. Let Y be a subspace of X. A partitioned c∆(Λ)-cover U =
∪
α∈A

Uα

(where U ⊆ Λc) is called a countable p-c∆(Λ)-cover of Y if each Uα is countable and
for any subset B ⊆ Y with B ∈ ∆, open sets V1, V2, ..., Vm ofX with Vi∩B

c ̸= ϕ(1 ≤
i ≤ m), there exists α ∈ A and F ∈ [X]<ω with F ∩ Vi ̸= ϕ, for all i = 1, 2, ...,m
such that B ⊂ U and F ∩ U = ϕ, for each U ∈ Uα .

Theorem 4.2. For a space X, the following are equivalent:

(i) (Λ, τ
+

∆
) is supertight.

(ii) For each open subset Y ⊆ X with Y ̸= X and each countable p-c∆(Λ)-groupable

cover U =
∪
α∈A

Uα of Y , there exists a countable subset A′ ⊂ A such that
∪

α∈A′

Uα is

a countable p-c∆(Λ)-cover of Y .

Proof. Same as Theorem 4.1.
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2. L. Babinkostova, Lj. D. R. Kočinac and M. Scheepers: Combinatorics of open
covers (VIII). Topol. Appl., 130 (1) (2003), 15–32.

3. A. Bella, M. Bonanzinga and M. V. Matveev: Variations of selective separability.
Topol. Appl., 156 (2009), 1241–1252.

4. A. Bella and M. Sakai: Tight points of Pixley-Roy hyperspaces. Topol. Appl., 160
(2013), 2061–2068.

5. A. Caserta, G. Di Maio, Lj. D. R. Kočinac and E. Meccariello: Applications
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22. M. Mršević and M. Jelić: Selection principles in hyperspaces with generalized Vi-
etoris topologies. Topol. Appl., 156 (1) (2008), 123–129.

23. H. Poppe: Eine Bemerkung über Trennungsaxiome in Raumen von abgeschlossenen
Teilmengen topologisher Raume. Arch. Math., 16 (1965), 197–198.

24. M. Sakai: Cardinal functions of Pixley-Roy hypersaces. Topol. Appl., 159 (2012),
3080–3088.

25. M. Sakai: Property C” and function spaces. Proc. Amer. Math. Soc., 104 (3) (1988),
917–919.

26. M. Sakai: Selective separability of PixleyRoy hyperspaces. Topol. Appl., 159 (2012),
1591–1598.

27. M. Scheepers: Combinatorics of open covers I: Ramsey theory. Topol. Appl., 69
(1996), 31–62.

28. R. Sen: On some convergence properties of hyperspaces with hit-and-miss topology.
Facta Universitatis, 37 (5) (2022), 1021–1035.
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