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Abstract. In this analysis, the MHD flow and n**-order dispersion of chemically reac-
tive species over a slendering stretching sheet are studied numerically. The partial slip
boundary condition and non-linear form of thermal radiation are also considered in this
research. To get non-linear ordinary differential equations from the system of partial
differential equations governing the flow, energy, and concentration, similarity trans-
formations are applied. Using the shooting technique and the Runge-Kutta scheme,
the resultant equations are integrated numerically. The numerical results in terms of
temperature, velocity, and concentration are represented graphically. Results from this
research indicate that an increase in the wall thickness parameter reduces momentum
and heat transfer effects when a magnetic field is present.
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1. Introduction

The combined analysis of heat and momentum transport with a chemical reaction
(CR) on a constantly moving sheet has a significant role in many processes due
to which these problems obtained a lot of attention recently. These developments
include surface evaporation of the water body, transfer of heat in a misty refrig-
erating tower, drying, and the stream within a desert cooler. After the innovative
study of Sakiadis [29], who investigated BLF beyond a constant solid surface, many
researchers studied this problem with various aspects. Crane [10] studied the flow
past a stretching plate. In a numerical study, the characteristics of heat and mass
transport with nth-order CR over a linearly SS were discussed by Ferdows and
Al-Mdallal [14]. Makinde et al. [22] described the effects of BL flow with the
transmission of convective temperature at the surface in the existence of thermal
diffusion and MHD. Rashidi et al. [26] examined the heat and mass transport with
free convection in magnetohydrodynamic liquid flow under the effects of buoyancy
force and radiation past SS. Mabood et al. [20] studied the combined heat and
mass transport impacts on magnetohydrodynamic fluid flow through SS under the
impact of first-order CR. Babu and Sandeep [5, 4, 6] inspected the hydromagnetic
flow past a slendering stretching sheet (SS) along with various presumptions. All
the above studies discussed the fluid flow over a flat SS with different assumptions
and physical geometries. In real-world applications, the SS not necessarily be flat,
we may be confronted by sheets with variable thickness (VT). Plates having VT
are commonly present in acoustical components, nuclear reactor technology, naval
structures, and machine design and are also one of the essential characteristics in
the investigation of orthotropic plate vibration. Initially, Lee [19] discussed the idea
of needles by considering VT and solved the problem numerically. Later, Fang et al.
[13] analyzed the boundary layer (BL) flow over SS with VT. Khader and Megahed
[18] presented the numerical solution of Newtonian fluid flow through a non-linear
SS with VT and velocity slip condition (SC). Subhashini et al. [31] investigated the
two-fold solutions of two-dimensional laminar thermal diffusive flows past SS with
VT. The ramifications of the magnetohydrodynamic nanofluid flow comprising Ag
and TiOs nanoparticles through a slender SS with VT are analyzed by Acharya
et al. [2]. Babu et al. [7] deliberated the dissipative hydromagnetic flow with
the influence of temperature-dependent variable viscosity over a slender SS. The
radiative effects on hydromagnetic fluid with heat and mass transport have several
important practical applications i.e., in astrophysical power technology, planetary
vehicle re-entry, electronic power manufacturing, removal of nuclear surplus and
suspension of chemical impurities through water-saturated dust, and many more.
Magyari and Pantokratoras [21] inspected the effect of thermal radiation (TR) on
various BL flows using linearized Rosseland approximation. Mushtaq et al. [24]
studied the impacts of nonlinear TR on the two-dimensional viscous flow of nano-
liquids because of the presence of solar energy. Devi and Prakash [11] explored the
influences of TR on hydromagnetic liquid flow past a slendering SS. Qayyum et al.
[28] scrutinized the third-grade MHD nanofluid flow over a slendering SS under the
effects of heat generation/absorption and TR heat. A radiative ferrofluid flow along
with the impact of aligned magnetic field and frictional heating through a slendering
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SS is examined by Reddy et al. [27]. Mousavi et al. [23] explored the dual solutions
for water-based TiO2-Cu nanofluid flow in the presence of TR over a continuously
moving thin needle. Due to the significance of slip flow in many industrial thermal
problems and manufacturing fluid dynamics, slip effects with various configurations
have been analyzed in the literature. Wang [33] discussed the flow through a SS
in the existence of partial slip. In another study, Wang [32] explored the viscous
flow over a SS under the impacts of velocity SC and suction force. Fang et al. [12]
analytically explained the MHD viscous flow problem with slip condition over SS.
BL flow with fixed heat flux surface and velocity SC through a uniform plate was
deliberated by Aziz [3]. For a BL flow, Hayat et al. [16] deliberated the hydro-
magnetic flow and heat transport characteristics over SS with velocity and thermal
SCs. Bhattacharyya et al. [8] inspected the BL forced convective flow past a porous
plate. Velocity and thermal SCs were also considered. Ibrahim and Shankar [17]
examined the heat transport and BL flow of nano liquid past SS with solutal slip
BCs. Hasnain et al. [15] deliberated the outcomes of velocity slip on dusty fer-
rofluid in a channel through spongy media. In the existing exploration, we analyze
the impact of nth-order CR on the hydromagnetic viscous liquid past a continually
moving sheet with VT. The non-linear TR and slip boundary conditions towards a
sheet are also considered. A numerical technique is employed to get the approxi-
mate solution of obtained coupled non-linear PDEs. The influence of the Hartman
number, the parameter of wall thickness, the radiation parameter, the Schmidt
number, and the parameter of velocity power index on liquid velocity, temperature,
and concentration profiles is examined through their graphic illustrations.

2. Problem development

The two-dimensional, laminar, and time-independent flow of Newtonian liquid
under the effects of Lorentz force with constant density through an impermeable
SS with BL and VT is considered. The sheet is situated in the xz-plane, the x-
axis is towards the motion of SS however y-axis is considered vertically. The SS
velocity is assumed as U, (z) = Up(z + b)™. We further suppose that the thickness
of the sheet is not fixed and is written as y = A(z + b)(1=™)/2. To do away with
the pressure gradient, a small enough value of A is chosen to make the sheet thin
enough. The magnetic field B(z) = Bo(x + b)™~1/2 is taken vertically upward to
fluid flow. Because of the supposition of neglectable magnetic Reynolds number,
the outer electric field is insignificant and there is no effect of an induced magnetic
field. Figure 2.1 signifies the physical model of a slendering SS along with varying
thickness. For this problem, we take m # 1, it is because the sheet becomes
flat by considering m = 1. Moreover, non-linear TR is considered in the present
numerical analysis. Under these physical considerations, the mathematical model
for the proposed boundary layer flow is specified as

ou Ov 0,

(2.1) 7 oy
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B(x)
//—

/ variable thickness sheet

Slot
° \ u=U,(x). T =T,(x).C=C,(x)

F1a. 2.1: Physical model of a slendering SS along with varying thickness
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where &, (z)=k(b+z)(m~D(+1)/2 represents the change of n'"-order homogeneous
CR.

The relevant BCs of heat, momentum, and concentration fields are:

wlen) =Uu ) +15 (5]

v (m,A(m+b)kTm) =0,

(2.5) T (z,y) = Ty () + h} <g§)
C (z,y) = Cy () + I (‘Zj), at y=A(z+0) 7,

u(z,00) =0,T (z,00) =T, C (z,00) = Coo, (m #1)
here
ni=[HElaEen™ . m=Eeen ™. 6= (E)
hs 2;]£<x+b> &= ()&

To obtain a similar solution we considered a special form of wall temperature and
wall concentration defined as (Subhashini et al. [31])

(2.6) Tw(@)=To(x+b) 7 + T, Cupl(@)=Co(z+b) 7 +Cu, (m#£1).
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Applying Rosseland approximation for optically thick medium, the radiation heat
flux is taken as (Raptis [25], Brewster [9], and Sparrow and Cess [30])

4o* OT* 160" 50T

2. .= = __ il
27) 4 k* Oy 3k* dy

By using Eq. (2.7) in Eq. (2.3) , we get

(2.8) or or _ 0 K 160*T3) QT]

Yoz "oy T oy |\ ke, ) By

Similarity transformations in the following form are considered to simplify the flow
problem (see Khader and Megahed [18])

m—1
(29) n=y\/m;1U0(xJ;b), w=Us (e +5)" I (n),

= _\/mTHUUo (z+0)"! [f’ (m)n (2—;}) +f(n)} . (m#£1),
b= oo with T=Tu (1+ (6, —1)6),
0

Using similarity transformations (2.9), the continuity Eq. (2.1) is inevitably fulfilled
and Eqgs. (2.2), (2.4) and (2.8) with BCs (2.5) take the form

"no_ 2m N2 _ g 2 p/
(2.10) N e A
’ 17
(2.11) (1 + Ry (14 (0, — 1)9)39’) =Pr (<m+”z> 710 — f9’> ,
ai o[22 o)
with
(2.13) FOV=A(EE) At ), F) =14 f (),
O(N) =1+hy 0'(0), &N =1+hze(0),
[ (00) =0, 0(c0)=0, ¢(00)=0,(m#1),
where
_ 160*T3 2 20Bj _2kCy! W v
Ro= g M =0y T aemny T T
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Moreover, Ry = 0 shows no TR effect, > 0 represents the destructive CR whereas
< 0 represents the constructive CR and

_ Up (m +1) [2—-f Up (m +1)
A=A Tv hl - |: fl :| E 2w )
he = {2 ; a} &2 Yolm +1) (;ny—&— D , hs= {2 ; C} &3 Uolm+1) (;ny+ 1).

The domain of Egs. (2.10)-(2.12) with BC’s Eq. (2.13) is [A, oo]. To accommodate
the calculation we transform domain [A, oo] into [0, oo], for this let F(&)=F(n-
A)=f(n). Using this transformation Eqs. (2.10)—(2.12) become

"o 2m n2 1" 2
(2.14) F <m+1>(F) FF" + M?F',
o 3 //_ I—-m 'Q /
(2.15) (1+Rd(1+(9w 1)0) @) Pr((m+1>FG) F@),
"no_ L—m & / n
(2.16) o —Sc((erl)F(I) F‘b)-FSC’Yq),

and the BC’s are

F (0) :/\<m—m) (14 F"(0), F'(0)=1+hF"(0),
(2.17) (0)=1+hy©' (0), ®(0)= + hs ®' (0),
F'(0) =0, O(0)=0, ®(c0)=0, (m#1).

The skin-drag parameter C, the local Nusselt number Nu, and the local Sherwood
number Sh, are defined as

1 au m + 1 1
(2.18) Cr=q—581 > = 2\/7(]%61:) F(0),
%pUgj ay y=A(z+b) 7 2
x+b oT
NUI = _1’(—) 6 - + (q,r)w —
(2.19) (T () = Too) Oy |y—n(oty®
+1 1
\/T (1+ Raty) (Re)? ©'(0),
(+b)  ocC NEEaympes
2.20 Shm:*—i — _ 7Rem2cI> O’
(220) (G (2) — Coa) D0 |y pgorny 5 2 (Re)} @/ (0)

where Re,=U,, X/v and X=(z+b) is the local Reynolds number.
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3. Numerical scheme

Non-linear differential equations (2.14)-(2.16) with boundary conditions (2.17) are
solved using the shooting technique together with the fourth-order Runge-Kutta
method. Our system of equations must be transformed into a first-order initial
value system for this technique by declaring:

2m
(3.1) n=Fy=F ys=F'y; = (M) Y3 — y1ys + M>ys,
Yg = 972/5 = 9/5
1

Vi 2 2

vh= (=B8R (14 (6 = 1) 9a)® (0 — 1) 13)

14+ Ri(1+ (B — D)’ 5
(3.2) 1

14+ Ry (14 (00 — 1) ya)° <(1 a0 =) y4)3> .

+ 1 <pr ((H”> B >)
14 Ry (14 (0 — 1) ya)? m+1 Yoys — Y1ys | |,

m n
(3.3) ye =P, yr = ', yr = Sc (() Y2y — y1y7) + Sey (vs)"

m+1

with boundary conditions

y1(0) = A (;;T"f) (I+hur), y2(0)=1+hiu, F"(0)=u,
ya (0) =14 houg, ©' =wuy, y7(0)=1+hgusz, P =us.

4. Results and discussion

The solution of ODE’s (2.14)—(2.16) with BC’s (2.17) is numerically determined by
using the shooting method together with the 4**-order algorithm of Runge-Kutta.
The influences of all involved constraints on the momentum, concentration, and
temperature inside the BL are displayed in Figures 4.1-4.6.

The effect of Hartman number M on liquid velocity is seen in Figure 4.1a. Slip
and no-slip velocity conditions are taken into consideration. It is evident from Fig-
ure 4.1a that both the liquid velocity and BL thickness decline with an increase in
M for both slip and no-slip conditions. Lorentz force (a force manifesting owing
to the combined action of magnetic and electric fields) is responsible for this at-
tenuation since it works against transport phenomena more potently. Figure 4.1b
represents the variation of wall thickness parameter A and power index parameter
m on liquid velocity. It is observed from this Figure that augmentation in m causes
an upsurge in sheet slenderness which enables the fluid to flow more rapidly due
to this flow velocity accelerates and ultimately boundary layer thickness becomes
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F1G. 4.1: Momentum transfer for distinct values of (a) M and hy (b) A and m.

thicker. However, the parameter of the wall thickness A creates retardation in the
flow velocity and consequently, BL thickness reduces with a rise in wall thickness
parameter A.

Figure 4.1a exhibits the influences of the M on dimensionless temperature. It
is detected that the temperature profiles enhance when Hartman number M is
increased, and results are the same when we consider velocity slip as well as non-
slip velocity. Since Lorentz force acts as a resistive force for fluid movement thus
heat is generated and therefore the thermal BL thickness rises when M escalates.
Figure 4.1b displays the variation of the power index of velocity m and thickness
of wall parameter A on the temperature of the liquid. It is depicted that both the
thickness of thermal BL and temperature is the increasing function of m whereas
decreases with increasing wall thickness parameter A. Heat transfers faster through
the thinner surface and in this case, an increase in m tends to reduce sheet thickness.
As a result, a higher value for m leads to a hotter temperature profile.

1 0.8
i 7=0.5,m=-0.75, h1=0.3, Pr=2, Rs=0.5, 6,=1.5 M=2. h1=0.3. 1:=0.2.P1=7. Ri=0.5. 6,=1.3
®
0.8 l;“ —— s — = —m=-0.75]
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F1G. 4.2: Heat transfer for distinct values of (a) M and hy (b) m and A

Figure 4.3a is illustrated to show the variation in the temperature profiles for Pr
and Rd. It is noticed from this fig. that the temperature profiles along with thermal
BL thickness decrease with high Pr. Physically, the thermal diffusivity falls when
Pr increases therefore heat is diffused slowly far from the heated sheet. However,
the temperature profiles and thickness of thermal BL augments with increments in
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radiation parameter Rd. Figure 4.3b is the graphical depiction of variation in 8,,
for temperature profiles. It is detected that heat travels effectively as thickness for
thermal BL is found to grow with 8,,.

0.8k 7=0.5.M=2, h1=0.3, m=-0.75, h2=0.2, 8y=1.5 7=0.5M=2, =02, m=-0.75, =0.1, Pr=2, R+~0.5
Ce—pr=om| M — Non-linear thermal
P2 radiation
==~ Linear thermal
tadiation
& )
@ @
8,=10.13,1.6,1.9,2.1
- (a) (b)
5 & 7 2 2.5 3

F1G. 4.3: Heat transport for distinct values of (a) Rq and Pr (b) 6,

The influence of M on the concentration profile is demonstrated in Figure 4.4a.
Both the concentration and thickness of its BL are found to increase with M, and
this is true for both the slip and no-slip scenarios. The fluid experiences friction due
to Lorentz force by accumulative friction among the layers, which is why species
distribution increases. Figure 4.4b reveals the behavior of species concentration for
different values of m and A. It shows that species concentration enhances when
m is increased and falls with the augmentation in A. As the temperature of the
liquid escalates with m, the species concentration also increases. Comparison of the

1 —. = — —1, y=
7=2, 11=0.3, m=0.75, So=1, y=0.5 08 n=2, In—0.3, M=2, :=0.2, Se=1, }=0.5
_____ 3= 0.0 ] 07 —e—m=-0.75|
——— =05 06 L m=o041 1
= = 05
8 o 04fnt
03
] 0.2
0f WX 1
(a) RSN R L)
3 4 6 7

F1G. 4.4: Concentration profile for distinct values of (a) M and h (b) A and m.

effects of no-slip velocity vs slip velocity on species concentration as a function of
Sc are shown in Figure 4.5a. Schmidt number describes the ratio of the viscous
BL thickness and thickness of the concentration BL so from this figure, we see that
increasing Schmidt number Sc decreases the solute BL. Figure 4.5b displays the
impacts of the rate of CR parameter on the species concentration for no-slip velocity
and slip velocity conditions. For both cases, the liquid concentration decreases for
destructive CR (y>0) and increases for constructive CR (y<0). Destructive CR
behaves similarly to Schmidt number therefore, with destructive CR thickness of
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solute BL falls while it increases with constructive CR. Therefore, the reaction rate
is important in adjusting the solute BL in the reactive concentration distribution.

1 1
b M=2, n=2, m=-0.75, y=0.5, i=0.5, 1—0.3 M=2, n=2, m=-0.75, Sc=1, ;=0.5, n—0.3
[}
0.819 4
s mm =00 | Tz NN e I3 =10.0
[
n - 3=0.5 e h3=0.5
L
0.6 U, — —
- m —_
=L Wy =
& ERELLRY =]
0.4 \\\\7\7\, A\ B 1
MUY N $=10.6,0.8, 1.0, 1.3
ARANY
\\‘\.\\\» &N
0.2 \\:' \\.\ N 1 1
R ~.
A e
0 R ey, YR (a) (b)
[ 0.5 1 1.5 2 2.5 3 3.5 4 2.5 3 3.5 4

F1a. 4.5: Concentration behavior for distinct values of (a) Sc and hsz (b) v and hs.

Figure 4.6a shows the influence of both parameters A and velocity power index
m on F”(0). Figure 4.6b illustrates the upshot of ©/(0) with A for distinct values of
Rd. ©/(0) increases with A\, while diminishes with increasing values of Rd. Figure
4.6¢ depicts that ®/(0) is increased with an increment in Sc and A. It is also depicted
from this figure that ®7(0) falls with the higher values of reaction-order parameter
n.

-0.95 T T T

M=2, 1=0.3

F'(0)
- (0)

®) |

12

1=05n=1 Sc=10.5,1.0, 1.5, 2.0

m=-0.75, M=2, I1=0.3, y=0.5 ©
\ . .

0.4 0.6 08 1 1.2
A

F1G. 4.6: Upshot of (a) F’(0) for m (b) ®’(0) for Ry (c) ®'(0) for Sc versus A.

To ensure the accuracy of new results, we compared them to previous studies’
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Table 4.1: Numerical comparative values of F/(0) when A=0.5 and M =0

m Fang et al. [13] Subhashini et al. [31] | Present Results
(Numerical Method) | (Numerical Method) | (Numerical Method)

-0.51 -1.1859 -1.1860 -1.1860

-0.55 -1.2807 -1.2821 -1.2808

-0.60 -1.4522 -1.4531 -1.4522

-0.65 | -1.7095 -1.7103 -1.7095

-0.70 | -2.0967 -2.0974 -2.0967

-0.75 | -2.6882 -2.6891 -2.6882

-0.80 | -3.6278 -3.6282 -3.6278

-0.85 -5.2477 -5.2481 -5.2477

-0.90 | -8.5457 -8.5463 -8.5457

-0.95 -18.5194 -18.5209 -18.5194

-0.99 | -98.5034 -98.5046 -98.4642

Table 4.2: Comparison with the numerical and analytical solution for F”'(0) when
M=0

m A Fang et al. [13] Abdel-wahed et al. [1] Present

(Shooting Method) (Optimal homotopy | Results

asymptotic method)

0.50 | 0.25 | -0.93380 -0.92641 -0.93376
1.00 -1.00000 -1.00000 -1.00000
5.00 -1.11860 -1.12623 -1.11858
0.50 | 0.5 -0.97990 -0.96335 -0.97994
1.00 -1.00000 -1.00000 -1.00000
2.00 -1.02340 -1.03339 -1.02339

findings and discovered they were in good accord which is represented in Table 4.1.
Table 4.2 compares the current results to both numerical and analytical approaches
and shows that they are in good agreement.

5. CONCLUDING REMARKS

The present work of hydromagnetic flow and dispersion of CRS towards a slendering
SS with slip condition has been studied. Non-linear Rosseland thermal radiation is
also considered within heat transfer. A comparison with available literature is also
carried out. The key effects of the existing study can be prescribed as below:

e Since the magnetic field creates a drag force, liquid velocity and thickness of
BL reduce when Hartman number M for both slip and no-slip conditions is
increased. Whereas, increasing values of the Hartman number M boosts the
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heat transfer and concentration field.

The velocity, temperature, and CRS concentration profiles fall with increment
in the thickness of wall parameter A however, rise with a velocity power index

Both radiation parameter R; and 6,, increase the temperature profiles.

Prandtl and Schmidt’s numbers decline the heat transfer and concentration
field, respectively.

Destructive CR (4>0) reduces while constructive CR 4<0) enhances the
species concentration with both slip and no-slip conditions.
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