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Abstract. In this paper, we introduce semihypermodules over semihyperrings as a
generalization of semimodules over semirings. Besides studying their properties, we
introduce an equivalence relation on them and use it to define factor semihypermod-
ules. Moreover, we discuss the (semi-)isomorphism theorems for semihypermodules and
present some of their interesting applications. Finally, we project our results on semi-
hyperrings and deduce the (semi-)isomorphism theorems for semihyperrings.
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1. Introduction

Naturally generalizing the concept of a group, by considering the result of the
“interaction” between two elements of a non-empty set to be a non-empty set of
elements (and not only one element, as for groups), Frederic Marty [14] defined the
concept of a hypergroup. He presented it during the 8th congress of Scandinavian
Mathematicians, held in Stockholm in 1934. The law characterizing such a struc-
ture is called hyperoperation and the theory of the algebraic structures endowed
with at least one multi-valued operation is known as the Hyperstructure Theory or
Hypercompositional Algebra. Marty’s motivation to introduce hypergroups is that
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the quotient of a group modulo any subgroup (and not necessarily a normal sub-
group) is a hypergroup. Nowadays, this theory is characterized by huge diversity of
character and content, and can be used to present the results in mathematics and
other sciences such as physics, chemistry, biology, computer science, information
technologies, social sciences, etc. Several books were written on this theory and its
applications. In this regard, we refer to [2, 3, 9, 6, 7, 8, 18]

Semirings, the most natural common generalization of the theories of rings and
bounded distributive lattices, abound in the mathematical world around us. The
set of natural numbers under standard addition and multiplication is the easiest
example of a semiring that is not a ring. Other semirings arise naturally in such di-
verse areas of mathematics such as functional analysis, combinatorics, graph theory,
topology, commutative and non commutative ring theory, etc. Historically, semir-
ings first appeared implicitly in Dedekind work in 1894 [11] in connection with the
study of ideals of a ring. They also appeared later in connection with the axiomati-
zation of the natural numbers and non-negative rational numbers. Semirings were
first considered explicitly in Vandiver work [17] in connection with the axiomati-
zation of arithmetic of natural numbers. Vandiver’s approach was later developed
in a series of articles by him and by other researchers. Over the years, semirings
have been studied by various researchers either from theoretical point of view, in an
attempt to broaden techniques coming from semigroup theory or ring theory, or in
connection with applications. As a generalization of semirings, Ameri and Hedayati
in 2007 [1] gave the notions of semihyperrings and studied the k-hyperideals of them.
Later, Davvaz [5] gave the concepts of ternary semihyperrings and investigated their
fuzzy hyperideals.

The semimodules over a semiring are an important tool in characterizing prop-
erties of the semiring. Moreover, many important constructions in pure and ap-
plied mathematics can be understood as semimodules over appropriate semirings.
As a genralization of semimodules over semirings, our paper is concerned about
semihypermodules over semihyperring and it is constructed as follows: After an
Introduction, in Section 2, we present some results and examples about semirings
and semihyperrings. In Section 3, we define semihypermodules over semihyper-
rings, present some examples, and study some of their properties. In Section 4,
we define congruence relations on semihypermodules and use them to define fac-
tor semihypermodules. In Section 5, we derive (semi)-isomorphism theorems for
semihypermodules and present some applications on them. Finally, in Section 6,
we use our results on semihypermodules to derive (semi)-isomorphism theorems for
semihyperrings.

2. Semirings and Semihyperrings

In this section, we present some results and examples about semirings and semi-
hyperrings. For more details, we refer to [4, 9, 7, 10, 12].

Definition 2.1. [12] Let R be a non-empty set with two operations “+” and “·”.
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Then (R,+, ·) is called a semiring if the following conditions hold:

1. (R,+) is a commutative semigroup with identity “0”;

2. (R, ·) is a semigroup;

3. x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z ∈ R;

4. x · 0 = 0 · x = 0 for all x ∈ R.

Example 2.1. [12] Let R = {(a, b) ∈ R2 : a > 0, b > 0}∪ {(0, 0)} and define “+ and “·”
on R as follows:

(a, b) + (a′, b′) =


(a, b) if b > b′;
(a′, b′) if b < b′;
(a+ a′, b) if b = b′.

and (a, b) · (a′, b′) = (aa′, bb′). Then (R,+, ·) is a semiring.

Example 2.2. Let N be the set of non-negative integers and R be the set of real numbers.
Then (N,+, ·), (R ∪ {−∞},∨,+), and (R ∪ {±∞},∨,∧) are infinite semirings. Here “∨”
and “∧” denote the maximum and minimum respectively.

Finite semirings can be presented by means of Cayley’s tables.

Example 2.3. [15] Let R = {0, a, b, c} and define (R,+, ·) by the following tables.

+ 0 a b c

0 0 a b c

a a a a a
b b a b c
c c a c c

· 0 a b c

0 0 0 0 0

a 0 a a a
b 0 b b b
c 0 a a a

Then (R,+, ·) is a semiring.

Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called a binary
hyperoperation on H, where P∗(H) is the family of all non-empty subsets of H.
The couple (H, ◦) is called a hypergroupoid. In this definition, if A and B are two
non-empty subsets of H and x ∈ H, then we define:

A ◦B =
∪

a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H, x◦(y◦z) =
(x ◦ y) ◦ z, that is ∪

u∈y◦z
x ◦ u =

∪
v∈x◦y

v ◦ z.
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The more general structure that satisfies the ring-like axioms is the hyperring in the
general sense. There are different notions of hyperrings. A special case of this type
is the hyperring introduced by Krasner [13] in 1983, known as Krasner hyperring,
and multiplicative hyperring introduced by Rota [16] in 1982, where in the latter,
the multiplication is a hyperoperation, while the addition is an operation.

Definition 2.2. [16] Let R be a non-empty set. Then (R,+, ·) is called a multi-
plicative hyperring if the following conditions hold:

1. (R,+) is an abelian group with identity “0”;

2. (R, ·) is a semihypergroup;

3. x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z ∈ R;

4. 0 ∈ (x · 0) ∩ (0 · x) for all x ∈ R.

In [1], Ameri and Hedayati discussed additive semihyperrings, i.e., “+” is a hy-
peroperation and “·” is an operation. In this paper, we consider multiplicative
semihyperrings.

Definition 2.3. [10] Let R be a non-empty set. Then (R,+, ·) is called a semihy-
perring if the following conditions hold:

1. (R,+) is a semirgroup with identity “0”;

2. (R, ·) is a semihypergroup;

3. x · (y + z) ⊆ x · y + x · z and (x+ y) · z ⊆ x · z + y · z for all x, y, z ∈ R;

4. 0 ∈ (x · 0) ∩ (0 · x) for all x ∈ R.

Remark 2.1. Every semiring is a semihyperring and every multiplicative hyperring is a
semihyperring.

A semihyperring (R,+, ·) is called commutative if (R,+) and (R, ·) are commutative
and we say that it has a unity if there exist 1 ∈ R such that r ∈ (r · 1) ∩ (1 · r) for
all r ∈ R. It is called a zero-sum free if whenever r + s = 0 then either r = 0 or
s = 0 and called additively idempotent if r + r = r for all r ∈ R. A commutative
semihyperring with unity is called semihyperfield if for every r ∈ R−{0} there exist
s ∈ R− {0} such that 1 ∈ (r · s) ∩ (s · r).

If (R,+, ·) is a finite semihyperring, we can present it by means of Cayley’s
tables.

Example 2.4. Let R = {a, b} and (R,+, ·) be defined by the following tables.

+ a b

a a a
b a b

· a b

a a b
b b R

Then (R,+, ·) is an idempotent semihyperfield that is also zero-sum free where a is the
zero of R and b is it’s unity.
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Example 2.5. [10] Let R = {a, b, c} and (R,+, ·) be defined by the following tables.

+ a b c

a a a a
b a b c
c a c c

· a b c

a a b c
b b R b
c c b {a, c}

Then (R,+, ·) is an idempotent semihyperfield that is also zero-sum free.

Example 2.6. [10] Let R = {−1, 0, 1} and (R,+, ·) be defined by the following tables.

+ −1 0 1

−1 −1 0 1
0 0 0 1
1 1 1 1

· −1 0 1

−1 −1 −1 R
0 −1 0 1
1 R 1 1

Then (R,+, ·) is an idempotent semihyperring that it is also zero-sum free.

Example 2.7. [10] The idempotent semihyperring (R∪{−∞},∧,⊗) is defined as follows:
For all x, y ∈ R,

x⊗ y =

{
x ∨ y if x ̸= y
{t ∈ R : t ≤ x} if x = y.

Definition 2.4. [1] Let (R,+, ·) be a semihyperring. A subset I of R is called a

(1) subsemihyperring of R if x+ y ∈ I and x · y ⊆ I for all x, y ∈ I;

(2) hyperideal of R if I is subsemihyperring of R and x · y ⊆ I and y · x ⊆ I for
all x ∈ I and y ∈ R.

Remark 2.2. If 0 ∈ R such that 0 · r = r · 0 = 0 for all r ∈ R then {0} is a hyperideal
of R.

Example 2.8. Let (R,+, ·) be the semihyperring in Example 2.6. Then {−1, 0} is a
subsemihyperring of R that is not a hyperideal of R. This is clear as 1·(−1) = R * {−1, 0}.

3. Semihypermodules over Semihyperrrings

Inspired by the definition of semimodules over semirings, we define semihyper-
modules over semihyperrings. Moreover, we pressent some of its properties and
provide different examples.

Definition 3.1. [12] Let (M,+) be a commutative semigroup with 0M , (R,+R, ·)
be a semiring with 0R, and define ⋆ : R × M → M as (r,m) → r ⋆ m. Then
M is called (left) R-semimodule if the following conditions hold: For all r, s ∈ R,
m,n ∈ M ,

1. r ⋆ (s ⋆ m) = (r · s) ⋆ m ;
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2. r ⋆ (m+ n) = r ⋆ m+ r ⋆ n;

3. (r +R s) ⋆ m = r ⋆ m+ s ⋆ m;

4. 0R ⋆ m = r ⋆ 0M = 0M .

Remark 3.1. Let (R,+, ·) be a semiring. Then R is an R-semimodule and every ideal
of R is an R-semimodule.

Example 3.1. Let (R,+, ·) be the semiring in Example 2.3. Then {0, a} and {0, a, b}
are R-semimodules.

Definition 3.2. Let (M,+) be a group, (R,+R, ·) be a multiplicative hyperring,
and define ⋆ : R × M → P ∗(M) as (r,m) → r ⋆ m. Then M is called a (left)
R-hypermodule if the following conditions hold: For all r, s ∈ R, m,n ∈ M ,

1. r ⋆ (s ⋆ m) = (r · s) ⋆ m ;

2. r ⋆ (m+ n) = r ⋆ m+ r ⋆ n;

3. (r +R s) ⋆ m = r ⋆ m+ s ⋆ m.

Definition 3.3. Let (M,+) be a semigroup, (R,+R, ·) be a semihyperring, and
define ⋆ : R × M → P ∗(M) as (r,m) → r ⋆ m. Then M is called (left) R-
semihypermodule if the following conditions hold: For all r, s ∈ R, m,n ∈ M ,

1. r ⋆ (s ⋆ m) = (r · s) ⋆ m ;

2. r ⋆ (m+ n) ⊆ r ⋆ m+ r ⋆ n;

3. (r +R s) ⋆ m ⊆ r ⋆ m+ s ⋆ m.

Remark 3.2. Every R-semimodule and every R-hypermodule is an R-semihypermodule.

Proposition 3.1. Let (R,+, ·) be a semihyperring. Then every hyperideal of R is
an R-semihypermodule.

Proof. The proof is straightforward.

In what follows, we write rs instead of r · s and rx instead of r ⋆ x for all r, s ∈ R
and x ∈ M .

Proposition 3.2. Let (M,+) be any semigroup with identity 0M , R = N, and
(R,+, ·) be the semiring under standard addition and multiplication of non-negative
integers. Then M is an R-semihypermodule where “⋆ : R×M → P ∗(M)” is defined
as follows:

r ⋆ m =

{
0M if r = 0;
{0M ,m} if r > 0.
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Proof. Let r, s ∈ R and x, y ∈ M . (1) We have

r(sx) =

{
0M if r = 0;
{0M , sx} if r > 0.

=

{
0M if r = 0 or s = 0;
{0M , x} if r > 0 and s > 0.

= (rs)x.

(2) We have

r(x+y) =

{
0M if r = 0;
{0, x+ y} if r > 0.

⊆
{

0M if r = 0;
{0M , x, y, x+ y} if r > 0.

= rx+ry.

(3) We have

(r + s)x =

{
0M if r = s = 0;
{0M , x} otherwise.

and

rx+ sx =

 0M if r = s = 0;
{0M , x, x+ x} if r > 0 and s > 0;
{0M , x} otherwise.

.

It is clear that (r + s)x ⊆ rx+ sx. Therefore, M is an R-semihypermodule.

Example 3.2. Let R = N and (R,+, ·) be the semiring under standard addition and
multiplication of non-negative integers. Using Proposition 3.2, we get that (N,+) and
(N,∨) are both R-semihypermodules where

r ⋆ m = r ⋆ m =

{
0 if r = 0;
{0,m} if r > 0.

Proposition 3.3. Let (R,+R, ·) be a semihyperring, E be any non-empty set,
and RE = {f : E → R}. Then RE is an R-semihypermodule. Here, for all
f, g ∈ RE , r ∈ R, x ∈ E, we have (f+g)(x) = f(x)+R g(x) and r⋆f(x) = r ·(f(x)).

Proof. The proof is straightforward.

Example 3.3. Let (R,+, ·) be the semihyperring in Example 2.4 and E = {1, 2}. By
setting f(1) = f(2) = a, g(1) = g(2) = b, h(1) = a, h(2) = b, and i(1) = b, i(2) = a, we get
RE = {f, g, h, i}. We present the R-semihypermodule RE by the following tables.

+ f g h i

f f f f f

g f g h i
h f h h f
i f i f i

⋆ f g h i

a f g h i

b g RE {g, i} {g, h}

Proposition 3.4. Let (R,+, ·) be semihyperring and Mα be an R-semihypermodule
for every α ∈ Γ. Then

∏
α∈Γ Mα is an R-semihypermodule. Here (xα) ⊕ (yα) =

(xα +α yα) and r ⋆ (xα) = (r ⋆α xα).
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Proof. The proof is straightforward.

Corollary 3.1. Let (R,+, ·) be a semihyperring, n a positive integer, and Vn(R) =
{(a1, . . . , an) : ai ∈ R, 1 ≤ i ≤ n}. Then Vn(R) is an R-semihypermodule.

Proof. The proof follows from Proposition 3.4.

Example 3.4. Let (R,+, ·) be the semihyperring in Example 2.4. Then V2(R) is an
R-semihypermodule and it is presented by the following tables.

+ (a, a) (a, b) (b, a) (b, b)

(a, a) (a, a) (a, a) (a, a) (a, a)

(a, b) (a, a) (a, b) (a, a) (a, b)
(b, a) (a, a) (a, a) (b, a) (b, a)
(b, b) (a, a) (a, b) (b, a) (b, b)

⋆ (a, a) (a, b) (b, a) (b, b)

a (a, a) (a, b) (b, a) (b, b)

b (b, b) {(b, a), (b, b)} {(a, b), (b, b)} V2(R)

Proposition 3.5. Let (R,+, ·) be a semihyperring, Mn,k(R) be the set of all n×k
matrices with entries from R. Then Mn,k(R) is an R-semihypermodule. Here,
(aij)+(bij) = (aij+bij) and r⋆(aij) = (r⋆aij) for all matrices (aij), (bij) ∈ Mn,k(R)
and r ∈ R.

Proof. The proof is straightforward.

Definition 3.4. Let (R,+, ·) be a semihyperring andM be anR-semihypermodule.
A non-empty subset N of M is a subsemihypermodule of M if and only if it is an
R-semihypermodule.

Proposition 3.6. Let (R,+, ·) be a semihyperring and M be an R-semihypermodule.
A non-empty subset N of M is a subsemihypermodule of M if and only if N+N ⊆ N
and r ⋆ N ⊆ N for all r ∈ R.

Proof. The proof is straightforward.

Remark 3.3. Let (R,+, ·) be a semihyperring and M be an R-semihypermodule. If
0 ∈ M and r ⋆ 0 = 0 for all r ∈ R then {0} is a subsemihypermodule of M (beside M).

A subsemihypermodule of M is called subtractive if x + y ∈ N (y + x ∈ N) and
y ∈ N then x ∈ N .

Example 3.5. LetM = (N,+) be the R-semihypermodule defined in Example 3.2. Then
N = 2M = {0, 2, 4, 6, 8, 10, . . .} is a subtractive subsemihypermodule of M . In general,
nM = {0, n, 2n, 3n, . . .} is a subtractive subsemihypermodule of M for all n ∈ N.

Proposition 3.7. Let M = (N,+) be the R-semihypermodule defined in Example
3.2 and N be a non-trivial subsemihypermodule of M . Then N is subtractive in M
if and only if N is a positive multiple of M .
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Proof. If N is a positive multiple of M then by Example 3.5, we get that N is
subtractive in M .

Conversely, let N ̸= {0} be a subtractive subsemihypermodule of M . Since M
consists of non-negative integers, it follows that there exist a least positive integer,
say n in N . Let x ∈ M . Using Division Algorithm, we get that there exist q ≥
0, 0 ≤ r < x such that x = qn+ r. Since x, qn ∈ N , it follows that r ∈ N (as N is
subtractive.). Thus, r = 0 and hence, x is a multiple of n.

Proposition 3.8. Let R be a multiplicative hyperring and M be an R-hypermodule.
Then every subhypermodule of M is subtractive.

Proof. The proof is straightforward as (M,+) is a group.

Remark 3.4. Not every subsemihypermodule is subtractive.

Example 3.6. LetM = (N,+) be the R-semihypermodule defined in Example 3.2. Then
N = 2M − {2} = {0, 4, 6, 8, 10, . . .} is a subsemihypermodule of M . But it is not a
subtractive subsemihypermodule of M because it can not be written as a positive multiple
of M (using Proposition 3.7). Or one can easily see that 2 + 4 = 6 ∈ N , 4, 6 ∈ N and
2 /∈ N .

Example 3.7. Let R = N and (R,+, ·) be the semiring under standard addition and
multiplication of non-negative integers. And (N,∨) be the R-semihypermodule described
in Example 3.2 where

r ⋆ m =

{
0 if r = 0;
{0,m} if r > 0.

Let N be any non-empty subset of N containing 0 and x ≤ y ∈ N . Since x ∨ y = y ∈ N
and r ⋆ x ⊆ {0, x} ⊆ N then N is a subsemihypermodule of N. Moreover, the only proper
subtractive subsemihypermodules of N are of the form An = {0, 1, . . . , n} for every non-
negative integer n. This is clear as if N ̸= An for all n ∈ N then there exist x, y ∈ N ,
z ∈ N with x < z < y and z /∈ N . Then having z ∨ y = y ∈ N and z /∈ N contradicts our
assumption that N is subtractive.

Proposition 3.9. Let (R,+, ·) be a semihyperring, M be an R-semihypermodule,
and Nα be a subsemihypermodule of M . Then

∩
α∈Γ Nα is a subsemihypermodule

of M . Moreover, if Nα is subtractive then so
∩

α∈Γ Nα.

Proof. The proof is straightforward.

Proposition 3.10. Let R be a semihyperring, M be a commutative R-semihyper-
module, and N1, N2 be subsemihypermodules of M . Then N1 +N2 is a subsemihy-
permodule of M .

Proof. Let x, y ∈ N1 + N2 and r ∈ R. Then there exist n1, n
′
1 ∈ N1, n2, n

′
2 ∈ N2

such that x = n1 + n2 and y = n′
1 + n′

2. Since M is commutative, it follows
that x + y = n1 + n2 + n′

1 + n′
2 = n1 + n′

1 + n2 + n′
2 ∈ N1 + N2. Also, we have

r ⋆ (n1 + n2) ⊆ r ⋆ n1 + r ⋆ n2 ⊆ N1 +N2. Thus, N1 +N2 is a subsemihypermodule
of M .



676 M. Al Tahan and B. Davvaz

Definition 3.5. Let (R,+, ·) be a semihyperring and M,N be R-semihypermo-
dules. A function f : M → N is called a

1. homorphism if f(x+ y) = f(x)+ f(y) and f(rx) = rf(x) for all x, y ∈ M and
r ∈ R;

2. isomorphism if f is a bijective homomorphism. In this case, we say that M
and N are isomorphic R-semihypermodules and we write M ∼= N .

Example 3.8. Let (R,+, ·) be a semihyperring and M be an R-semihypermodule. Then
the identity map (f : M → M defined as f(x) = x for all x ∈ M) defines an isomorphism.

Example 3.9. Let (R,+, ·) be a semihyperring and M,N be R-semihypermodules with
0 ∈ N and r ⋆ 0 = 0 for all r ∈ R. Then f : M → N defined as f(x) = 0 for all x ∈ M
defines a homomorphism. This homomorphism is known by the trivial homomorphism.

In what follows, all R-semihypermodules and their subsemihypermodules have an
identity 0 and r ⋆ 0 = 0 for all r ∈ R. Also, if f is an R-semihypermodule homo-
morphism then f(0) = 0.

Definition 3.6. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a homomorphism. Then the kernel of f , denoted by ker(f) is
defined as ker(f) = {m ∈ M : f(m) = 0}. And image of f , denoted by im(f), is
defined as im(f) = {f(m) : m ∈ M}.

Proposition 3.11. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a homomorphism. Then ker(f) is a subtractive subsemihyper-
module of M .

Proof. Let x, y ∈ ker(f). Having f(x+ y) = f(x) + f(y) = 0 + 0 = 0 and f(rx) =
rf(x) = r(0) = 0 implies that x + y ∈ ker(f) and rx ⊆ ker(f). Thus, ker(f) is
a subsemihypermodule of M . To prove that ker(f) is substractive, let x, x + y ∈
ker(f). Then f(x + y) = f(x) + f(y) = 0. Having f(x) = 0 implies that f(y) = 0
and hence, y ∈ ker(f). Therefore, ker(f) is subtractive.

Proposition 3.12. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a homomorphism. Then im(f) is a subsemihypermodule of N .

Proof. The proof is straightforward.

Definition 3.7. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a homomorphism. Then f is called semi-isomorphism if f is a
surjective homomorphism and ker(f) = {0}. And we write M ∼=s N .

Remark 3.5. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules, and f :
M → N be a homomorphism. If f is injective then ker(f) = {0}. Thus, every isomorphism
is a semi-isomorphism.
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4. Factor Semihypermodules

In this section, we define congruence relations on semihypermodules and use
them to discuss factor semihypermodules.

Definition 4.1. Let (R,+, ·) be a semihyperring, M be an R-semihypermodule,
and ρ an equivalence relation on M . Then ρ is called a congruence relation on M
if (1) xρy and zρw implies (x + z)ρ(y + w) and (2) xρy implies (r ⋆ x)ρ(r ⋆ y) for
all r ∈ R.

If A,B are non-empty sets, by AρB, we mean that for every a ∈ A there exist b ∈ B
such that aρb and for every b ∈ B there exist a ∈ A such that aρb.

Let M/ρ = {[m] : m ∈ M} be the set of all equivalence classes of M with
respect to the relation ρ and define ⊕ and ⊙ as follows: [x] ⊕ [y] = [x + y] and
r ⊙ [x] = [r ⋆ x] = {[t] : t ∈ rx} for all x, y ∈ M and r ∈ R.

Proposition 4.1. “⊕” and “⊙” are well defined.

Proof. Let [x] = [y] and [z] = [w] in M/ρ. Then xρy and zρw. Since ρ is a
congruence on M , it follows that (x+ z)ρ(y + w). Thus, [x+ z] = [y + w].

Let [x] = [y] in M/ρ. Then having x ∈ [y] implies that xρy. Having ρ a
congruence relation on M implies that (rx)ρ(ry). Let t ∈ rx. Then there exist
t′ ∈ ry such that tρt′. The latter implies that [rx] ⊆ [ry]. Thus, [rx] ⊆ [ry].
Similarly, we get [ry] ⊆ [rx].

Theorem 4.1. Let (R,+, ·) be a semihyperring, M be an R-semihypermodule, and
ρ a congruence relation on M . Then M/ρ is an R-semihypermodule.

Proof. The proof is straightforward.

Notation 1. M/ρ is called the factor semihypermodule.

Remark 4.1. Every R-semihypermodule has at least two congruence relations: the triv-
ial congruence (∼t) and the universal congruence (∼u), where m ∼t n if and only if
m = n and m ∼u n if and only if m,n ∈ M . It is clear that M/ ∼t

∼= M and M/ ∼u
∼= {0}.

Lemma 4.1. Let (R,+, ·) be a semihyperring, M be an R-semihypermodule, and
ρ a congruence relation on M . Then f : M → M/ρ is a surjective homomorphism.
Here, f(m) = [m] for all m ∈ M .

Proof. It is clear that f is surjective since m ∈ [m] for all m ∈ M . Let x, y ∈ M
and r ∈ R. Then f(x + y) = [x + y] = [x] ⊕ [y] = f(x) ⊕ f(y) and f(rx) = [rx] =
r ⊙ [x] = r ⊙ f(x). Thus, f is a homomorphism.
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Proposition 4.2. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a homomorphism. Define ∼f on M as follows:

x ∼f y ⇔ f(x) = f(y) for all x, y ∈ M.

Then ∼f is a congruence relation on M . Moreover, if f is injective then M/ ∼f
∼=

M .

Proof. It is clear that ∼f is an equivalence relation on M . To prove that ∼f is a
congruence, let r ∈ R, x ∼f y, and z ∼f w. Having f(x) = f(y), f(z) = f(w), and
f is homomorphism implies that f(x + z) = f(y + w). Thus, (x + z) ∼f (y + w).
Also, we get that f(rx) = rf(x) = rf(y) = f(ry). Thus, rx ∼f ry.

Let f be injective and x ∼f y. Then f(x) = f(y) implies that x = y. The latter
implies that x ∼t y. Thus, M/ ∼f

∼= M/ ∼t
∼= M .

Proposition 4.3. Let R be a semihyperring, M be a commutative R-semihypermodule,
N subsemihypermodule of M , and define ∼N on M as follows:

x ∼N y ⇔ there exist n1, n2 ∈ N withx+ n1 = y + n2.

Then ∼N is an equivalence relation on M . Moreover, if x ∼N y and z ∼N w then
(x+ z) ∼N (y + w).

Proof. It is clear that ∼N is reflexive and symmetric. To prove that ∼N is transitive,
let x ∼N y and y ∼N z. Then there exist n1, n2, n3, n4 ∈ N such that x+n1 = y+n2

and y+n3 = z+n4. Having M commutative implies that x+n1+n3 = y+n2+n3 =
y + n3 + n2 = z + n4 + n2. Having n1 + n3, n4 + n2 ∈ N implies that x ∼N z.

Let x ∼N y and z ∼N w. Then there exist n1, n2, n3, n4 ∈ N such that x+n1 =
y + n2, z + n3 = w + n4. The latter and having M commutative implies that
x+ z + n1 + n3 = y + w + n2 + n4. Thus, (x+ z) ∼N (y + w).

Let R be a semihyperring, M be a commutative R-semihypermodule, and N sub-
semihypermodule of M . If x ∼N y and r ∈ R then (rx) ∼N (ry) may not be
satisfied.

Definition 4.2. LetR be a semihyperring,M a commutativeR-semihypermodule,
and N a subsemihypermodule of M . If ∼N defines a congruence on M then N is
called a congruence subsemihypermodule.

Proposition 4.4. Let R be a multiplicative hyperring, M be a commutative R-
hypermodule, and N subhypermodule of M . If x ∼N y and r ∈ R then (rx) ∼N (ry).

Proof. Let x ∼N y. Then there exist n1, n2 ∈ N such that x+n1 = y+n2 and hence
rx+ rn1 = r(x+ n1) = r(x+ n2) = rx+ rn2. Having rx+ rn1 = rx+ rn2 implies
that for every z1 ∈ rx, there exist n, n′ ∈ N and z2 ∈ ry such that z1 +n = z2 +n′.
Thus, z1 ∼n z2. Similarly, we can take w1 ∈ ry and show that there exist w2 ∈ rx
such that w1 ∼N w2.



An Approach to Semihypermodules Over Semihyperrings 679

Corollary 4.1. Every subhypermodule of an R-hypermodule is a congruence sub-
hypermodule.

Proof. The proof follows from Propositions 4.3 and 4.4.

In the next proposition, Proposition 4.5, we show that there exist subsemihyper-
modules of semihypermodules (and are not hypermodules) that are congruence
subsemihypermodules.

Proposition 4.5. Let M = (N,+) be the R-semihypermodule defined in Example
3.2. Then every subsemihypermodule of M is a congruence subsemihypermodule.

Proof. By Proposition 4.3, it suffices to show that if x ∼N y then (rx) ∼N (ry) for
all r ∈ R. Let N be a subsemihypermodule of M and x ∼N y. Then there exist
n1, n2 ∈ N such that x+ n1 = y + n2. Let r ∈ R. If r = 0 then 0 ∼N 0 and we are
done. If r > 0 then rx = {0, x} and ry = {0, y}. For 0 ∈ rx, we have 0 ∈ ry such
that 0 ∼N 0 and for x ∈ rx, we have y ∈ ry such that x ∼N y. Thus, for every
z ∈ rx there is w ∈ ry such that z ∼N w (and similarly, for every w ∈ ry there is
z ∈ rx such that z ∼N w). Therefore, (rx) ∼N (ry).

Remark 4.2. Let R be the semiring of non-negative integers under standard addition
and multiplication of integers and M be the R-semihypermodule defined in Proposition
3.2. Then using the same proof of Proposition 4.5, we get that every subsemihypermodule
of M is a congruence subsemihypermodule.

Notation 2. Let (R,+, ·) be a semihyperring, M a commutative R-semihypermodule,
and N a congruence subsemihypermodule of M . Then M/ ∼N is written as

M/N = {m+N : m ∈ M}.

Corollary 4.2. Let R be a semihyperring, M,N commutative R-semihypermodules,
and f : M → N be a homomorphism. If ker(f) is a congruence subsemihypermodule
of M then M/ker(f) is an R-semihypermodule.

Proof. The proof follows from Proposition 4.3.

Remark 4.3. Let K,N be congruence subsemihypermodules of M and K ⊆ N . If K is
a congruence subsemihypermodule of M then K is a congruence subsemihypermodule of
N .

Theorem 4.2. Let R be a semihyperring, M be a commutative R-semihypermodule,
and N a congruence subsemihypermodule of M . Then a subset S of M/N is sub-
semihypermodule of M/N if and only if there exist a subsemihypermodule K of M
containing N such that S = K/N .
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Proof. Let S be a subsemihypermodule of M/N and K = {x ∈ M : x + N ∈ S}.
It is clear that K is a subsemihypermodule of M . We prove now that N ⊆ K. Let
n ∈ N . Then 0 ∼N n (as 0+n = n+0) and n+N ∈ S as 0+N ∈ S (n+N = 0+N
as equivalence classes.). The latter implies that n ∈ K. Moreover, it is clear that
S = K/N .

Conversely, let K be a subsemihypermodule of M containing N . Remark 4.3
asserts that S = K/N is a semihypermodule. One can easily see that S = K/N ⊆
M/N . Therefore, S = K/N is subsemihypermodule of M/N

Proposition 4.6. Let (R,+, ·) be a semihyperring, M an R-semihypermodule,
and f : M → N a homomorphism. If x ∼ker(f) y then x ∼f y.

Proof. Let x ∼ker(f) y. Then there exist k1, k2 ∈ ker(f) such that x+ k1 = y + k2.
The latter implies that f(x) + f(k1) = f(x+ k1) = f(y + k2) = f(y) + f(k2). But
f(k1) = f(k2) = 0. Thus, f(x) = f(y). Therefore, x ∼f y.

Example 4.1. Let M = (N,+) be the R-semihypemodule in Example 3.2. Proposition
4.5 asserts that M/2M is an R-semihypermodule. Let x, y ∈ M and n = 2k, n′ = 2k′ ∈
2M . Then x + 2k = y + 2k′ if and only if x and y are both even integers or are both
odd integers. The latter implies that we have only two equivalence classes: 0 + 2M and
1 + 2M . Hence, M/2M = {0 + 2M, 1 + 2M} and it is given by the following tables. For
r ∈ R,

+ 0 + 2M 1 + 2M

0 + 2M 0 + 2M 1 + 2M
1 + 2M 1 + 2M 0 + 2M

⋆ 0 + 2M 1 + 2M

0 0 + 2M 0 + 2M
r(r > 0) 0 + 2M M/2M

Definition 4.3. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a homomorphism. Then f is steady if ∼f and ∼ker(f) coincide.

Definition 4.4. Let (R,+, ·) be a semihyperring, M be an R-semihypermodule.
Then M is called simple if it has only two congruence relations.

Theorem 4.3. Let R be a semihyperring and M a simple commutative R-semihyp-
ermodule. If N is a subtractive congruence subsemihypermodule of M then N = {0}
or N = M .

Proof. Let N be a subtractive congruence subsemihypermodule of M . Then Propo-
sition 4.3 asserts that ∼N is a congruence on M . We get that ∼N is either ∼t or
∼u. If ∼N is ∼t then M/ ∼N

∼= M/ ∼t
∼= M . Thus, N = {0}. If ∼N is ∼u then

m ∼N 0 for all m ∈ M . The latter implies that there exist n, n′ ∈ N such that
m+ n = 0 + n′ = n′. Having n′ ∈ N implies that m+ n ∈ N . Since n ∈ N and N
is subtractive, it follows that m ∈ N . Thus, N = M .

Corollary 4.3. Let (R,+, ·) be a semihyperring, M,N be R-semihypermodules,
and f : M → N be a non-trivial homomorphism. If M is simple and ker(f) is a
congruence subsemihypermodule of M then the following hold.
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1. ker(f) = {0};

2. if f is steady then it is injective;

3. if f is steady and surjective then it is an isomorphism.

Proof. (1) The proof follows from Proposition 3.11 and Theorem 4.3.
(2) Let f(x) = f(y). Having f a steady function implies that x ∼ker(f) y. The

latter implies that there exist k1, k2 ∈ ker(f) such that x+ k1 = y+ k2. By (1), we
know that ker(f) = {0}. Thus, x = y.

(3) The proof is immediate consequence of (2).

Proposition 4.7. Let R be a multiplicative hyperring and M be a commutative
R-hypermodule. If M has no proper non-trivial subhypermodules then M is simple.

Proof. Let ρ be a congruence on M and N = {m ∈ M : mρ0}. Having N a
subhypermodule of M implies that N = {0} or N = M . If N = {0} then ρ coincides
with ∼t and if N = M then ρ coincides with ∼u. Therefore, M is simple.

Corollary 4.4. Let R be a multiplicative hyperring and M be a commutative R-
hypermodule. Then M is simple if and only if it has no proper non-trivial subhy-
permodules.

Proof. The proof follows from Theorem 4.3 Proposition 4.7.

Proposition 4.8. Let R be a semihyperring, M be a commutative R-semihyper-
module, and N a congruence subsemihypermodule of M . Then the following hold.

1. if a ∈ N then N ⊆ a+N = 0 +N ;

2. if N is subtractive and a ∈ N then a+N = b+N if and only if b ∈ N ;

3. if N is subtractive then a+N = 0 +N = N if and only if a ∈ N .

Proof. (1) Having a + 0 = 0 + a implies that a ∼N 0. The latter implies that
a+N = 0+N . Moreover, having n ∼N 0 for all n ∈ N implies that n ∈ 0 +N for
all n ∈ N . Thus, N ⊆ 0 +N .

(2) Let a+N = b+N . Then there exist n1, n2 ∈ N such that a+ n1 = b+ n2.
Having a ∈ N implies that b+n2 ∈ N . Since N is subtractive, it follows that b ∈ N .
Conversely, let b ∈ N . Then by (1), we get that a+N = 0+N and b+N = 0+N .
Thus, a+N = b+N .

(3) The proof of a + N = 0 + N follows from (1) and (2). We need to show
that 0 +N ⊆ N . Let x ∈ 0 +N . Then there exist n1, n2 ∈ N such that x + n1 =
0 + n2 = n2. We get now that x + n1 ∈ N and having N subtractive implies that
x ∈ N .
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Theorem 4.4. Let R be a semihyperring, M be a commutative R-semihypermodule,
and N be a congruence subsemihypermodule of M . Then N is subtractive if and
only if it is the kernel of a surjective homomorphism.

Proof. Let N be a subsemihypermodule of M . If N is the kernel of a surjective
homomorphism then it is subtractive by Proposition 3.11. Conversely, let N be a
congruence subtractive subsemihypermodule of M . Then ∼N defines a congruence
on M . Lemma 4.1 asserts that f : M → M/ ∼N , defined by f(m) = m + N
for all m ∈ M , is a surjective homomorphism. It is clear that N is the kernel of
f : M → M/ ∼N .

5. Semi-isomorphism Theorems for Semihypermodules and Their
Applications

In this section, we prove (semi)-isomorphism theorems for semihypermodules
over semihyperring and present some of their interesting applications. The impor-
tance of (semi)-isomorphism theorems is to describe the relationship between factor
semihypermodules, homomorphism, and subsemihypermodules and how they inter-
act with the intersection and addition of semihypermodules.

Theorem 5.1. (First (semi)-isomorphism theorem for semihypermodules.)
Let (R,+, ·) be a semihyperring, M,N be a R-semihypermodules, f : M → N be
a surjective homomorphism, and ker(f) a congruence subsemihypermodule of M .
Then M/ker(f) ∼=s N . Moreover, if f is steady then M/ker(f) ∼= N .

Proof. Let ϕ : M/ker(f) → N be defined as ϕ(x + ker(f)) = f(x). It is clear
that ϕ is a surjective homomorphism. Having ker(ϕ) = {x + ker(f) ∈ M/ker(f) :
f(x) = 0} = {x + ker(f) ∈ M/ker(f) : x ∈ ker(f)}. Proposition 4.8 asserts that
ker(ϕ) = {0 + ker(f)} = {0M/ker(f)}. Therefore, ϕ is a semi-isomorphism.

Let f be steady and ϕ(x + ker(f)) = ϕ(y + ker(f)). Then f(x) = f(y). Since
x ∼f y and f is steady, it follows that x ∼ker(f) y. The latter implies that there
exist k1, k2 ∈ ker(f) such that x+ k1 = y+ k2. Thus, x+ ker(f) = y+ ker(f). We
get now that ϕ is injective and hence, ϕ is an isomorphism by Corollary 4.3.

Proposition 5.1. Let (R,+, ·) be a semihyperring, Mi be an R-semihypermodules,
and Ni be a congruence subsemihypermodule of Mi for all i = 1, . . . , n. Then∏n

i=1 Ni is a congruence subsemihypermodule of
∏n

i=1 Mi.

Proof. It is easy to see that
∏n

i=1 Ni is a subsemihypermodule of
∏n

i=1 Mi. We prove
that

∏n
i=1 Ni is a congruence subsemihypermodule of

∏n
i=1 Mi. It suffices to show

that if (x1, . . . , xn) ∼∏n
i=1 Ni

(y1, . . . , yn) and r ∈ R then r(x1, . . . , xn) ∼∏n
i=1 Ni

r(y1, . . . , yn). Let (z1, . . . , zn) ∈ r(x1, . . . , xn) = (rx1, . . . , rxn). Then zi ∈ rxi for
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all i = 1, . . . , n. Having (x1, . . . , xn) ∼∏n
i=1 Ni

(y1, . . . , yn) implies that there exist

(k1, . . . , kn), (k
′
1, . . . , k

′
n) ∈

∏n
i=1 Ni such that

(x1, . . . , xn) + (k1, . . . , kn) = (y1, . . . , yn) + (k′1, . . . , k
′
n).

The latter implies that xi + ki = yi + k′i for all i = 1, . . . n. Thus, xi ∼Ni yi for all
i = 1, . . . n. Having zi ∈ rxi implies that there exist z′i ∈ ryi such that zi ∼Ni z′i.
We can find ni, n

′
i ∈ Ni such that zi + ni = z′i + n′

i for i = 1, . . . , n. As a result, we
have

(z1, . . . , zn) + (n1, . . . , nn) = (y1, . . . , yn) + (n′
1, . . . , n

′
n).

Therefore, r(x1, . . . , xn) ∼∏n
i=1 Ni

r(y1, . . . , yn).

Theorem 5.2. Let R be a semihyperring, Mi be a commutative R-semihypermodule,
and Ni be a congruence subtractive subsemihypermodule of Mi for all i = 1, . . . , n.
Then

(

n∏
i=1

Mi)/(

n∏
i=1

Ni) ∼=
n∏

i=1

(Mi/Ni).

Proof. Let f :
∏n

i=1 Mi →
∏n

i=1(Mi/Ni) be defined as

f((x1, . . . , xn)) = (x1 +N1, . . . , xn +Nn).

It is clear that f is surjective. We show that f is a homomorphism. Let (x1, . . . , xn),
(y1, . . . , yn) ∈

∏n
i=1 Mi and r ∈ R. Then f((x1, . . . , xn) + (y1, . . . , yn)) = f((x1 +

y1, . . . , xn+yn)) = (x1+y1+N1, . . . , xn+yn+Nn) = f((x1, . . . , xn))+f((y1, . . . , yn)).
Moreover,

f(r(x1, . . . , xn)) = f((rx1, . . . , rxn)) = (rx1+N1, . . . , rxn+Nn) = r(f((x1, . . . , xn))).

We have ker(f) = {(x1, . . . , xn) ∈
∏n

i=1 Mi : (x1 + N1, . . . , xn + Nn) = (0 +
N1, . . . , 0 + Nn)}. The latter implies that xi + Ni = 0 + Ni for all i = 1, . . . , n.
Since Ni is subtractive in M , it follows by Proposition 4.8 that xi ∈ Ni. Thus,
ker(f) =

∏n
i=1 Ni. To prove that f is steady, it suffices (by Proposition 4.6) to

show that if (x1, . . . , xn) ∼f (y1, . . . , yn) then (x1, . . . , xn)ker(f)(y1, . . . , yn). Let
f((x1, . . . , xn)) = f((y1, . . . , yn)). Then (x1+N1, . . . , xn+Nn) = (y1+N1, . . . , yn+
Nn). We get now that xi+Ni = yi+Ni for all i = 1, . . . , n. The latter implies that
there exist ki, k

′
i ∈ Ni such that xi+ki = yi+k′i. Having (k1, . . . , kn), (k

′
1, . . . , k

′
n) ∈

ker(f) and (x1, . . . , xn) + (k1, . . . , kn) = (y1, . . . , yn) + (k′1, . . . , k
′
n) implies that ∼f

and ∼ker(f) coincide. Thus, f is steady. Theorem 5.1 completes the proof.

Corollary 5.1. Let R be a semihyperring, Mi be a commutative R-semihypermodule,
and Ni be a congruence subtractive subsemihypermodule of Mi for all i = 1, . . . , n.
Then

∏n
i=1 Ni is a congruence subtractive subsemihypermodule of

∏n
i=1 Mi.

Proof. Since
∏n

i=1 Ni is the kernel of the homomorphism presented in the proof
of Theorem 5.2, it follows by using Proposition 3.11 that

∏n
i=1 Ni is a subtractive

subsemihypermodule of
∏n

i=1 Mi.
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Theorem 5.3. (Second semi-isomorphism theorem for semihypermod-
ules.) Let (R,+, ·) be a semihyperring, M a commutative R-semihypermodule,
N,K congruence subsemihypermodules of M , N ∩K is congruence in N , and K is
subtractive. Then

N/(N ∩K) ∼=s (N +K)/K.

Proof. Remark 4.3 asserts that K is a congruence subsemihypermodule of N +K.
So, (N + K)/K is an R-semihypermodule. Let f : N → (N + K)/K defined as
f(x) = x + K for all x ∈ N . It is easy to see that f is a well-defined surjective
homomorphism. We have ker(f) = {x ∈ K : x + K = 0 + K}. Since K is
subtractive, it follows by Proposition 4.8 that ker(f) = {x ∈ N : x ∈ K} = N ∩K.
Theorem 5.1 completes the proof.

Corollary 5.2. Let R be a semihyperring, M a commutative R-semihypermodule,
N,K congruence subsemihypermodules of M , N ∩K is a congruence subsemihyper-
module of N , and K is subtractive. Then N∩K is a subtractive subsemihypermodule
of K.

Proof. Since N ∩ K is the kernel of the homomorphism presented in the proof
of Theorem 5.3, it follows by using Proposition 3.11 that N ∩ K is a subtractive
subsemihypermodule of K.

Proposition 5.2. Let (R,+, ·) be a semihyperring, M a commutative R-semihyp-
ermodule, N,K congruence subsemihypermodules of M such that K ⊆ N , and N
is subtractive. Then N/K is congruence subsemihypermodule of M/K.

Proof. Using Proposition 4.3, it suffices to show that if m+K ∼N/K m′ +K then
r(m+K) ∼N/K r(m′+K). Letm+K ∼N/K m′+K and z+K ∈ r(m+K) = rm+K.
Then there exist n1+K,n2+K ∈ N/K such that m+n1+K = m+K+n1+K =
m′ +K + n2 +K = m′ + n2 +K. The latter implies that (m+ n1) ∼K (m′ + n2)
and consequently, there exist k1, k2 ∈ K such that m + n1 + k1 = m′ + n2 + k2.
Since K ⊆ N , it follows that m ∼N m′. Having z + K ∈ r(m + K) = rm + K
implies that z ∈ rm. And since N is a congruence subsemihypermodule of M , it
follows that (rm) ∼N (rm′). The latter implies that if z ∈ rm then there exist
z′ ∈ rm′ such that z ∼N z′. Thus, there exist n, n′ ∈ N such that z + n = z′ + n′.
Since z + n + 0 = z′ + n′ + 0 and 0 ∈ K, it follows that (z + K) + (n + K) =
z + n+K = z′ + n′ +K = (z′ +K) + (n′ +K) with n+K,n′ +K ∈ N/K. Thus,
(z +K) ∼N/K (z′ +K).

Theorem 5.4. (Third isomorphism theorem for semihypermodules.) Let
(R,+, ·) be a semihyperring, M a commutative R-semihypermodule, N,K congru-
ence subsemihypermodules of M such that K ⊆ N , and N is subtractive. Then
M/K then

(M/K)/(N/K) ∼= M/N.
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Proof. Let f : M/K → M/N be defined as f(x+K) = x+N . It is easy to see that
f is a well-defined surjective homomorphism. Moreover, ker(f) = {x+K : x+N =
0 +N}. Since N is subtractive, it follows that ker(f) = {x +K : x ∈ N} = N/K
and it is a congruence subsemihypermodule of M/K (by Proposition 5.2.). Thus,
by using Theorem 5.1, we get that f is a semi-isomorphism. We prove now that f is
steady. Let f((x+K)) = f((y+K)). Then x+N = y+N . The latter implies that
there exist n1, n2 ∈ N such that x+n1 = y+n2 and hence, x+n1+K = y+n2+K.
We get now that x+K+n1+K = y+K+n2+K. Thus, x+K ∼ker(f) y+K.

Corollary 5.3. (R,+, ·) be a semihyperring, M a commutative R-semihypermodule,
N,K congruence subsemihypermodules of M such that K ⊆ N , and N is subtrac-
tive subsemihypermodule of M . Then N/K is a subtractive subsemihypermodule in
M/K.

Proof. Since N/K is the kernel of the homomorphism presented in the proof of
Theorem 5.4, it follows by using Proposition 3.11 that N/K is a subtractive sub-
semihypermodule of M/K.

We present some interesting applications on the (semi)-isomorphism theorems for
semihypermodules.

Let M = {0, 1, 2, . . .} and (M,+) be the R-semihypermodule in Example 3.2.
Moreover, nM is a congruence subtractive subsemihyperodules of M for all n =
1, 2, . . .. Proposition 3.2 asserts that (Zn,+) is an R-semihypermodule where Zn

is the set of integers modulo n and “+” is taken as standard addition of integers
modulo n and is given as Zn = {0 (mod n), 1 (mod n), . . . , (n− 1) (mod n)} .

Using Remark 4.2, we deduce that all the subsemihypermodules that we are
dealing with in the following applications are congruence subsemihypermodules.

Application 1. Let n be any positive integer. Then M/nM ∼= Zn.

Solution. Let f : M → Zn be defined as f(x) = x (mod n). It is clear that f
is surjective. Let x, y ∈ M and r ∈ R. Then f(x + y) = (x + y) (mod n) =
x (mod n) + y (mod n) = f(x) + f(y). And

f(rx) =

{
0 (mod n) if r = 0
f({0, x}) if r > 0.

=

{
0 (mod n) if r = 0
{0 (mod n), x (mod n)} if r > 0.

On the other hand, we have,

rf(x) =

{
0 (mod n) if r = 0
{0 (mod n), f(x)} if r > 0.

=

{
0 (mod n) if r = 0
{0 (mod n), x (mod n)} if r > 0.

Thus, f is a homomorphism. We have ker(f) = {x ∈ M : x (mod n) = 0 (mod n)} =
nM is a congruence subsemihypermodule of M . Theorem 5.1 asserts that f defines
a semi-isomorphism. To prove that f is an isomorphism, we prove that f is steady.
Let f(x) = f(y). Then by getting x (mod n) = y (mod n), we deduce that there
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exist k1, k2 ∈ M such that x + nk1 = y + nk2. Since nk1, nk2 ∈ ker(f), it follows
that x ∼ker(f) y. Thus, f is steady.

Application 2. Z3
∼= (M − {1})/3M .

Solution. Let N = 2M,K = 3M . Then by using Second semi-isomorphism the-
orem, we get that 2M/(2M ∩ 3M) ∼=s (2M + 3M)/3M . One can easily see that
2M ∩ 3M = 6M and N +K = M − {1}. Thus, 2M/6M ∼=s (M − {1})/3M . Using
same procedure as in Application 1, one can prove that 2M/6M ∼= Z3. Therefore,
Z3

∼=s (M − {1})/3M . Since Z3 and (M − {1})/3M have each only three elements
and Z3

∼=s (M − {1})/3M , it follows that Z3
∼= (M − {1})/3M .

Application 3. Z4/Z2
∼= Z2.

Solution. Let K = 4M ⊂ N = 2M . Then by Third isomorphism theorem, we
get that (M/4M)/(2M/4M) ∼= M/2M . Using the results in Application 1, we get
that M/4M ∼= Z4 and M/2M ∼= Z2. And in a similar manner, we can prove that
2M/4M ∼= Z2.

6. Applications of Our Results to Semihyperrings

In this section, we use our results on semihypermodules to deduce some re-
sults for semihyperrings. In particular, we derive (semi-)isomorphism theorems for
semihyperrings.

Since every semihyperring R can be viewed as an R-semihypermodule and every
hyperideal of it can be viewed as a subsemihypermodule, then the results of the
previous sections can be applied to semihyperrings.

In what follows, all semihyperrings and their hyperideals have an identity 0 under
addition “+” and the operation “+” is commutative. And if f is a homomorphism
between semihyperrings then f(0) = 0.

Notation 3. Let R be a semihyperring and I a hyperideal of R. Then I is a
congruence hyperideal if I is a congruence subsemihypemodule of R when viewed as
an R-semihypermodule.

Theorem 6.1. Let (R,+, ·) be a semihyperring and I be a congruence hyperideal of
R. Then I is subtractive if and only if it is the kernel of a surjective homomorphism.

Theorem 6.2. (First semi-isomorphism theorem for semihyperrings.) Let
R,S be semihyperrings and f : R → S be a surjective homomorphism. If ker(f) is
a congruence hyperideal of R then R/ker(f) ∼=s S. Moreover, if f is steady then
R/ker(f) ∼= S.

Proposition 6.1. Let Ri be semihyperrings and Ki be congruence hyperideals of
Ri for all i = 1, . . . , n. Then (

∏n
i=1 Ri)/(

∏n
i=1 Ki) ∼=

∏n
i=1(Ri/Ki).
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Theorem 6.3. (Second semi-isomorphism theorem for semihyperrings.)
Let (R,+, ·) be a semihyperring with (R,+) commutative, I,K congruence hyper-
ideals of R, I ∩K is congruence in I, and K is subtractive. Then

I/(I ∩K) ∼=s (I +K)/K.

Theorem 6.4. (Third semi-isomorphism theorem for semihyperrings.)
Let (R,+, ·) be a semihyperring with (R,+) commutative, I,K congruence hyper-
ideals of R such that K ⊆ I, and I is subtractive. Then

(R/K)/(I/K) ∼= R/I.

7. Conclusion

This paper dealt with semihypermodules over semihyperrings. Some properties
of semihypermodules were discussed and different examples were presented. By
means of a certain equivalence relation on semihypermodules, (Semi-)Isomorphism
theorems for semihypermodules were derived and several applications were pointed.
The results of this paper can be considered as a generalization for semimodules and
for hypermodules.

For future work, we can make the following question: “Is it possible to derive
the (semi-)isomorphism theorems for semihypermodules with less conditions?”

REFERENCES

1. R. Ameri and H. Hedayati: On k-hyperideals of semihyperrings. Journal of Discrete
Mathematical Sciences and Cryptography 10(1) (2007), 41–54.

2. P. Corsini: Prolegomena of Hypergroup Theory. Udine, Tricesimo, Italy: Second
edition, Aviani editore (1993).

3. P. Corsini and V. Leoreanu: Applications of Hyperstructures Theory. Advances
in Mathematics, Kluwer Academic Publisher (2003).

4. R. Cuninghame-Green: Minimax Algebra. Ser. Lecture Notes in Economics and
Mathematical Systems, Berlin, Germany: Springer Verlag 166 (1979).

5. B. Davvaz: Fuzzy hyperideals in ternary semihyperrings. Iranian Journal of Fuzzy
Systems 6(4) (2009), 21–36.

6. B. Davvaz: Polygroup Theory and Related Systems. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ (2013).

7. B. Davvaz: Semihypergroup Theory. Elsevier/Academic Press, London (2016).

8. B. Davvaz and I. Cristea: Fuzzy Algebraic Hyperstructures. Studies in Fuzziness
and Soft Computing 321, Springer International Publishing (2015).

9. B. Davvaz and V. Leoreanu-Fotea: Krasner Hyperring Theory. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ (2024).



688 M. Al Tahan and B. Davvaz

10. B. Davvaz, Subiono and M. Al-Tahan: Calculus of meet plus hyperalgebra
(Tropical semihyperrings). Communication in Algebra 48(5) (2020), 2143–2159.

11. R. Dedikind: Uber die Theorie der ganzen algebraischen Zahlen. Supplement XI to
P. G. Lejeune Dirichlet: Vorlesungen uber Zahlentheorie, 4 Aufl., Druck und Verlag,
Braunschweig (1894).

12. J. S. Golan: Semiring and their Applications. Kluwer Academic publisher Dordrecht
(1999).

13. M. Krasner: A class of hyperrings and hyperfields. International J. Math. and Math.
Sci. 6 (1983), 307–312.

14. F. Marty: Sur une generalization de la notion de group. In 8th Congress Math.
Scandenaves (1934), 45–49.

15. S. Omidi and B. Davvaz, Basic notions and properties of ordered semihyperrings.
Categories and General Algebraic Structures with Applications 4(1) (2016), 43–62.

16. R. Rota: Multiplicative hyperrings. Rend. Mat. 2 (1982), 711–724.

17. H. S. Vandiver: Note on a simple type of algebra in which the cancellation law of
addition does not hold. Bull. Amer. Math. Soc. 40 (1934), 916–920.

18. T. Vougiouklis: Hyperstructures and Their Representations. Hadronic Press Mono-
graphs (1994).

19. T. Vougiouklis: On the hyperstructure theory. Southeast Asian Bull. Math. 40(4)
(2016), 603–620.




