FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 39, No 2 (2024), 247–263 https://doi.org/10.22190/FUMI230329017S Original Scientific Paper

VARIATIONS OF SEPARABILITY AND SUPERTIGHTNESS OF HYPERSPACES

Ritu Sen

Department of Mathematics, Presidency University 700073 Kolkata, West Bengal, India

ORCID ID: Ritu Sen

 $n \in \mathbb{N}$

厄 N/A

Abstract. For a Hausdorff non-compact space X, relationships between closure-type properties of the hyperspace $(\Lambda, \tau_{\Delta}^{+})$ and covering properties of that of X have been studied. We then investigate selective separability and some variations of this property. Finally supertightness of $(\Lambda, \tau_{\Delta}^{+})$ has been studied.

Keywords: Hausdorff space, compactness, separability, supertightness.

1. Introduction

In this paper we consider some stronger versions of separability in hyperspaces. In [27], Marion Scheepers introduced a general notation for selection principles as follows:

Let \mathcal{A} and \mathcal{B} be families of sets of an infinite set X. Then,

• $S_1(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{b_n : n \in \mathbb{N}\}$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

• $S_{fin}(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{B_n : n \in \mathbb{N}\}$ of finite sets such that for each $n, B_n \subseteq A_n$, and $\bigcup B_n \in \mathcal{B}$.

Received March 29, 2023, revised: May 15, 2023, accepted: September 26, 2023 Communicated by Dimitris Georgiou

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54D20.

^{© 2024} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

If \mathcal{A} and \mathcal{B} stand for the family of all dense subsets of X (where we denote the set of all dense subsets of X by \mathcal{D}), then $S_{fin}(\mathcal{D}, \mathcal{D})$ is called the selective separability of X. I. Juhász and S. Shelah in their paper [13] proved that a compact space Xhas countable π -weight whenever every dense subspace of X is separable. Selective separability of X follows from countable π -weight of X and implies that all dense subspaces of X are separable. Therefore, the above-mentioned theorem of Juhász and Shelah implies that, in compact spaces, selective separability coincides with countable π -weight.

In [3], spaces X satisfying $S_{fin}(\mathcal{D},\mathcal{D})$ or $S_1(\mathcal{D},\mathcal{D})$ are called M-separable and R-separable, respectively. Also, X is said to be H-separable if for every sequence $\{D_n : n \in \mathbb{N}\}$ of elements of \mathcal{D} , one can pick finite $F_n \subset D_n$ so that for every nonempty open subset O of X, the intersection $O \cap F_n$ is nonempty for all but finitely many n. Naturally, M-, R-, and H-, are motivated by analogy with wellknown Menger, Rothberger, and Hurewicz properties. Recall that X is Menger if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there exist finite $\mathcal{V}_n \subset \mathcal{U}_n, n \in \mathbb{N}$, so that $\bigcup \{\mathcal{V}_n : n \in \mathbb{N}\}$ covers X; X is Rothberger if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ covers X; X is Hurewicz if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there exist finite $\mathcal{V}_n \subset \mathcal{U}_n, n \in \mathbb{N}\}$ covers X; X is Rothberger if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ covers X; X is Hurewicz if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there exist finite $\mathcal{V}_n \subset \mathcal{U}_n, n \in \mathbb{N}$, so that for every $x \in X, x \in \bigcup \mathcal{V}_n$, for all but finitely many n. Also a family \mathcal{P} of open sets in X is called a π -base for X if every nonempty open set in X contains a nonempty element of \mathcal{P} ; where $\pi w(X) = \min\{|\mathcal{P}|: \mathcal{P} \text{ is a}$ π -base for X} is the π -weight of X. The following implications are obvious:

Let us now recall some backgrounds of hyperspace topology. Given a Hausdorff non-compact space X, we denote the family of nonempty closed subsets (resp., closed subsets, compact subsets) of a topological space X by CL(X) (resp., 2^{X} , $\mathbb{K}(X)$). For a subset $U \subset X$ and a family \mathcal{U} of subsets of X, we write:

$$U^{c} = \{A \in CL(X) : A \cap U \neq \phi\}$$
$$U^{+} = \{A \in CL(X) : A \subset U\},$$
$$U^{c} = X \setminus U,$$
$$\mathcal{U}^{c} = \{U^{c} : U \in \mathcal{U}\}.$$

The most known and popular among the topologies on 2^x are Fell topology and Vietoris topology. J. M. G. Fell [11] introduced a topology τ_F on 2^x having a

subbase consisting of all sets of the form V^{-} , where V is an open subset of X plus all sets of the form $(K^{c})^{+}$, where K is a compact subset of X. The Fell topology τ_{F} has a basic open subset of the form $(\bigcap_{i=1}^{n} V_{i}^{-}) \cap (K^{c})^{+}$, where $V_{1}, V_{2}, ..., V_{n}$ are open subsets of X and K is a compact subset of X.

If compact subsets in the definition above are replaced by closed sets, we obtain

the stronger Vietoris topology τ_{V} [21]. A basic open subset of the Vietoris topology τ_{V} is of the form: $\langle U_{1}, U_{2}, ..., U_{n} \rangle = \{A \in 2^{X} : A \subset \bigcup_{i=1}^{n} U_{i}, A \cap U_{i} \neq \phi, \text{ for } 1 \leq i \leq n\}$, where U_{1}, U_{2}, U_{n} are open subsets of X, for $n \in \mathbb{N}$.

Let Δ be a subset of 2^{X} closed for finite unions and containing all singletons. The upper Δ -topology, denoted by Δ^{+} , is the topology whose subbase is the collection $\{(D^{c})^{+}: D \in \Delta\} \cup \{2^{X}\}$. If Δ is the family of all finite subsets of X (resp., the collection of compact subsets of X), the corresponding Δ^{+} -topology known as co-finite topology (resp., co-compact topology) will be denoted by \mathbf{Z}^{+} (resp., \mathbf{F}^{+}).

We have the inclusions: $\mathbf{Z}^+ \subseteq \mathbf{F}^+ \subseteq \tau_F \subseteq \tau_V$.

Let $\Delta \subseteq CL(X)$ be a subfamily of CL(X) closed under finite unions and containing all singletons. Then, the hit-and-miss topology on CL(X) with respect to Δ (first studied in the abstract in [23] and then in [7]), denoted by τ_{Δ}^+ , has as a base, the family

$$\{(\bigcap_{i=1}^{m} V_{i}^{-}) \cap (B^{c})^{+} : B \in \Delta \text{ and } V_{i} \in \tau \text{ for } i \in \{1, 2, ..., m\}, \ m \in \mathbb{N}\}.$$

Following [32], the basic element $(\bigcap_{i=1}^{m} V_i^{-}) \cap (B^{c})^{+}$ will be denoted by $(V_1, ..., V_m)_B^{+}$.

Two important cases of the hit-and-miss topology are the Vietoris topology, τ_V , when $\Delta = CL(X)$ ([31], [21]) and the Fell topology, τ_F , when $\Delta = \mathbb{K}(X)$ ([11]).

By a cover, we mean a nontrivial one, that is, \mathcal{U} is a cover of X if $X = \bigcup \mathcal{U}$ and $X \notin \mathcal{U}$. k-covers and ω -covers play important roles in selection principles [2], [14], [15]. Different Δ -covers exposed many dualities in hyperspace topologies such as Fell topology, Vietoris topology, \mathbf{Z}^+ , \mathbf{F}^+ ([5], [15], [16], [19], [10], [9], [8], [22], [26]).

Throughout the paper all spaces are assumed to be Hausdorff, non-compact. Along this paper, unless we say the opposite, we will take a family $\Lambda \subseteq CL(X)$ that is closed under finite unions. Also we shall use $[X]^{<\omega}$ to denote all finite subsets of X.

2. Definitions and Results

Let us recall that an open cover \mathcal{U} of a space X is called an ω -cover [12] (respectively, a k-cover [20]) if every finite (respectively, compact) subset of X is contained in a member of \mathcal{U} and X is not a member of \mathcal{U} . An open cover \mathcal{U} of X is called a γ -cover [12] if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U} . Notice that it is equivalent to the assertion: Each finite subset of X belongs to all but finitely many members of \mathcal{U} . Also Lj. D. R. Kočinac in his paper [16] introduced a stronger version of γ -cover as: an open cover \mathcal{U} of a space X is called a γ_k -cover of X if each compact subset of X is contained in all but finitely many elements of \mathcal{U} and X is not a member of the cover.

For a space (X, τ) and a point $x \in X$ we use

- \mathcal{O} : the collection of open covers of X;
- Ω : the collection of ω -covers of X;
- \mathcal{K} : the collection of k-covers of X;
- Γ : the collection of all γ -covers of X;
- Γ_{k} : the collection of all γ_{k} -covers of X;
- $\Omega_x = \{A \subset X : x \in ClA\};$
- \mathcal{D}_{τ} : the collection of all dense subsets of the space (X, τ) .

As \mathbf{F}^+ and \mathbf{Z}^+ are miss type hyperspace topologies, they are dual to k-covers and ω -covers in selection principles. The Fell topology and the Vietoris topology are hit-and-miss topologies of types of subbasic open sets: those that hit a variable open subset plus those that miss a compact subset (in case of Fell topology) or a closed subset (in case of Vietoris topology). Z. Li in his paper [19] introduced the definitions of hit-and-miss type covers to study the selection principles in CL(X)under τ_F and τ_V . The following definition of hit-and-miss type covers has been introduced in [6].

Definition 2.1. [6] Let (X, τ) be a topological space. A family $\mathcal{U} \subseteq \Lambda^c$ is called a $c_{\Delta}(\Lambda)$ -cover of X, if for any $D \in \Delta$ and open subsets $V_1, ..., V_m$ of X, with $D^c \cap V_i \neq \phi$, for any $i \in \{1, ..., m\}$, there exist $U \in \mathcal{U}$ and $F \in [X]^{<\omega}$ such that $D \subseteq U, F \cap U = \phi$ and for each $i \in \{1, ..., m\}, F \cap V_i \neq \phi$. The family of all $c_{\Delta}(\Lambda)$ -covers of X will be denoted by $\mathbb{C}_{\Delta}(\Lambda)$.

Next we recall the relative version of the above type of covers as follows.

Definition 2.2. [29] Let (X, τ) be a topological space and $Y \subseteq X$ with $Y \neq X$. A family $\mathcal{U} \subseteq \Lambda^{c}$ is called a $c_{\Delta}(\Lambda)$ -cover of Y, if for any $D \in \Delta$ with $D \subseteq Y$ and open subsets $V_1, ..., V_m$ of X, with $Y^{c} \cap V_i \neq \phi$, for any $i \in \{1, ..., m\}$, there exist $U \in \mathcal{U}$ and $F \in [X]^{<\omega}$ such that $D \subseteq U$, $F \cap U = \phi$ and for each $i \in \{1, ..., m\}$, $F \cap V_i \neq \phi$. We denote by $\mathbb{C}^*_{\Delta}(\Lambda)$ the family of all $c_{\Delta}(\Lambda)$ -covers of $Y \subseteq X$, with $Y \neq X$.

Lemma 2.1. [29] Let Y be an open subset of a space X with $Y \neq X$ and $\mathcal{U} \subseteq \Lambda^{c}$ be a cover of Y. Then the following statements are equivalent:

(i) \mathcal{U} is a $c_{\Delta}(\Lambda)$ -cover of Y. (ii) $Y^{c} \in Cl_{\tau_{\Delta}^{+}}(\mathcal{U}^{c})$.

Lemma 2.2. For a space $X, E \in \Lambda$ and a collection $\mathcal{A} \subset \Lambda, \mathcal{A} \in \Omega_E^{\tau_{\Delta}^+}$ implies $\{(A \cup E)^c : A \in \mathcal{A}\}$ is a $c_{\Delta}(\Lambda)$ -cover of E^c , where $\Omega_E^{\tau_{\Delta}^+} = \{\mathcal{A} \subset CL(X) : E \in Cl_{\tau_{\Delta}^+}(\mathcal{A})\}.$

Proof. Let $D \in \Delta$ be such that $D \subset E^{c}$ and let $V_{1}, ..., V_{m}$ be open sets in X with $E \cap V_{i} \neq \phi$, for all i = 1, ..., m. Then $(V_{1}, ..., V_{m})_{D}^{+}$ is a τ_{Δ}^{+} -neighbourhood of E. As $\mathcal{A} \in \Omega_{E}^{\tau_{\Delta}^{+}}$, there exists $A \in \mathcal{A}$ such that $A \in (V_{1}, ..., V_{m})_{D}^{+}$. Now choose $x_{i} \in A \cap V_{i}$, for $1 \leq i \leq m$ and consider the set $F = \{x_{i} : 1 \leq i \leq m\}$. Then $F \in [X]^{<\omega}$ with $F \cap V_{i} \neq \phi$, for all $1 \leq i \leq m$. Also $D \subset (A \cup E)^{c}$ and $(A \cup E)^{c} \cap F = \phi$. Hence $\{(A \cup E)^{c} : A \in \mathcal{A}\}$ is a $c_{\Delta}(\Lambda)$ -cover of E^{c} . \Box

We next recall the definition of $\Delta\gamma$ -covers of a space as follows.

Definition 2.3. [29] Let (X, τ) be a topological space. A family $\mathcal{U} \subseteq \Lambda^c$ is called a $\Delta\gamma$ -cover of X, if each $B \in \Delta$ belongs to all but finitely many elements of \mathcal{U} and for any $B \in \Delta$ and open subsets $V_1, ..., V_m$ of X, with $B^c \cap V_i \neq \phi$ for any $i \in \{1, ..., m\}$, there exist $U \in \mathcal{U}$ and $F \in [X]^{<\omega}$ such that $B \subseteq U, F \cap U = \phi$ and for each $i \in \{1, ..., m\}, F \cap V_i \neq \phi$. The set of all $\Delta\gamma$ -covers of X is denoted by $\Delta\Gamma$.

Next recall the relative version of the above type of covers as follows.

Definition 2.4. [28] Let (X, τ) be a topological space and $Y \subseteq X$ with $Y \neq X$. A family $\mathcal{U} \subseteq \Lambda^{c}$ is called a $\Delta\gamma$ -cover of Y, if each $B \subseteq Y$ with $B \in \Delta$ belongs to all but finitely many elements of \mathcal{U} and for any $B \subseteq Y$ with $B \in \Delta$ and open subsets $V_1, ..., V_m$ of X, with $Y^{c} \cap V_i \neq \phi$ for any $i \in \{1, ..., m\}$, there exist $U \in \mathcal{U}$ and $F \in [X]^{<\omega}$ such that $B \subseteq U, F \cap U = \phi$ and for each $i \in \{1, ..., m\}, F \cap V_i \neq \phi$. The set of all $\Delta\gamma$ -covers of $Y \subseteq X$ is denoted by $\Delta\Gamma^{*}$.

Remark 2.1. If we consider $\Delta = \mathbb{K}(X)$ and $\Lambda = CL(X)$ (resp., $\Delta = \Lambda = CL(X)$) in Definitions 2.3 and 2.4 above, we get the definitions of γ_{k_F} -covers (resp., γ_{c_V} -covers) of X and also the definitions of γ_{k_F} -covers (resp., γ_{c_V} -covers) of a subset Y of X, with $Y \neq X$.

It is easy to observe that $\Delta \Gamma \subset \mathbb{C}_{\Delta}(\Lambda)$.

Lemma 2.3. [28] Let X be a topological space, Y be an open subset of X and $\mathcal{U} = \{U_n : n \in \mathbb{N}\} \subseteq \Lambda^c$ be a cover of Y. Then the following statements are equivalent:

(i) \mathcal{U} is a $\Delta\gamma$ -cover of Y. (ii) $\{U_n^c : n \in \mathbb{N}\}$ converges to Y^c in $(\Lambda, \tau_{\Lambda}^+)$. Recall now that an open cover \mathcal{U} of a space X is called

(i) ω -groupable [15], [17] (k-groupable [9]) if it can be expressed as a countable union of finite, pairwise disjoint subfamilies \mathcal{U}_n , $n \in \mathbb{N}$, such that for each finite (compact) set $C \subset X$, for all but finitely many n there is an $U \in \mathcal{U}_n$ such that $C \subset U$,

(ii) weakly groupable [2] (k-weakly groupable [9]) if there is a partition of \mathcal{U} into countably many finite, pairwise disjoint sets \mathcal{U}_n , for $n \in \mathbb{N}$, such that each finite (compact) subset of X is contained in $\bigcup \mathcal{U}_n$, for some n.

Also recall that a countable element D from \mathcal{D} is said to be groupable [17], [18] if there is a partition $D = \bigcup D_n$ into finite pairwise disjoint sets such that each $n \in \mathbb{N}$

nonempty open set of the space intersects D_n , for all but finitely many n. Let $\mathcal{D}^{^{gp}}$ denote the family of groupable elements of \mathcal{D} .

For a space X, we denote:

- Ω^{gp} the family of ω-groupable covers of X;
 K^{gp} the family of k-groupable covers of X;
 O^{wgp} the family of weakly groupable covers of X;
 O^{k-wgp} the family of k-weakly groupable covers of X;
- $(\Omega_{E}^{\tau_{\Delta}^{+}})^{g_{P}}$ the family of groupable elements of $\Omega_{E}^{\tau_{\Delta}^{+}}$.

Following Definitions 5.1 and 5.5 of [19], where the classes \mathcal{K}_{F}^{gp} of k_{F} -groupable covers and $\mathcal{C}_{V}^{^{gp}}$ of c_{V} -groupable covers are introduced, we define the general notion of a Δ -groupable $c_{\Delta}(\Lambda)$ -cover as follows.

Definition 2.5. A $c_{\Delta}(\Lambda)$ -cover \mathcal{U} of a space X is said to be Δ -groupable if it can be expressed as a union of infinitely many finite, pairwise disjoint subfamilies $\mathcal{U}_n \subset \mathcal{U}$ such that for any subset B of X with $B \in \Delta$, open sets $V_1, V_2, ..., V_m$ of X with $V_i \cap B^c \neq \phi$ $(1 \leq i \leq m)$, there exists $n_0 \in \mathbb{N}$ so that for each $n \geq n_0$, there exist $U_n \in \mathcal{U}_n$ and a finite set F_n with $F_n \cap V_i \neq \phi$ $(1 \leq i \leq m)$ such that $B \subset U_n$ and $F_n \cap U_n = \phi$. We denote the family of all Δ -groupable covers of X by $\mathbb{C}_{\Delta}(\Lambda)^{gp}$.

Definition 2.6. Let (X, τ) be a topological space and $Y \subseteq X$ with $Y \neq X$. A $c_{\Delta}(\Lambda)$ -cover \mathcal{U} of Y is said to be Δ -groupable if it can be expressed as a union of infinitely many finite, pairwise disjoint subfamilies $\mathcal{U}_n \subset \mathcal{U}$ such that for any subset $B \subseteq Y$ with $B \in \Delta$, open sets $V_1, V_2, ..., V_m$ of X with $V_i \cap Y^c \neq \phi$ $(1 \leq i \leq m)$, there exists $n_0 \in \mathbb{N}$ so that for each $n \geq n_0$, there exist $U_n \in \mathcal{U}_n$ and a finite set F_n with $F_n \cap V_i \neq \phi$ $(1 \leq i \leq m)$ such that $B \subset U_n$ and $F_n \cap U_n = \phi$. We denote the family of all Δ -groupable covers of $Y \subseteq X$ with $Y \neq X$ by $\mathbb{C}^*_{\Delta}(\Lambda)^{gp}$.

Lemma 2.4. For a space $X, E \in \Lambda$ and a collection $\mathcal{A} \subset \Lambda, \mathcal{A} \in (\Omega_{E}^{\tau_{\Delta}^{+}})^{g_{P}}$ implies $\{(A \cup E)^{c} : A \in \mathcal{A}\}$ is a Δ -groupable cover of E^{c} .

Proof. Let $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a partition of \mathcal{A} into finite, pairwise disjoint sets such

that each τ_{Δ}^+ -neighbourhood of E meets \mathcal{B}_n for all but finitely many n. Then by Lemma 2.2, $\mathcal{U} = \{(A \cup E)^c : A \in \mathcal{A}\}$ is a $c_{\Delta}(\Lambda)$ -cover of E^c . Write $\mathcal{U} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$, where for each $n \in \mathbb{N}$, $\mathcal{V}_n = \{(B \cup E)^c : B \in \mathcal{B}_n\}$. Let $D \in \Delta$ be such that $D \subset E^c$ and let $V_1, ..., V_m$ be open sets in X with $E \cap V_i \neq \phi$, for all i = 1, ..., m. Then $(V_1, ..., V_m)_D^+$ is a τ_{Δ}^+ -neighbourhood of E. Hence there exists $n_0 \in \mathbb{N}$ such that for each $n \geq n_0$, there exists $B_n \in \mathcal{B}_n$ such that $B_n \in (V_1, ..., V_m)_D^+$. Now choose $x_i \in B_n \cap V_i$, for $1 \leq i \leq m$ and consider the set $F = \{x_i : 1 \leq i \leq m\}$. Then $F \in [X]^{<\omega}$ with $F \cap V_i \neq \phi$, for all $1 \leq i \leq m$. Also $D \subset (B_n \cup E)^c$ and $(B \cup E)^c \cap F = \phi$. Hence $\{(A \cup E)^c : A \in \mathcal{A}\}$ is a Δ -groupable cover of E^c . \Box

Definition 2.7. A cover \mathcal{U} of a space X is weakly Δ -groupable if it can be expressed as a union of infinitely many finite, pairwise disjoint subfamilies $\mathcal{U}_n \subset \mathcal{U}$ such that for any subset B of X with $B \in \Delta$, open sets $V_1, V_2, ..., V_m$ of X with $V_i \cap B^c \neq \phi$ $(1 \leq i \leq m)$, there exist \mathcal{U}_n and a finite set F with $F \cap V_i \neq \phi$ $(1 \leq i \leq m)$ such that $B \subset \cup \mathcal{U}_n$ and $F \cap (\cup \mathcal{U}_n) = \phi$. We denote the family of all weakly Δ -groupable covers of X by $\mathbb{C}_{\Delta}^{wgp}$.

Lemma 2.5. [6] A family $\mathcal{U} \subseteq \Lambda^c$ is a $c_{\Delta}(\Lambda)$ -cover of X if and only if the family \mathcal{U}^c is a dense subset of $(\Lambda, \tau_{\Delta}^+)$.

Lemma 2.6. For a space X and a countable subset $\mathcal{A} \subset CL(X)$, the following statements are equivalent:

(i) \mathcal{A} is a groupable dense subset of $(CL(X), \tau_{\Delta}^{+})$. (ii) \mathcal{A}^{c} is a Δ -groupable cover of X.

Proof. (i) ⇒ (ii): Let $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a partition into finite pairwise disjoint sets such that each open set of $(CL(X), \tau_{\Delta}^+)$ intersects \mathcal{B}_n for all but finitely many *n*. We claim that $\mathcal{A}^c = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n^c$ is a Δ-groupable cover of *X*. Indeed, let $K \in \Delta$ be a subset of *X* and $V_1, ..., V_m$ be open in *X* with $(X \setminus K) \cap V_i \neq \phi$, for $1 \leq i \leq m$. Then $(V_1, ..., V_m)_K^+$ is a τ_{Δ}^+ -open set in CL(X). Hence there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, there exists $B_n \in \mathcal{B}_n$ such that $B_n \in (V_1, ..., V_m)_K^+$. Let $U_n = \mathcal{B}_n^c$, for $n \geq n_0$. Then $U_n \in \mathcal{B}_n^c$. Choose $x_i^{(n)} \in V_i \cap B_n$, for $1 \leq i \leq m$ and consider $F = \{x_i^{(n)} : 1 \leq i \leq m\}$. Then *F* is a finite subset of *X* with $F \cap V_i \neq \phi$, for all $1 \leq i \leq m$. Also $K \subset U_n$ and $F \cap U_n = \phi$. Hence \mathcal{B}_n^c is a $c_\Delta(CL(X))$ -cover of *X*.

(ii) \Rightarrow (i): Let $\mathcal{A}^{c} = \bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}$ be a partition of \mathcal{A}^{c} that witnesses (ii). We claim

that \mathcal{A} is a groupable dense subset of $(CL(X), \tau_{\Delta}^{+})$. Let $(V_1, ..., V_m)_{D}^{+}$ be a τ_{Δ}^{+} -open

set in $(CL(X), \tau_{\Delta}^{+})$. Then there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$, there exist $U_{n} \in \mathcal{U}_{n}$ and $F_{n} \in [X]^{<\omega}$ with $F_{n} \cap V_{i} \neq \phi$, for all i = 1, ..., m such that $D \subseteq U_{n}$ and $U_{n} \cap F_{n} = \phi$. Hence $U_{n}^{c} \in (V_{1}, ..., V_{m})_{D}^{+}$, for all $n \geq n_{0}$, so that \mathcal{A} is a groupable dense subset of $(CL(X), \tau_{\Delta}^{+})$. \Box

3. Selective separability of the hyperspace $(\Lambda, \tau_{\Lambda}^{+})$

In this section we first start with the relationships between closure-type properties of the hyperspace $(\Lambda, \tau_{\Delta}^{+})$ and covering properties of that of X. We then discuss about the selective separability and variations of separability in $(\Lambda, \tau_{\Delta}^{+})$.

Theorem 3.1. Let $\star \in \{1, fin\}$. Then for a space X the following statements are equivalent:

 $\begin{array}{l} (i) \ X \ satisfies \ S_{\star}(\mathbb{C}_{\Delta}(\Lambda), \mathbb{C}_{\Delta}(\Lambda)). \\ (ii) \ (\Lambda, \tau_{\Delta}^{+}) \ satisfies \ S_{\star}(\mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}, \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}). \\ (where \ \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)} \ denotes \ the \ family \ of \ dense \ subsets \ of \ (\Lambda, \tau_{\Delta}^{+})). \end{array}$

Proof. We prove the theorem for $\star = fin$, the other part being similar.

(i) \Rightarrow (ii): Let $\{D_i : i \in \mathbb{N}\}$ be a family of dense subsets of $(\Lambda, \tau_{\Delta}^+)$ such that $D_i \in \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}$, for each $i \in \mathbb{N}$. Then by Lemma 2.5, $\{D_i^c : i \in \mathbb{N}\}$ is a family of open covers of X such that $D_i^c \in \mathbb{C}_{\Delta}(\Lambda)$, for all $i \in \mathbb{N}$. As X satisfies $S_{fin}(\mathbb{C}_{\Delta}(\Lambda), \mathbb{C}_{\Delta}(\Lambda))$, there exists a sequence $\{A_i : i \in \mathbb{N}\}$ of finite sets such that $A_i \subseteq D_i^c$ and $\bigcup_{i \in \mathbb{N}} A_i \in \mathbb{C}_{\Delta}(\Lambda)$, for each $i \in \mathbb{N}$. Then $\bigcup_{i \in \mathbb{N}} A_i^c \in \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}$.

 $\begin{array}{l} (\mathrm{ii}) \Rightarrow (\mathrm{i}): \mbox{ Assume that } \{\mathcal{U}_n : n \in \mathbb{N}\} \mbox{ is a family of open covers of } X \mbox{ such that } \\ \mathcal{U}_n \in \mathbb{C}_{\Delta}(\Lambda). \mbox{ Consider } \mathcal{A}_n = \mathcal{U}_n^c, \mbox{ for each } n \in \mathbb{N}. \mbox{ Then by Lemma 2.5, } \mathcal{A}_n \mbox{ is a dense subset of } (\Lambda, \tau_{\Delta}^+) \mbox{ for each } n \in \mathbb{N} \mbox{ such that } \mathcal{A}_n \in \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}. \mbox{ As } (\Lambda, \tau_{\Delta}^+) \mbox{ satisfies } \\ S_{fin}(\mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}, \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}), \mbox{ there exists a sequence } \{A_n : n \in \mathbb{N}\} \mbox{ of finite subsets such that } \\ A_n \subseteq \mathcal{A}_n, \mbox{ for each } n \in \mathbb{N} \mbox{ and } \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{D}_{\mathbb{C}_{\Delta}(\Lambda)}. \mbox{ Then } U_n = A_n^c, \mbox{ for } n \in \mathbb{N} \mbox{ is such that } \bigcup_{n \in \mathbb{N}} U_n \mbox{ is an open cover of } X \mbox{ and } \bigcup_{n \in \mathbb{N}} U_n \in \mathbb{C}_{\Delta}(\Lambda). \mbox{ } \end{array}$

Corollary 3.1. (Theorem 3.6 in [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_V)$ satisfies $S_1(\mathcal{D}, \mathcal{D})$. (ii) X satisfies $S_1(\mathbb{C}_V, \mathbb{C}_V)$.

Corollary 3.2. (Theorem 3.4 in [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_F)$ satisfies $S_1(\mathcal{D}, \mathcal{D})$. (ii) X satisfies $S_1(\mathbb{K}_F, \mathbb{K}_F)$. **Corollary 3.3.** (Theorem 4.4 in [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_V)$ satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$. (ii) X satisfies $S_{fin}(\mathbb{C}_V, \mathbb{C}_V)$.

Corollary 3.4. (Theorem 4.2 in [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_F)$ satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$. (ii) X satisfies $S_{fin}(\mathbb{K}_F, \mathbb{K}_F)$.

Recall here that a space X is M-separable [3] if for every sequence $\{D_n : n \in \mathbb{N}\}$ of dense subspaces of X one can select finite $F_n \subset D_n$ so that $\bigcup \{F_n : n \in \mathbb{N}\}$ is dense in X. Thus we have the following theorem.

Theorem 3.2. For a space X, $(\Lambda, \tau_{\Delta}^+)$ is M-separable if and only if X satisfies $S_{fin}(\mathbb{C}_{\Delta}(\Lambda), \mathbb{C}_{\Delta}(\Lambda))$.

Again a space X is R-separable [3] if for every sequence $\{D_n : n \in \mathbb{N}\}$ of dense subspaces of X one can pick $x_n \in D_n$ so that $\{x_n : n \in \mathbb{N}\}$ is dense in X. Thus we have the following theorem.

Theorem 3.3. For a space X, $(\Lambda, \tau_{\Delta}^+)$ is *R*-separable if and only if X satisfies $S_1(\mathbb{C}_{\Delta}(\Lambda), \mathbb{C}_{\Delta}(\Lambda))$.

Theorem 3.4. Let $\Phi, \Psi \in {\Delta\Gamma^*, \mathbb{C}^*_{\Delta}(\Lambda)}, \star \in {1, fin}$. Then for a space X the following statements are equivalent:

(i) Each open set $Y \subset X$ with $Y \in \Lambda^{\circ}$ has the property $S_{\star}(\Phi, \Psi)$. (ii) Each $E \in (\Lambda, \tau_{\Delta}^{+})$ satisfies $S_{\star}(\Phi_{E}, \Psi_{E})$. (where Φ_{E} denotes the Φ family of covers of E and Ψ_{E} denotes the Ψ family of covers of E).

Proof. We prove the theorem for $\star = 1$, the other parts being similar.

(i) \Rightarrow (ii): Let $E \in \Lambda$ and let $\{\mathcal{A}_n : n \in \mathbb{N}\}$ be a sequence such that for each $n \in \mathbb{N}, \mathcal{A}_n \in \Phi_E$. Then $\{\mathcal{A}_n^c : n \in \mathbb{N}\}$ is a sequence of open covers of E^c such that for each $n \in \mathbb{N}, \mathcal{A}_n^c \in \Phi$. As E^c has the property $S_1(\Phi, \Psi)$, there exists a sequence $\{A_n^c : n \in \mathbb{N}\}$ such that for each $n \in \mathbb{N}, \mathcal{A}_n^c \in \mathcal{A}_n^c$ and $\{\mathcal{A}_n^c : n \in \mathbb{N}\}$ is an open cover of E^c such that $\{\mathcal{A}_n^c : n \in \mathbb{N}\} \in \Psi$. Hence $\{\mathcal{A}_n : n \in \mathbb{N}\} \in \Psi_E$.

(ii) \Rightarrow (i): Let Y be an open subset of X with $Y \in \Lambda^c$ and $\{\mathcal{F}_n : n \in \mathbb{N}\}$ be a sequence of open covers of Y such that $\mathcal{F}_n \in \Phi_Y$, for $n \in \mathbb{N}$. Let $E = X \setminus Y$. Put $\mathcal{A}_n = \mathcal{F}_n^c, n \in \mathbb{N}$. Then $\mathcal{A}_n \subset \Lambda$ and $\mathcal{A}_n \in \Phi_E$, for $n \in \mathbb{N}$. As E satisfies $S_1(\Phi_E, \Psi_E)$, there exists a sequence $\{A_n : n \in \mathbb{N}\}$ such that $A_n \in \mathcal{A}_n$, for each $n \in \mathbb{N}$ and $\{A_n : n \in \mathbb{N}\} \in \Psi_E$. Hence $\{F_n = A_n^c : n \in \mathbb{N}\} \in \Psi$. \Box

Recall that a space X has countable fan tightness [1] if whenever $x \in ClA_n$ for all $n \in \mathbb{N}$, one can choose finite $F_n \subset A_n$ so that $x \in Cl(\cup\{F_n : n \in \mathbb{N}\})$ and X has countable strong fan tightness [25] if whenever $x \in ClA_n$ for $n \in \mathbb{N}$, there are $x_n \in A_n$ such that $x \in Cl(\{x_n : n \in \mathbb{N}\})$. In view of these definitions we can restate the above theorem as follows.

Theorem 3.5. For a space X, $(\Lambda, \tau_{\Delta}^+)$ has countable strong fan tightness if and only if each open subset $Y \subsetneq X$ with $Y^c \in \Lambda$ satisfies $S_1(\mathbb{C}^*_{\Delta}(\Lambda), \mathbb{C}^*_{\Delta}(\Lambda))$.

Proof. First let $Y \subsetneq X$ be open in X with $Y^c \in \Lambda$ and $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of $c_{\Delta}(\Lambda)$ -covers of Y. Then by Lemma 2.1, $Y^c \in Cl_{\tau_{\Delta}^+}(\mathcal{U}_n^c)$. As $(\Lambda, \tau_{\Delta}^+)$ has countable strong fan tightness, there exists $U_n^c \in \mathcal{U}_n^c$, for $n \in \mathbb{N}$ such that $Y^c \in Cl_{\tau_{\Delta}^+}(\{U_n^c : n \in \mathbb{N}\})$. Hence $\{U_n : n \in \mathbb{N}\}$ is a $c_{\Delta}(\Lambda)$ -cover of Y.

Conversely, let $E \in \Lambda$ be such that $E \in Cl(\mathcal{U}_n)$. Then by Lemma 2.1, $\{\mathcal{U}_n^c : n \in \mathbb{N}\}$ is a sequence of $c_{\Delta}(\Lambda)$ -covers of E^c . By the given condition, there exists $U_n^c \in \mathcal{U}_n^c$, for $n \in \mathbb{N}$ such that $\{U_n^c : n \in \mathbb{N}\}$ is a $c_{\Delta}(\Lambda)$ -cover of E^c . Hence $E \in Cl_{\tau_{\Lambda}^+}(\{U_n : n \in \mathbb{N}\})$, so that $(\Lambda, \tau_{\Delta}^+)$ has countable strong fan tightness. \Box

Theorem 3.6. For a space X, $(\Lambda, \tau_{\Delta}^+)$ has countable fan tightness if and only if each open subset $Y \subsetneq X$ with $Y^c \in \Lambda$ satisfies $S_{fin}(\mathbb{C}^*_{\Delta}(\Lambda), \mathbb{C}^*_{\Delta}(\Lambda))$.

Proof. First let $Y \subsetneq X$ be open in X with $Y^c \in \Lambda$ and $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of $c_{\Delta}(\Lambda)$ -covers of Y. Then by Lemma 2.1, $Y^c \in Cl_{\tau_{\Delta}^+}(\mathcal{U}_n^c)$. As $(\Lambda, \tau_{\Delta}^+)$ has countable fan tightness, there exist finite $\mathcal{V}_n^c \subset \mathcal{U}_n^c$, for $n \in \mathbb{N}$, such that $Y^c \in Cl_{\tau_{\Delta^+}}(\bigcup\{\mathcal{V}_n^c : n \in \mathbb{N}\})$. Hence $\bigcup\{\mathcal{V}_n : n \in \mathbb{N}\}$ is a $c_{\Delta}(\Lambda)$ -cover of Y.

Conversely, let $E \in \Lambda$ be such that $E \in Cl(\mathcal{U}_n)$. Then by Lemma 2.1, $\{\mathcal{U}_n^c : n \in \mathbb{N}\}$ is a sequence of $c_{\Delta}(\Lambda)$ -covers of E^c . By the given condition, there exist finite $\mathcal{V}_n^c \subset \mathcal{U}_n^c$, for $n \in \mathbb{N}$, such that $\bigcup \{\mathcal{V}_n^c : n \in \mathbb{N}\}$ is a $c_{\Delta}(\Lambda)$ -cover of E^c . Hence $E \in Cl_{\tau_{\Lambda}^+}(\bigcup \{\mathcal{V}_n : n \in \mathbb{N}\})$. \Box

Corollary 3.5. (Theorem 3.2 of [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_{V})$ has countable strong fan tightness. (ii) Each open subset Y of X with $Y \subset X$ satisfies $S_{1}(\mathbb{C}_{V}^{*}, \mathbb{C}_{V}^{*})$.

Corollary 3.6. (Theorem 3.1 of [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_F)$ has countable strong fan tightness. (ii) Each open subset Y of X with $Y \subset X$ satisfies $S_1(\mathbb{K}_F^*, \mathbb{K}_F^*)$.

Corollary 3.7. (Theorem 4.3 of [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_V)$ has countable fan tightness. (ii) Each open subset Y of X with $Y \subset X$ satisfies $S_{tin}(\mathbb{C}_V^*, \mathbb{C}_V^*)$.

Corollary 3.8. (Theorem 4.1 of [19]) For a space X, the following are equivalent:

(i) $(CL(X), \tau_F)$ has countable fan tightness. (ii) Each open subset Y of X with $Y \subset X$ satisfies $S_{fin}(\mathbb{K}_F^*, \mathbb{K}_F^*)$.

Theorem 3.7. For a space X, the following statements are equivalent:

 $\begin{array}{l} (i) \ X \ \text{satisfies} \ S_{_{1}}(\mathbb{C}_{\Delta}(CL(X)), \mathbb{C}_{\Delta}(CL(X))^{^{gp}}).\\ (ii) \ (CL(X), \tau_{_{\Delta}}^{^{+}}) \ \text{satisfies} \ S_{_{1}}(\mathcal{D}_{_{\tau_{_{\Delta}}^{^{+}}}}, \mathcal{D}_{_{\tau_{_{\Delta}}^{^{+}}}}^{^{gp}}). \end{array}$

Proof. (i) \Rightarrow (ii): Let $\{\mathcal{D}_n : n \in \mathbb{N}\}$ be a sequence of dense subsets of $(CL(X), \tau_{\Delta}^+)$. For each $n \in \mathbb{N}$, put $\mathcal{U}_n = \mathcal{D}_n^c$. Then \mathcal{U}_n is a $c_{\Delta}(CL(X))$ -cover of X, for each $n \in \mathbb{N}$. By (i) applied to $\{\mathcal{U}_n : n \in \mathbb{N}\}$, there exists a sequence $\{D_n^c : n \in \mathbb{N}\}$ such that for each $n \in \mathbb{N}$, $D_n^c \in \mathcal{U}_n$ and $\{D_n^c : n \in \mathbb{N}\}$ is a Δ -groupable cover of X. Hence by Lemma 2.6, $\{D_n : n \in \mathbb{N}\}$ is a groupable dense subset of $(CL(X), \tau_{\Delta}^+)$.

(ii) \Rightarrow (i): Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of $c_{\Delta}(CL(X))$ -covers of X. Put $\mathcal{A}_n = \mathcal{U}_n^c$, $n \in \mathbb{N}$. Then by Lemma 2.5 for each $n \in \mathbb{N}$, \mathcal{A}_n is a sequence of dense subsets of $(CL(X), \tau_{\Delta}^+)$. By (ii), there exists a sequence $\{A_n : n \in \mathbb{N}\}$ such that for each $n \in \mathbb{N}$, $A_n \in \mathcal{A}_n$ and $\mathcal{B} = \{A_n : n \in \mathbb{N}\} \in \mathcal{D}_{\tau_{\Delta}^+}^{gp}$. Again by Lemma 2.6, \mathcal{B}^c is a Δ -groupable cover of X. Hence $\{A_n^c : n \in \mathbb{N}\}$ guarantees for $\{\mathcal{U}_n : n \in \mathbb{N}\}$ that X satisfies $S_1(\mathbb{C}_{\Delta}(CL(X)), \mathbb{C}_{\Delta}(CL(X))^{gp})$. \Box

Next recall that a space X is H-separable [3] if for every sequence $\{D_n : n \in \mathbb{N}\}$ of dense subspaces of X, one can pick finite $F_n \subset D_n$ so that for every nonempty open set $O \subset X$, the intersection $O \cap F_n$ is nonempty for all but finitely many n. Thus we have the following theorem.

Theorem 3.8. For a space X, $(CL(X), \tau_{\Delta}^{+})$ is H-separable if and only if X satisfies $S_{fin}(\mathbb{C}_{\Delta}(CL(X)), \mathbb{C}_{\Delta}(CL(X))^{gp})$.

Proof. First let, $(CL(X), \tau_{\Delta}^{+})$ be H-separable and $\{\mathcal{U}_{n} : n \in \mathbb{N}\}$ be a sequence of $c_{\Delta}(CL(X))$ -covers of X. Then by Lemma 2.5, $\{\mathcal{U}_{n}^{c} : n \in \mathbb{N}\}$ is a sequence of dense subsets of CL(X). By H-separability of $(CL(X), \tau_{\Delta}^{+})$, there exist finite $\mathcal{V}_{n}^{c} \subset \mathcal{U}_{n}^{c}$, $n \in \mathbb{N}$, such that for every non-empty open set W of CL(X), $W \cap \mathcal{V}_{n}^{c} \neq \phi$, for all but finitely many $n \in \mathbb{N}$. We claim that $\bigcup \mathcal{V}_{n}$ is a Δ -groupable cover of X. Indeed, Let $D \in \Delta$ and $V_{1}, ..., V_{m}$ be open in X with $D^{c} \cap V_{i} \neq \phi$, for all $1 \leq i \leq m$. Then $(V_{1}, ..., V_{m})_{D}^{+} \cap \mathcal{V}_{n}^{c} \neq \phi$, for all $n \geq n_{0}$. Choose $V_{n}^{c} \in (V_{1}, ..., V_{m})_{D}^{+} \cap \mathcal{V}_{n}^{c}$, for all $n \geq n_{0}$. Next choose $x_{i}^{(n)} \in (V_{1}, ..., V_{m})_{D}^{+} \cap \mathcal{V}_{n}^{c}$, for all $1 \leq i \leq m$ and consider the set $F_{n} = \{x_{i}^{(n)} : 1 \leq i \leq m\}$. Then $F_{n} \in [X]^{<\omega}$ with $F_{n} \cap V_{i} \neq \phi$, for all $1 \leq i \leq m$. Also, $D \subset V_{n}$ and $V_{n} \cap F_{n} = \phi$, for all $n \geq n_{0}$. Hence $\bigcup \mathcal{V}_{n}$ is a Δ -groupable cover of X.

Conversely, let $\{\mathcal{D}_n : n \in \mathbb{N}\}$ be a sequence of dense subsets of CL(X). By Lemma 2.5, $\{\mathcal{D}_n^c : n \in \mathcal{N}\}$ is a sequence of $c_{\Delta}(CL(X))$ -covers of X. As X satisfies $S_{fin}(\mathbb{C}_{\Delta}(CL(X)), \mathbb{C}_{\Delta}(CL(X))^{gp})$, there exist finite $\mathcal{B}_n^c \subset \mathcal{D}_n^c$, $n \in \mathbb{N}$, such that $\bigcup \mathcal{B}_n^c$ is a Δ -groupable cover of X. Then every τ_{Δ}^+ -open set intersects all but finitey many \mathcal{B}_n . Hence $(CL(X), \tau_{\Delta}^+)$ is H-separable. \Box

Corollary 3.9. (Theorem 5.4 of [19]) For a space X, the following statements are equivalent:

(i) $(CL(X), \tau_{v})$) satisfies $S_{1}(\mathcal{D}, \mathcal{D}^{^{gp}})$. (ii) X satisfies $S_{1}(\mathbb{C}_{v}, \mathbb{C}^{^{gp}}_{v})$.

Corollary 3.10. (Theorem 5.2 of [19]) For a space X, the following statements are equivalent:

(i) $(CL(X), \tau_F)$ satisfies $S_1(\mathcal{D}, \mathcal{D}^{g^p})$. (ii) X satisfies $S_1(\mathbb{K}_F, \mathbb{K}_F^{g_P})$.

Theorem 3.9. For a space X, the following statements are equivalent:

(i) $(CL(X), \tau_{\Delta}^{+})$ satisfies: for each sequence $\{\mathcal{D}_{n} : n \in \mathbb{N}\}$ of dense subsets of $(CL(X), \tau_{\Delta}^{+})$ there is a finite $\mathcal{B}_{n} \subset \mathcal{D}_{n}$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{B}_{n}$ can be partitioned into a union of finite sets $\mathcal{C}_{n}, n \in \mathbb{N}$, so that $\{\bigcap \mathcal{C}_{n} : n \in \mathbb{N}\}$ is dense in $(CL(X), \tau_{\Delta}^{+})$. (ii) X satisfies $S_{fin}(\mathbb{C}_{\Delta}(CL(X)), \mathbb{C}_{\Delta}^{wgp})$.

Proof. (i) ⇒ (ii): Let {U_n : n ∈ ℕ} be a sequence of $c_{\Delta}(CL(X))$ -open covers of X. Then for each n ∈ ℕ, $\mathcal{A}_n = \mathcal{U}_n^c$ is a dense subset of $(CL(X), \tau_{\Delta}^+)$. By (i), there exist finite $\mathcal{B}_n \subset \mathcal{A}_n$, for each n ∈ ℕ, such that $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ is a union of finite pairwise disjoint sets \mathcal{C}_n and { $\bigcap \mathcal{C}_n : n \in \mathbb{N}$ } is dense in $(CL(X), \tau_{\Delta}^+)$. Let $\mathcal{V} = \mathcal{B}^c$ and $\mathcal{W}_n = \mathcal{C}_n^c$, for each n ∈ ℕ. We now claim that $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ is a weakly Δ-groupable cover of X. Let $K \in \Delta, V_1, V_2, ..., V_m$ be open sets of X with $V_i \cap K^c \neq \phi$ (1 ≤ i ≤ m). Then there exists a $n_0 \in \mathbb{N}$ such that $\bigcap \mathcal{C}_{n_0} \in (V_1, ..., V_m)_K^+$. Choose $x_i \in V_i \cap (\bigcap \mathcal{C}_{n_0})$, for 1 ≤ i ≤ m. Now consider $F = \{x_i : 1 \leq i \leq m\}$. Hence $K \subset (\bigcap \mathcal{C}_{n_0})^c = \bigcup \mathcal{W}_{n_0}$ and $F \cap (\bigcup \mathcal{W}_{n_0}) = \phi$.

(ii) \Rightarrow (i): Let $\{\mathcal{D}_n : n \in \mathbb{N}\}$ be a sequence of dense subsets of $(CL(X), \tau_{\Delta}^+)$. For each $n \in \mathbb{N}$, let $\mathcal{U}_n = \mathcal{D}_n^c$. Then $\{\mathcal{U}_n : n \in \mathbb{N}\}$ is a sequence of $c_{\Delta}(CL(X))$ -covers of X. By (ii), for each $n \in \mathbb{N}$, there is a finite subset \mathcal{V}_n of \mathcal{U}_n such that $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is a weakly Δ -groupable cover of X. Thus $\mathcal{V} = \bigcup \mathcal{W}_n$ is a union of countably

 $\bigcup_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \sum_{$

many finite pairwise disjoint sets \mathcal{W}_n satisfying: for each subset $K \in \Delta$, open sets $V_1, V_2, ..., V_m$ of X with $V_i \cap K^c \neq \phi$ $(1 \leq i \leq m)$, there exist a n_0 and a finite set F with $F \cap V_i = \phi$, for $1 \leq i \leq m$ such that $K \subset \bigcup \mathcal{W}_{n_0}$ and $F \cap (\bigcup \mathcal{W}_{n_0}) = \phi$. Hence $\bigcap \mathcal{C}_{n_0} \in (V_1, ..., V_m)_K^+$. Let $\mathcal{B}_n = \mathcal{V}_n^c$ and $\mathcal{C}_n = \mathcal{W}_n^c$, for each $n \in \mathbb{N}$. Then \mathcal{B}_n is finite set of \mathcal{D}_n such that $\bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ can be partitioned into a union $\bigcup_{n \in \mathbb{N}} \mathcal{C}_n$ of finite sets \mathcal{C}_n , for $n \in \mathbb{N}$, such that $\{\bigcap \mathcal{C}_n : n \in \mathbb{N}\}$ is dense in $(CL(X), \tau_{\Delta}^+)$. \Box

Recall that a space X is weakly Fréchet in the strict sense [24] if whenever $x \in ClA_n$ for all $n \in \mathbb{N}$, there are finite $F_n \subset A_n$ such that every neighbourhood of x intersects all but finitely many F_n .

Theorem 3.10. For a space X, $(\Lambda, \tau_{\Delta}^{+})$ is weakly Fréchet in the strict sense if and only if each open subset $Y \subsetneq X$ with $Y^{c} \in \Lambda$ has $S_{fin}(\mathbb{C}^{*}_{\Delta}(\Lambda), \mathbb{C}^{*}_{\Delta}(\Lambda))^{gp}$.

Proof. First let *Y* ⊆ *X* be such that *Y*^{*c*} ∈ Λ and {*U*_n : *n* ∈ ℕ} be a sequence of *c*_Δ(Λ)-covers of *Y*. Then by Lemma 2.1, {*U*^{*c*}_n : *n* ∈ ℕ} is a sequence of subsets of (Λ, τ⁺_Δ) such that *Y^c* ∈ *Cl*_{τ+}*U*^{*c*}_n, for each *n* ∈ ℕ. Since (Λ, τ⁺_Δ) is weakly Fréchet in the strict sense, there exist finite *V*^{*c*}_n ⊂ *U*^{*c*}_n, *n* ∈ ℕ, such that each neighbourhood of *Y*^{*c*} intersects all but finitely many *V*^{*c*}_n. We now show that ∪{*V*_n : *n* ∈ ℕ} is a Δ-groupable cover of *Y*. Let *B* ⊆ *Y* with *B* ∈ Δ and *V*₁, ..., *V*_{*m*} be open subsets of *X* with *Y*^{*c*} ∩ *V*_{*i*} ≠ φ, for 1 ≤ *i* ≤ *m* so that (*V*₁, ..., *V*_{*m*})⁺_{*B*} ∩ Λ is a τ⁺_Δ-neighbourhood of *Y*^{*c*} in the space (Λ, τ⁺_Δ). Thus there exists *n*₀ ∈ ℕ such that (*V*₁, ..., *V*_{*m*})⁺_{*B*</sup> ∩ Λ and choose $x_i^{(n)} \in V_n^c \cap V_i$, for $1 \le i \le m$. Now form the set $F_n = \{x_1^{(n)}, ..., x_m^{(n)}\}$. Then $F_n \in [X]^{<\omega}$ with $F_n \cap V_i \ne \phi$, for $1 \le i \le m$. Now form the set $F_n = \phi$ and $B \subseteq V_n$, for all $n \ge n_0$.}

Conversely, let $\{\mathcal{A}_n : n \in \mathbb{N}\}$ be a sequence of subsets of Λ and $E \in \Lambda$ be such that $E \in Cl_{\tau_{\Delta}^+}(\mathcal{A}_n)$, for $n \in \mathbb{N}$. Then $\{\mathcal{A}_n^c : n \in \mathbb{N}\}$ is a sequence of $c_{\Delta}(\Lambda)$ -covers of E^c , for each $n \in \mathbb{N}$. Hence by the given condition there exist finite $\mathcal{B}_n^c \subset \mathcal{A}_n^c$, $n \in \mathbb{N}$, such that $\bigcup \mathcal{B}_n^c$ is a Δ -groupable cover of E^c . Hence $(\Lambda, \tau_{\Delta}^+)$ is weakly Fréchet in the strict sense. \Box

4. Supertightness of $(\Lambda, \tau_{\Lambda}^{+})$

In [29], the authors have posed an open problem as: "Is it possible to characterize the supertightness of the hyperspace Λ by means of $c_{\Delta}(\Lambda)$ -covers of Y, for some open subset $Y \subseteq X$?" In this section we give an affirmative answer to the question. Let us first recall that a family \mathcal{P} of nonempty subsets of a space X is said to be a π -network at p [30] if every neighbourhood of p contains some member of \mathcal{P} .

Definition 4.1. [30, 24] A space X is said to have countable supertightness if $p \in X$ and \mathcal{P} is a π -network at p consisting of finite subsets of X, then there is a countable subfamily $\mathcal{F} \subset \mathcal{P}$ such that \mathcal{F} is a π -network at p.

We now define the following.

Definition 4.2. Let Y be a subspace of X. A partitioned $c_{\Delta}(\Lambda)$ -cover $\mathcal{U} = \bigcup \mathcal{U}_{\alpha}$

(where $\mathcal{U} \subseteq \Lambda^c$) is called a finite $p - c_{\Delta}(\Lambda)$ -cover of Y if each \mathcal{U}_{α} is finite and for any subset $B \subseteq V$ with $D \subseteq \Lambda$ subset $B \subseteq Y$ with $B \in \Delta$, open sets $V_1, V_2, ..., V_m$ of X with $V_i \cap B^c \neq \phi$ $(1 \le i \le m)$, there exists $\alpha \in A$ and $F \in [X]^{<\omega}$ with $F \cap V_i \neq \phi$, for all i = 1, 2, ..., m such that $B \subset U$ and $F \cap U = \phi$, for each $U \in \mathcal{U}_{\alpha}$.

Theorem 4.1. For a space X, the following are equivalent:

(i) $(\Lambda, \tau_{\Delta}^{+})$ has countable supertightness. (ii) For each open subset $Y \subsetneq X$ with $Y^{c} \in \Lambda$ and each finite $p-c_{\Delta}(\Lambda)$ -cover $\mathcal{U} = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$ of Y, there exists a countable subset $A' \subset A$ such that $\bigcup_{\alpha \in A'} \mathcal{U}_{\alpha}$ is a $\underset{finite \ p-c_{\Delta}}{\overset{\alpha \in A}{ finite \ p-c_{\Delta}}} (\Lambda) \text{-} cover \ of \ Y.$

Proof. (i) \Rightarrow (ii): Let $Y \subsetneq X$ be an open subset of X with $Y^c \in \Lambda$ and $\mathcal{U} = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$

be a finite $p - c_{\Delta}(\Lambda)$ -cover of Y. Then $\{\mathcal{U}_{\alpha}^{c} : \alpha \in A\}$ is a π -network at Y^{c} . Indeed let $Y^{c} \in (V_{1}, ..., V_{m})_{D}^{+} \cap \Lambda$. Then there exists $\alpha \in A$ and $F \in [X]^{<\omega}$ with $F \cap V_{i} \neq \phi$, for all i = 1, ..., m such that $D \subset U$ and $F \cap U = \phi$, for all $U \in \mathcal{U}_{\alpha}$. Then $U^{c} \in (V_{1},...,V_{m})_{D}^{+} \cap \Lambda$, for each $U \in \mathcal{U}_{\alpha}$. Hence $\{\mathcal{U}_{\alpha}^{c} : \alpha \in A\}$ is a π -network at $Y^{^{c}}$ consisting of finite subsets of Λ . As $(\Lambda, \tau_{\Delta}^{^{+}})$ has countable supertightness, there exists a countable subset $A' \subset A$ such that $\{\mathcal{U}_{\alpha}^{c} : \alpha \in A'\}$ is a π -network at Y^{c} . Hence $\bigcup \mathcal{U}_{\alpha}$ is a finite $p - c_{\Delta}(\Lambda)$ -cover of Y.

 $\alpha \in A$

(ii) \Rightarrow (i): Let $E \in \Lambda$ and $\{\mathcal{A}_{\alpha} : \alpha \in A\}$ be a π -network at E, where each \mathcal{A}_{α} is a finite subset of A. Then for any neighbourhood $(V_1, ..., V_m)^+_{D} \cap \Lambda$ of E, there exists $\alpha \in A$ such that $\mathcal{A}_{\alpha} \subset (V_1, ..., V_m)_D^+ \cap \Lambda$. Let

$$A' = \{ \alpha \in A : E^{c} \cap F^{c} \neq \phi, \text{ for each } F \in \mathcal{A}_{\alpha} \}.$$

Then $A' \neq \phi$ and $\{\mathcal{A}_{\alpha} : \alpha \in A'\}$ is a π -network at A. Hence $\bigcup_{\alpha \in A'} \mathcal{A}_{\alpha}^{c}$ is a finite p- $c_{\Delta}(\Lambda)$ -cover of E^{c} . By (ii), there exists a countable family $\{\mathcal{A}_{\alpha_{n}}: n \in \mathbb{N}\} \subset \{\mathcal{A}_{\alpha}: n \in \mathbb{N}\}$ $\alpha \in A'$ such that $\bigcup_{\alpha_n} \mathcal{A}^c_{\alpha_n}$ is a finite $p - c_{\Delta}(\Lambda)$ -cover of E^c . Hence $\{\mathcal{A}_{\alpha_n} : n \in \mathbb{N}\}$ is a π -network at E, so that $(\Lambda, \tau_{\Delta}^{+})$ has countable supertightness. \Box

Definition 4.3. [4] A space X is supertight at $p \in X$ if whenever \mathcal{P} is a π -network at p consisting of countable subsets of X, there is a countable subfamily $\mathcal{F} \subset \mathcal{P}$ such that \mathcal{F} is a π -network at p. A space is supertight if all its points are supertight.

Definition 4.4. Let Y be a subspace of X. A partitioned $c_{\Delta}(\Lambda)$ -cover $\mathcal{U} = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$ (where $\mathcal{U} \subseteq \Lambda^c$) is called a countable $p \cdot c_{\Delta}(\Lambda)$ -cover of Y if each \mathcal{U}_{α} is countable and for any subset $B \subseteq Y$ with $B \in \Delta$, open sets $V_1, V_2, ..., V_m$ of X with $V_i \cap B^c \neq \phi(1 \leq i \leq m)$, there exists $\alpha \in A$ and $F \in [X]^{<\omega}$ with $F \cap V_i \neq \phi$, for all i = 1, 2, ..., msuch that $B \subset U$ and $F \cap U = \phi$, for each $U \in \mathcal{U}_{\alpha}$.

Theorem 4.2. For a space X, the following are equivalent:

(i) $(\Lambda, \tau_{\Delta}^{+})$ is supertight. (ii) For each open subset $Y \subseteq X$ with $Y \neq X$ and each countable $p \cdot c_{\Delta}(\Lambda)$ -groupable cover $\mathcal{U} = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$ of Y, there exists a countable subset $A' \subset A$ such that $\bigcup_{\alpha \in A'} \mathcal{U}_{\alpha}$ is a countable $p \cdot c_{\Delta}(\Lambda)$ -cover of Y.

Proof. Same as Theorem 4.1. \Box

Acknowledgments

The author would like to thank the learned referee for his/her constructive comments and careful reading.

REFERENCES

- 1. A. V. ARHANGELSKII: *Topological Function Spaces*. Kluwer Academic Publishers, 1992.
- L. BABINKOSTOVA, LJ. D. R. KOČINAC and M. SCHEEPERS: Combinatorics of open covers (VIII). Topol. Appl., 130 (1) (2003), 15–32.
- A. BELLA, M. BONANZINGA and M. V. MATVEEV: Variations of selective separability. Topol. Appl., 156 (2009), 1241–1252.
- A. BELLA and M. SAKAI: Tight points of Pixley-Roy hyperspaces. Topol. Appl., 160 (2013), 2061–2068.
- A. CASERTA, G. DI MAIO, LJ. D. R. KOČINAC and E. MECCARIELLO: Applications of k-covers II. Topol. Appl., 153 (2006), 3277–3293.
- R. CRUZ-CASTILLO, A. RAMÍREZ-PÁRAMO and J. F. TENORIO: Menger and Mengertype star selection principles for hit-and-miss topology. Topol. Appl., 290, 107573, 2021.
- G. DI MAIO and L. HOLÁ: On hit-and-miss topologies. Rend. Accad. Sci. Fis. Mat. Napoli, 62 (1995), 103–124.

- G. DI MAIO and LJ. D. R. KOČINAC: Some covering properties of hyperspaces. Topol. Appl., 155 (1718) (2008), 1959–1969.
- 9. G. DI MAIO, LJ. D. R. KOČINAC and E. MECCARIELLO: Applications of k-covers. Acta Mathematica Sinica, English Series 22 (3) (2006), 1151–1160.
- G. DI MAIO, LJ. D. R. KOČINAC and E. MECCARIELLO: Selection principles and hyperspace topologies. Topol. Appl., 153 (56) (2005), 912–923.
- 11. J. FELL: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff spaces. Proc. Amer. Math. Soc., 13 (1962), 372–376.
- J. GERLITS and ZS. NAGY: Some properties of C(X), I. Topol. Appl., 13 (1982), 151–161.
- 13. I. JUHÁSZ and S. SHELAH: $l \pi(X) = \delta(X)$ for compact X. Topol. Appl., **32 (3)** (1989), 289–294.
- 14. W. JUST, A. W. MILLER, M. SCHEEPERS and P. J. SZEPTYCKI: The combinatorics of open covers, II. Topol. Appl., 73 (1996), 231–266.
- LJ. D. R. Kočinac: Selected results on selection principles. in: Sh. Rezapour (Ed.), Proceedings of the 3rd Seminar on Geometry and Topology, July 15–17 (2003), Tabriz, Iran, 71–103.
- 16. LJ. D. R. KOČINAC: γ -sets, γ_k -sets and hyperspaces. Math. Balkanica, **19** (2005), 109–118.
- LJ. D. R. KOČINAC and M. SCHEEPERS: Combinatorics of open covers (VII): Groupability. Fundamenta Mathematicae, 179 (2) (2003), 131–155.
- LJ. D. R. KOČINAC and M. SCHEEPERS: Function spaces and a property of Reznichenko. Topol. Appl., 123 (2002), 135–143.
- Z. LI: Selection principles of the Fell topology and the Vietoris topology. Topol. Appl., 212 (2016), 90–104.
- 20. R.A. MCCOY: Function spaces which are k-spaces. Topology Proc., 5 (1980), 139-136.
- 21. E. MICHAEL: Topologies on spaces of subsets. Trans. Math. Soc., 71 (1951), 152–182.
- M. MRŠEVIĆ and M. JELIĆ: Selection principles in hyperspaces with generalized Vietoris topologies. Topol. Appl., 156 (1) (2008), 123–129.
- H. POPPE: Eine Bemerkung über Trennungsaxiome in Raumen von abgeschlossenen Teilmengen topologisher Raume. Arch. Math., 16 (1965), 197–198.
- M. SAKAI: Cardinal functions of Pixley-Roy hypersaces. Topol. Appl., 159 (2012), 3080–3088.
- M. SAKAI: Property C["] and function spaces. Proc. Amer. Math. Soc., **104 (3)** (1988), 917–919.
- M. SAKAI: Selective separability of PixleyRoy hyperspaces. Topol. Appl., 159 (2012), 1591–1598.
- M. SCHEEPERS: Combinatorics of open covers I: Ramsey theory. Topol. Appl., 69 (1996), 31–62.
- R. SEN: On some convergence properties of hyperspaces with hit-and-miss topology. Facta Universitatis, 37 (5) (2022), 1021–1035.
- R. SEN and A. RAMÍREZ-PÁRAMO: On c_Δ(Λ)-covers and Δγ-sets. Topol. Appl., 307, 107930, 2022.

- J. VAN MILL and C. F. MILLS: On the character of supercompact spaces. Topology Proceedings, 3 (1978), 227–236.
- 31. L. VIETORIS: Bereiche Zweiter Ordnung. Monatshefte Math. Phys., 33 (1923), 49–62.
- L. ZSILINSZKY: Baire spaces and hyperspace topologies. Proc. Am. Math. Soc. 124 (1996), 3175–3184.