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WELL-POSEDNESS AND ASYMPTOTIC STABILITY OF SOLUTIONS TO A
BRESSE SYSTEM WITH TIME VARYING DELAY TERMS AND INFINITE
MEMORIES *

Mohamed Ferhat and Ali Hakem

Abstract. We consider the Bresse system in bounded domain with delay terms in the
internal feedbacks and infinite memories acting in the three equations of the system. First,
we prove the global existence of its solutions in Sobolev spaces by means of semigroup
theory. Furthermore, the asymptotic stability is given by using an appropriate Lyapunov
functional.
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1. Introduction

In this paper, we investigate the existence and decay properties of solutions for the
initial boundary value problem of the linear Bresse system of the type
P11 —ki(px + ¢ + L)y = Tks(@x = 1) + e + pogpr(x, £ = T1(£))

+f 71(8)Pxx(x, t —s)ds = 0,
0

pzll}ttoo— koPax + ki(@x + P + lw) + (s + toe(x, t — 12(1))

(1.1) . f 72(8)Use(x, £ — )ds = 0,
0

prns = ka(wx = 1@)s + lki(gps + Y+ 10) + i + Toan(x, £ = Ta(t)

+ 73(S)wxx(x, t —5)ds = 0,
0

where (x,t) € (0,L) X (0, +c0), 7i(t) > 0 (i = 1,2, 3) is a time delay, p1, u2, pi1, t2,
{1, iz are positive real numbers. This system is subject to the Dirichlet boundary
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conditions
o0, ) =L, t)=¢0,t)=¢(L,t)=w0,t)=w(L,t)=0, t>0
and to the initial conditions

(p(xr _t) = (PO(x)/ (Pt(xr 0) = (Pl(x)/ I1b(x/ _t) = IPO(-’C)/ X € (0/ L)r
IPt(xr 0) = I101(-7(:)/ CL)(x/ _t) = C‘)O(X)/ a)f(xr 0) = a)l(x)/ X € (O/ L)/
P, t = 11(t) = folx, t = 7a(t)), in(0,L) x [0, 71 (0)],

Pi(x, t = 2(h) = folx, t = 12(h)), in (0,L) % [0, 72(0)],

w(x, t — 13(t)) = fo(x, t—13(t)), in (0,L) %[0, t3(0)].

The initial data (o, @1, Yo, Y1, wo, w1, fo, ﬁ,?o) belong to a suitable Sobolev space.
By w, ¥ and ¢ we are denoting the longitudinal, vertical and shear angle displace-
ments. The original Bresse system is given by the following equations (see [1])

P19 = Qx +IN + Fy,
PP = My — Q + Fo,
piwy = Ny —1Q + F3,

where we use N, Q and M to denote the axial force, the shear force and the bending
moment respectively. These forces are stress-strain relations for elastic behavior
and given by

N = Eh(wy —lp), Q= Gh(px+ 1 +Ilw), andM = El,,

where G, E, I and h are positive constants. Finally, by the terms F; we are denoting
external forces. _

The Bresse system without delay (i.e 2 = g = pz = 0), is more general than
the well-known Timoshenko system where the longitudinal displacement w is not
considered [ = 0. There are a number of publications concerning the stabilization
of Timoshenko system with different kinds of damping (see [2], [3], [4] and [5]). For
the Timoshenko system, along with the new theory og Green and Naghdi [20], Mes-
saoudi and Said-Houari [21] considered a Timoshenko system of thermoelasticity
of type III of the form

Pl(Ptt - k((PX + lp)x = 0/ ]0/ L[XR+/
P2y — bE[/xx + k((Px +1) +p6, =0, 10, L[XR,,
P36tt — 00y + V’ybttx —kOpx =0, 10, L[XR,,

where @, and 0 are function of (x,t), which model the transverse displacement
of the the beam, the rotation angle of the filament and the difference tempera-

ture, respectively. They proved an exponential decay in the case of equal speeds
(% = p%) This result was later established by Messaoudi and Said-Houari [22] for
above system in the presence of a viscoelastic damping of the form

jom g(S)Yxx(x, t — 5)ds
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acting in the second equation. Moreover, the case of nonequal speeds (p—k1 * P%) was
studied and a polynomial decay result was proved for solutions with smooth initial
data. A more general decay result, from which the exponential and polynomial
rates of decay are only special cases, was also established by Kafini [23]. Raposo et
al [6] proved the exponential decay of the solution for the following linear system

of Timoshenko-type beam equations with linear frictional dissipative terms

P19 — Gh(px + Y + lw)y — [Eh(wx = lp) + 1y = 0
P2ty — EIYyy + Gh(py + ¢ + lw) + g1y = 0.

Messaoudi and Mustafa [3] (see also [11], [5]) considered the stabilization for the
following Timoshenko system with nonlinear internal feedbacks

P1¢1 = Gh(Qx + ¢ + lw)y = [Eh(wx = lp) + g1(P1) = 0

P2ty — EIYy + Gh(px + ¢ + lw) + g2(¢y) = 0.

Time delay is the property of a physical system by which the response to an applied
force is delayed in its effect (see [8]). Whenever material, information or energy is
physically transmitted from one place to another, there is a delay associated with
the transmission. In recent years, the PDEs with time delay effects have become
an active area of research and arise in many practical problems (see for example
[9], [10]). The presence of delay may be a source of instability. For example, it was
proved in [11] that an arbitrarily small delay may destabilize a system which is
uniformly asymptotically stable in the absence of delay. To stabilize a hyperbolic
system involving input delay terms, additional control terms will be necessary (see
[12] and [13]). For instance, in [12] the authors studied the wave equation with a
linear internal damping term with constant delay and determined suitable relations
between u; and up, for which the stability or alternatively instability takes place.
More precisely, they showed that the energy is exponentially stable if u» < 1 and
they found a sequence of delays for which the solution will be instable if i > p;.
The main approach used in [12], is an observability inequality obtained with a Car-
leman estimate. The same results were showed if both the damping and the delay
acting in the boundary domain. We also recall the result by Xu, Yung and Li [13],
where the authors proved the same result as in [12] for the one space dimension by
adopting the spectral analysis approach.

Motivated by the previous works it is interesting to give more general decay re-
sult to (1.1), by combining the idea of ( [17],[18]). Our purpose in this paper is
to give a global solvability in Sobolev spaces and energy decay estimates of the
solutions to the problem (1.1) for linear damping, time varying delay terms and
infinite memories. To obtain global solutions to the problem (1.1), we use the argu-
ment combining the semigroup theory (see [12] and [14]) with the energy estimate
method. For the decay estimates, we use a Lyapunov functional’s method.
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2. Preliminary Results

First assume the following hypotheses:
(H1) 7, is a function such that

(2.1) 7, € W([0,T]), YVT>0, i=1,2,3

0<to <t1(t) <111, VE> 0,
(2.2) 0 <7 £1ot) €122, VE>0,
0<T1p3 < T3(t) <133, Yt>0,

T () <dyp <1,
(2.3) () <dy <1,
Té(i’) <ds; <1,

where 191, Toy, Toz and 111, T2, T3z are two positive constants.
(H2)

to < V1 —=dyus,
(2.4) B < V1=,
[LTZ < Vl - dgllTl,

(H3) gi : Ry — R, are differentiable non-increasing function and integrable on
R, such that there exists a non-increasing differentiable function C : R* — R*
satisfying

g;(t) < =C(t)gi(D),
and there exists a positive constant kg satisfying, for any (¢, ¢, w) € (Hé(]O, L))®

L L
ko f ((pﬁ +UP2 + a)ﬁ) dx < f (kat? + ky ((px + U+ lw)? + k3 (wx — la))z) dx
0 0

([ e [ [

+‘f0 (fo c><)‘zyg(s)dsa)ﬁ)alx.

By contradiction arguments, it is easy to see that there exists a positive constant ko
such that, for (¢, 1, ) € (H}(10, L[))?,

(2.5)
L
f (ka2 + ki (px + ¥ + [0)? + s (w, — p)?) dx.
0



Well-posedness and Asymptotic Stability to a Bresse System 101

The above inequality will be proved later in lemma 4.1. Also, if

+00 .
(2.6) g0 = f gi(s)ds <ko, i=1,2,3,
0
then (2.2) is satisfied with
ko = ko —max{g}, g3, 93} -

On the other hand, thanks to Poincare’s inequality, there exists a positive constant
ko such that, for (¢, ¢, w) € (Hy(10, L]))?,

L
f (k22 + ki (s + ¢ + 1w)? + ks(wy = lp)?) dx <
0

2.7) Joo
P f (62 + 2 + @) dx.
0

Lemma 2.1. (Sobolev-Poincare’s inequality). Let q be a number with 2 < g < 4+c0. Then
there is a constant c. = ¢.((0, 1), q) such that

lly < cllgalla for ¢ € Hy((0,1)).

3. Well-posedness

In order to prove the well-posedness result, we have to make the following opera-
tions: we introduce, as in [12], the new variables

z1(x, p, 1) = Pe(x, t —T1(t)p), x€(0,L), pe(0,1), t>0,
(3.1) Zo(x, p, t) = Ye(x, t = T2(t)p), x€(0,L), pe(0,1), t>0,
z3(x, p, t) = wi(x, t — 13(t)p), x€(0,L), p€(0,1), t>0.

Also as in [17], the new variables

mx, t,s) = p(x,t) —p(x,t=s), in ]0,L[XRs; X Ry,
m(x,t,8) = P(x, t) = YP(x,t —=s), in ]0,L[XRs X Ry,
n3(x, t,8) = w(x, t) —w(x, t —s), in ]0,L[XR+ X Ry.

These functionals satisfy

I +dsm — @ =0, in ]0,L[XR; X R,
I+ dsy — Py =0, in ]0,L[xRs X R,
Iz + dinz —wy = 0, in 10,L[xXR; xR,

ni(O/ t/ S) = TIi(L/ t, S) = 0, ii’l R+ X R+,
i, 1,0) = 0, in 10,L[xR,,i=1,2,3.
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In order to convert our problem to a system of first-order ordinary differential
equations, we note the following:

(3.2) n(x,s) =
Then, we have fori=1,2,3

(3.3) Ti(H)zir(x, p, t) + (1 = T/(t)p)zip(x, p, 1) = 0, in (0,L) x (0,1) X (0, +o0).
Therefore, problem (1.1) takes the form:

ni(x,0,s), i=1,2,3.

P11 (x, t) — k1(px + Y+ lw)y(x, t) = Iks(wy = lp)(x, ) + p1i(x, t)
+uzz1(x,1,t) + 71(5)dxxmds = 0,

(216, p, ) + (1= T (D)1, p, 1) = O,
P, )~ katpun(x, )+ Kaps + 0+ 1), ) + i, )

(3.4) +az2(x, 1, 1) + g2(8)dxxtds = 0,

Oz, p, ) + (1 = (Op)z2p(x, p, ) = 0, -
prau(x, t) — kg(wx; 19)(x, t) + ki (@px + ¥ + lw)(x, t) + pwi(x, 1)
g3(5)9xx13ds = 0,

T3(t)za(x, p, ) + (01 - Té(f)p)Zg,p(X, p,t)=0.

The above system subjected to the following initial and boundary conditions

+/f223(x, 1,0+

¢0,t) =L, t)=¢(0,t) =L, t) =w0,t) =w(L,t), t>0,
z1(x,0,1) = @e(x, 1), z2(x, 0, 1) = Pu(x, 1), xe(0,L),t>0,
z3(x,0,t) = wi(x, t),x € (0,L), xe(0,L),t>0,
@(x,0) = @o, Pi(x,0) = @1, P(x,0) = o, Pi(x, 0) = ¢,
w(x,0) =wy, wi(x,0)=wi, xe€(0,L),
z1(x, 1,t) = fi(x, t — T1(h)), in (0, L) x (0, 71(0)),

(3.5) 22(x,1,t) = fa(x, t — T2(t)), in (0, L) X (0, 72(0)),

’ Z3(xr 1/ t) = f3(xr t— T3(t))/ in (O/ L) X (Or 73(0))/

mx, t,s) =m(L,t,s)=0, x€(0,L),t>0,in Ry XRy,
na(x,t,8) = ma(L, t,5) =0, xe€(0,L),t>0,in Ry X Ry,
na(x, t,5) = n3(L, t,5) =0, xe€(0,L),t>0,in Ry X Ry,
m(x,t0)=0, xe€(0,L),t>0, in Ry xRy,
na(x,t,0) =0, x€(0,L),t>0, in Ry XRy,
n3(x,t,0) =0, x€(0,L),t>0, in Ry X R,.

Let &1, &2 and &3 be positive constants such that

Uz

S E S 2 - 7
T Y, yr
U2 ~ U2
S E S 2 - 7
(3:6) 1: dy ? H2 Vl: dy
Ho =
<& <2up - .
(T R
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We define the energy associated to the solution of the problem (3.4)-(3.5) by the
following formula

k
Et) = Flill3 + Flpell3 + Gl + Z gl !
k k (1 i
3.7) +5lpx + P + 1ol + Slloy = lpl3 + £, 250 f llzi(x, p, Dl3dp
’ 0

L
—f@ww%%+@@wﬂmgﬂm@+mﬁ%
0

H; = {v Ry — H}(10,L]) ff gi(s)v2(s) dsdx<+oo}

We have the following theorem.

where

Theorem 3.1. Assume that the hypotheses (H1) — (H3) hold.
Let ((POI (plr fl('/ _'Tl(o))/ IPO/ ll}l/ f2('/ —.TZ(O)), wo, W1, f3('/ _'73(0))1 17(1)/ TI%/ 178) € (H(%(OI L)X
L*(0,L) x L?((0,L) X (0,1)))>. Then problem (3.4) — (3.5) admits a unique solution

@ € C([0, +o0); Hy(0, L)) N CY([0, +0); L*(0, L)),

i € C([0, +00); H)(0, L)) N CY([0, +00); L*(0, L)),

w € C([0, +00); Hy(0, L)) N C}([0, +0); L*(0, L)),
21,22, 23 € C([0, +00); L*((0, L) X (0, 1))),

11, 12,13 € C([0, +00); H3(0, L)) N C([0, +00); L*(0, L)).

We finish this section by giving an explicit upper bound for the derivative of the
energy.

Lemma 3.1. Let (@, ¢, w,z1,22,23,1M1,M2,13) be a solution of the problem (3.4)-(3.5).
Then, the energy functional defined by (3.7) satisfies

B0 < (jn-§ - s ok - (7 - § - 5 I3
(w—ﬂ— il

L1(1 7\ ()

“1mﬁau1mﬁ

(q(l rz(ﬂ _ &Y )IIZz(X Lol
_(51(1 %) Hzm)HZg,(x 1, t)”Z

(3.8)

2

ff 7,(s) (D )*dsdx + = ff 7,(5)(@x12)?dsdx
f f 75(5)(x13) Ydsdx.
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Proof. Multiplying the first equation in (3.4) by ¢y, the third equation by 1, the five
equation by wy, integrating over (0, L) and using integration by parts, we get

Il -k [ (ot b+ o)z — Tk | (r = 1) + gl
+U fOL z1(x, 1, )pudx + fom 71(8)dxmidsdx = 0

Loa 22 + 21l + ko OL((Px + 1 + lw)sdx + 1Yl

+ 2 fOL z2(x, 1, Yedx + fom 72(8)Ixx2pdsdx = 0

10153 — ks fOL(wx — lp)xwidx + Iky fOL((Px + ¢ + lw)wdx + [i”wt”%

. L o
+ o f z3(x, 1, Hwidx + f 93(5)0xx3widsdx = 0.
0 0

Then, if we put

P1 P2 P1 k1 k> ks
E(t) = (7||(pf||§ Sl + Sl + Sl + S lls + 1+ Lol + =l — Il
we get

FFO) + nllgrll + EIGE + @l
+ﬁ2‘f0 zl(x,l,t)l,btdx+y2f0 z(x, 1, t)pudx
(3.9) +y:2 fOL z3(x, 1, Hawwdx + ]:o 91(8)(Dxm1)?ds + fom 92(8)(9x12)*ds
- [ @@ [ aoaomriss [ aooomras
+ fow gg(s)(?s(axm)zds =0.

Multiplying the second equation in (3.4) by &;z; and integrating over (0, L) X (0, 1),
to obtain

L 1
&i(te i) f f zirzi(x, p, t)dpdx

(3.10) o
= -0 [ [ (1= T(t)p) 2 ilx, p, H)*dpdx.
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Consequently,

( Gt f fz (& p. o dx)

_ 91(t f f —((1 = Ti(t)p)e P22 (x, p, t))dpdx

g (t)L pTi( f f 2(X 0, t)dpdx
@3.11)

L.i(f)f [ Z(x 0, i’) _ZZ(x 1, i’)] Tz(t)dx
0

-2

L (21
g (t)L P f f 2(X 0, t)dpdx

where z1(x,0,t) = @i(x, 1), z2(x,0,t) = Pu(x, t) and z3(x,0,t) = wi(x,t). From (3.9),
(3.11), integrating by parts and using Young's inequality, we get

E'(t) = — (11— $) el = (3 - 2) el = (1 = £) el
3 ’
&1 - T(1) !
=Y e L 0B - g [z g
i=1 0

L

L —_—
(3.12) —,szf Zo(x, 1, t) e dx — ;Tzf za(x, 1, D dx

f f 7:(s) (Oxm)*dsdx + = f f 75(5)(0x2)dsdx
f f 75(s) (8x173) dsdx.

Due to Young’s inequality, we have

L 2 —u1
2 fy 21,1, Dilx, i < g O + =5 (1,01
(3.13) iy 22061, 091Cx B < SO + B3 2t 101,

2 [ 2 1, B, Hix < o IR + 20 “ s, 1, D).
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Inserting (3.13) into (3.12), we obtain

E(0) <~ (11— % - il - (7 - % - 5 Il
—_ ™ &1(1 1)) 1-d
~ (- § - s oz - (29552 - Ty 2,1, B
&a(1 1)) —d.

- (255 - R (1,118

(“3(1 SO BV ) (v, 1,11

f f 7,(s)(Oxm)*ds dx + = f f 75(5)(Dx172)?ds dx
f f 75(s)(9x13)ds dx.

This completes the proof of the lemma. [

Now, we will give well-posedness results for problem (3.4)-(3.5) by using semi-
group theory. Let us introduce the semigroup representation of the Bresse system
(3.4)-(3.5). Let U = (p, ¥, @, 1, Y1, wi, 21,22, 23,11, M2, M3) " and rewrite (3.4)-(3.5) as

(3.14)

u =AU,
U(x, 0) = U°(x).

uO(x) = ((PO/ 17[}0/ wo, P1, 77[}1/ w1, fl (-r _-Tl(o))r fZ('I _-TZ(O))r f3(-/ _-T3(O))/ 77(1)1 772; T]g)r
where the operator A is defined by

Pt
Yy
Wt
@ Lk = [ 1)) pre = lk3(p 8y 4 Ll + k), + L [ 01(5)2mds
i _T(Pt— p—7~1( 1)
o _p}; (Px _(kZ - fO gZ(S)dS)lfxx l,l} _lkl w + % fO gz(S)dS)axxﬂzdS
i —e = ol 1)
Al =] A ke Gy gk - [ ga<s>ds>wxx—ﬂw+pl 5 93(5)9nads
22 —%a)f - E23( 1)
z3 _a-g)
m o zp
s e
3 o 23p
Pt — st
lybt - 95712
- a5773
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with the domain H given by, (H* = (L*(0, L; H'(0,1))* x H; X H} x H3)

(3.15) H = (H*(10,L[) N (H,(10, LL))® % (Hy(10, L[))* x H".

The domain D(A) of A is defined by

(3.16) D(A) = {U € H; AU € H, 1(x,,0) = 0,i = 1,2,3}.

Now, under hypothesis (H1), the sets H; and H are Hilbert spaces equipped, re-
spectively, with the inner products that generate the norms

L +00
iy = [ [ se@nrisas

L
iz, = f (P17 + p2? + p10? + koth? + ki (x + P + lw)? + ks(wy — lp)?)dx

fZé(tr(tfozdp f(gl(waz%Wa dx

+I|171|IH + |I77z|IH + |I773|IH

We show that the operator A generates a Co- semigroup in H. In this step, we prove
that the operator A is dissipative. Let U = (¢, ¢, w,u,v,®,21,22,23, M1, M2, ng)T.
Using (3.8) and the fact that

(3.17) E(t) = %HUII?{,

we get

L L _ L
(ALI,LI)H:—[Jlf uzdx—ﬁlf Uzdx—m @ dx
0 0 0
L AL
—yzf z1(x, Dudx — ﬁzf zp(x, V)vdx — ﬁzf z3(x, 1) dx
0

(3.18) Z'E(t Tt(f)f f 2i(x, p)zip(x, p) dp dx

—3 f gl(S)f as(axnl) dsdx — E f gz(s) f as(axnz)stdx
o o 0 0

_% f .’73(5)f 85(8x173)2dsdx
0 0

<0,
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by using the integration by parts and the boundary conditions in (3.5), yields

L L L
<AU,U>H=—[J1f ude—]Lf Ude—ﬁlf @ dx
0 0 0
L

—/szLzl(x Dudx - ﬁzf zo(x, v dx — ﬁz]:zﬁx,l)adx
—Zé(tr(t fle(x P)zip(x, p)dpdx + = ff(gl(sﬁxm) dsdx
f f (gZ(s)8x172)2dsdx+ f f (g3(s)8x173)2dsdx<0

and then, because for any i = 1, 2, 3, the kernel g; is non-increasing,

(3.19)

(3.20) (AU, U) < 0.

Consequently, the operator A is dissipative. Now, we will prove that the operator
Al — A is surjective for A > 0. For this purpose, let

(i, fo, 3. far 5, foo f. fo fou fro, fin, fr2)" € H,

we seek
_ T
u= (Ulr U2, V3, V4, Vs, Ve, 21,22,23, V7, U8, 'U9) € D(A)I

solution of the following system of equations
/\U‘l + p_v4 + _Zl( 1) 1 (kl - g(l))axxvl - p—l](k18xv3 - lkgvl)
_H {klaxv?) + k28 v3 — !70117} = fa,

P2 Ik
- {(kz = g5)9xxv2 = kidxv1 + ;—18xxv9} + Stvz + Avs

+P vs + —Zz( 1) = fe,

Ik Bky

o {(kl + k2) 0, U1 (k3 = g3)9xx3 — {]gaxxw} + 2t + s

+£1)6 + Avg + —23( 1) f5,

(3.21)

(1- ’(t))

Az1 + _[Z—[(Zt) = f7,
(1 ’(t))

Azy + _[T(Zt) fg,
(1-75(t)

Az3 + TTé) z3p = fo,

Avy —vs = fi,

Avy —vg = fo,

Avz — vy = f3,

—v4 + Avy + (951)7 = flo,
—vUs + Avg + (951)8 = f11,
—Vg + Avg + BSvg = flz.
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Suppose that we have found vy, v, and vs. Therefore, the seventh, the eighth and
the ninth equation in (3.21) give

vs = Avy — fi,
(3.22) v = Avy — fo,
V4 = Avg - f3.

Then it is clear that vy € Hy(0,L), v2 € Hy(0,L) and v3 € H}(0,L). Furthermore, by
(3.21) we can find z;(i = 1,2, 3) as

(3.23) z1(x,0) = v5(x), z2(x, 0) = ve(x), z3(x,0) = v7(x), forx € (0,L).

Following the same approach as in [12], we obtain by using equations for z; in
(3.21),

0
21(x, p) = vs(x)e O + 1y (TP f folie, )" ds,
0

0
(3.24) 22(x, p) = ve(x)e2OP 4 1y (t)e A T20p f fa(x, s)e’ 0" ds,
0

0
z3(x, p) = v7(x)e™VOP 4 75(H)e AT 0P f folx, s)e" 0= ds,
0

From (3.22), we obtain
21(x, p) = Avy(x)e 0P — fe=Anibp

0
+11(t)e AP f fr(x,8)e* " ds,
0

22(x, p) = Ava(x)e A 2OP — fe=AT2(p

(3.25) ,
+7o(H)e A2 f fo(x,s)e’ ™" ds,
0

z3(x, p) = Avs(x)e 1O — fre=Asp

0
+73(t)e 0P f fo(x,8)e ™" ds,
0
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vy = (fo (vg +f10)€Td’L’) es,
(3.26) = (f (vs + fi)e dT) -,
V9 = (fo (ve +f12)€Td’L’) es.

By using (3.21) and (3.26), the functions vy, v; and v3 satisfying the following system

A2y + L (k1 + ’“ Elvy - go) U1 — é (k10xv3 — lk3v1)

—p—ll (k19xv3 + kpdyv3) + %21(-1 1)

= (22 +1) % +(f (Avs — f5 + fo)e TdT)e

+% (k1 + kzaxvl - %(kg} - gg) 8xv3
(3.27) i
—L (f (Avg — f1 +f12)€TdT) e’

+A(f (Av2 = fo +f11)erT)esA+ nol D =f+Gf
(A2 + B2 oy + By 4+ B9 0y 4 By

~L (ke = g2) v + 2 2(, 1)

_Z_§‘9m (fo (Ava = fa +f1z)€TdT) e = (/\ + %)ﬁ + fo.
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Solving system (3.27) is equivalent to finding (v1, v2, v3) € (H*NH}(0, L))® such that

L 1 A
f A2 U3 + — (k1 + —v3 — _I]O) xxvl}gi)ldx
0 P1 P1
i (k1(9xl)3 - lk3l)1) - i (k18x1)3 + k28xv3)} gbldx
P1 P1

[
+ fo %zl(. Drdx
= fo {(% + 1)f3 (f (Avs — f3 +f10)erT)e }gindx

fOL{ (Zkl ”A]m}@dx
)

{ (k1 + k28 U1 — —(k3 - _l]o) 0 1)3} gi)zdx

(3.28) +f {—v3+—23( 1)}q52dx

:fo{ (f()\vl f1+f12€d’[)e‘+f5+—fz}¢2dx

L
+f0 {)L (fo (Ava— fo +f11)€Td’L’) e_sA} ¢podx,

Yl Ak k

fo {( ) 1+Ev +E xUlL}¢3dx
]O‘L{i( xxvz}¢3dx+f0 {% 2( 1)+%U3}¢3dx
[ o[

+f {(A+ ”1)f1 +f6}¢3dx

[¢8}

Consequently, problem (3.28) is equivalent to the problem

(3.29) a((v1,v2,v3), (P1, P2, §3)) = L(P1, P2, P3),
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where the bilinear form a : [H{(0, L) x Hy(0, L) X Hy(0, L)]* = R and the linear form
L: H}(0,L) x Hy(0,L) X Hy(0,L) — R are defined by

(3.30)

(3.31)

a((v1,v2, V3, 1, P2, P3)
A

{szg + l (kl + %U3 - gé) achvl} (Pldx
1

p1

L

{pi (k1905 - lkgvo} drdx
1

L

|
ﬁhh

I
P — (k19xv3 + kpdyv3) + l:;_zl( 1 }¢1dx

L A 2
A lk1 ,U Uy + ﬁvg)} gi)zdx
P1
2

+

+

=

L
pl k1 +k2(9 v — —(k3 —90)8 v3 + [; Z3(., 1) gbzdx
1
A
(Az + el ) v + lk—ll)3 + —8 U1 + &03} ¢3dx
P1 . P1 P2

1
p— k2 - gO xxvz + [;—Zz( 1)} ¢3dx

L

+

&c%o%,c%

L

—

L(CPL P2, P3)

f {(&”)ﬁ (f (s = f+ fro)e Tdf)e‘“}@dx

+ fo L{ ( (Avy— fo + f11)€TdT) ‘SA}@dx
. f { § ( (Ava— fo+ fo)e Td’L’)@ S}¢3dx,
N

+

It is easy to verify that a is continuous, coercive and L is continuous. So ap-
plying the Lax-Milgram theorem, we deduce that for all (¢1, ¢2, P3) € Hl(O L) %
Hl(O L)xH (0, L) problem (3.4)-(3.5) admits a unique solution (v1, v2, v3) € H} 0(0,L)x
H, 1(0 L) x Hy(0,L). Applying the classical elliptic regularity, it follows from (3.29)
that (v1,v1,v3) € H*(0,L) X H*0,L) x H?(0,L). Therefore, the operator AI — A is
surjective for any A > 0. Consequently, the existence result of Theorem 3.1 follows
from the Hille-Yosida theorem.
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4. Asymptotic Stability

In this section, we prove the asymptotic stability result by constructing a suitable
Lyapunov functional. Now, let us introduce the following functionals

L +00
4.1) Li(t) = —p1 fo @i fo g1(s)mdsdx,
L +00
(4.2) L(t) = —p2 fo Yi fo 92(s)n2dsdx,
L +00
(43) 1) = —pi fo o fo g3()adsidx,
L
(4.4) Ly(t) = fo (p19@: + p2yPs + prwwy) dx,
L 1 3
(45) so= [ [ Y awer e pdpdy,
0 J0 55
where
(4.6) I5(t) = Is(t) + I7(t) + Is(t),
such that
L 1
4.7) Is(t) = f f E1(te P22 (x, t, p) dp dx,
0 0
L 1
(43) p= [ [ ete e p dod
0 0
L 1
(49) () = fo fo E3(e 20022, 1, p) dp d,
(410) Io(t) = Il(t) + Iz(t) + I3(t).

Then the following result holds.
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Lemma 4.1. (Compactness-Uniqueness). There exists a positive constant C such that the
following inequality holds for every (¢, v, w) € (Hy(0,L))?

L L
(4'11) fo (|(Px|2 + |§bx|2 + |wx|2) dx < Cf(; (k2|lpx|2 + kllfpx + l,b + la)|2)dx
+hslwy — lp|? dx.

Proof. We will argue by contradiction. Indeed, let us suppose that is not true. So,
we can find a sequence {(@y, , ,)}hven in (H}(0,L))? satisfying

L
(412) f (k2|¢vx|2 + k1|(va + ll} + lwvlz + k3|a)vx - Z(Pvlz) dx < %
0
and
L
(4.13) f (Ipoxl® + [hual® + | dx = 1.
0

From (4.13), the sequence {(¢y, ¥, wy)}ven is bounded in (H}(0, L))®. Since the em-
bedding H}(0, L) < L?(0, L) is compact, then the sequence {(¢y, v, wy)}ven converge
strongly in (L?(0, L))°. From (4.13)

(4.14) Yy — 0 strongly in L*(0,L).

Using Poincaré’s inequality we can conclude that

(4.15) Y, — 0 strongly in L*(0,L).

Now, setting ¢, — ¢ and w, — w strongly in L2(0,L). From (4.14), we have
(4.16) @vx + Py + lw, — 0 strongly in LZ(O, L).

Then

(4.17) Qv + Py +lwy, = o + ¢y, + 0y — w) + lw — 0 strongly in L2(0,L).
which implies that
(4.18) @vx — —lw strongly in L*(0,L).

Then, {¢,}, is a Cauchy sequence in H 1(0,L). Therefore {py}n converge to a function
p1inH L0,L). Consequently {¢, }, converge to @1 in 12(0,L). Thus by the uniqueness
of the limit ¢; = ¢. Moreover ¢ € H}(0, L), then from (4.18) we deduce that

(4.19) ¢x+lwo=0a.exe(0,L).
Similarly, we have
(4.20) wy—lp=0a.exe(0,L),

and w € Hé(O, L). Using (4.16) and (4.18), we deduce that ¢ = w = 0. This
contradicts (4.8). Hence the proof is completed. O
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Lemma 4.2. The functional defined in (4.10) satisfies for any 6 > 0

L L
Ii(t) < —pa(g] = 6(1 + o)) f prdx + lIl(Sf Yydx
0 0

_ L L
+[I16f whdx + cs f {lpx + (P + U + L) + (wy — l(p)z}dx
0 0

L 00 L 00
+Co f f 91(8)(@xm ) dsdx — c5 f f 7,(s)(Dxm1 ) dsdx
(4.21) 0, Jo_ 0, Jo_
+Co f f 92(8)(Dx112)*dsdx — ¢ f f 75(5)(Dx12)*dsdx
L oo 01 ¥ %0
+Cs f f 93(5)(xm ) dsdx = c5 f f 75(5)(x113) dsdx
0, Jo 0 Jo

+cs f {22, 1,6+ (x, 1, £) + Z(x, 1, ) dx.
0

Proof. Differentiating (4.10) with respect to t and using the third equation in (3.4)-
(3.5), integrating by parts and using the fact that

00 d 00
8 [ aomas= 2 [ aie-9 00 - g
(4.22) = fo yi(t—s)(q?(t)—@(s))dﬁ( fo gl(t_s)ds)(Pt
=], iOmds+gipn
in the same way for
d 00 00 , O
(4.23) it ), g2(s)nads = | 92(8)2ds + gy,

and

d (= ~
(4.24) pr f ga(s)nads = f g5(S)mads + gy
0 0
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we conclude that

I’(t)——plglf (pfdx plf(ptf g1 (s)mdsdx

+k1f((Px+l,l)+lwf g1(s)dxmdsdx
0

00

—kgf( Wy l(p)f g1(s)mdsdx

0

0
L o0
- f (Px( f _171(5)9xmd5)
(4.25) 0 2 L
f ( gl(s)8x171ds) dx+y1f i(x, t)fmgl(s)mdsdx

L
+[sz z1(x, 1, t)fgl(s)n1dsdx+y1f Qi(x, t)f go(s)nadsdx

L L
+y2f zz(x,l,t)rgz(s)nzdsdx+[u1f (pt(x,t)f g3(s)nadsdx

0 0 0 0

VAL
+i f z3(x,1,1) g3(s)nadsdx.
0 0

Using Young's, Poincaré’s and Holder’s inequalities for the last six terms of the
above equality, using the second and third equations of (3.5), we find

L L
I < —pa(g) — 61 + .Uz))f Qrdx + lTlfo Yrdx
0 0
_ L L
+'u~16f w*dx + c5 f {g!/x + (P + Y + ) + (wy — l(p)Z}dx
0 0

L 00 L 0o
+c 91(8)(Dxm )*dsdx — ¢ 7,(8) (9211 )*dsdx
w26 5 f f 1 1 5 f f 1 1
+Cs f f 92(5)(Dx12) dsdx — c5 f f 75(8)(Dx12)*dsdx
cr + cs f f 95(8)(9xm1 ) dsdx — c5 f f 74(s)(9x3) dsdx

+cg f {zl(x, 1,t)+ zz(x, 1,t)+ z3(x, 1, t)} dx.
0

The proof is hence complete. [
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Lemma 4.3. The functional defined in (4.4) satisfies for any € > 0

L) < fo ) {(p1 +€)p? + (p2 + ey} + (p1 + )} dx

- fOL {4}% + (P + ¥ + ) + (wy — l(p)z}dx

. [ L [ @@ + 020000 + gxox@ome ) a
L

+ce f {z%(x, 1,1+ z%(x, 1,1+ zg(x, 1, t)} dx.
0

4.27)

Proof. Differentiating I4(t) with respect to t, we see that

I’(t f (Pl(Pt + pzt,l)t + pla)t)dx klf (px + ¢ + lw) 2dx

+glf 2dx (kp — z)f lpidx+g3f 2tJlx

f Px f g1(s)dymidsdx — f Uy f 72(8)dy1adsdx
(4.28)

fa)xf g5(s)dxnadsdx — y1f prpdx — [Jlf Yipdx

—ylf wrwdx — yzf z1(x, 1, H)pdx — yzf zo(x, 1, )pdx
0

—ﬁz fOL z3(x, 1, Hwdx — ks f (wy — l(p)zdx.
0

Using Young’s and Poincare’s inequalities, we get for any € > 0

f P f g1(s)dymidsdx — f Uy f G2(8)dx1adsdx

(4.29) - f Wy f g3(s)dxnadsdxdx

o 3
< ef (@2 + P2 + w)dx + cf f Z(gi(s)(ﬁxni)zdsdx,
0 0 Jo 5=
L L _ I
_-ulf (Pt(de_lef E[/thdX—,LTlf wrwdx
0 0 0

L
Sef((pf+1pt+wt)dx+c€f((px+¢x+a)
0

(4.30)

L L . L
—H2 f 21 (xr 1/ t)(de - [’E f ZZ(xr 1/ t)#}dx - [’FIZ f Z3(xr 1/ t)wdx
(4.31) Jo 0 0

0

L
< Ce {z%(x, 1,1+ z%(x, 1,1+ zg(x, 1, t)}dx + ef ((pi + 1,!/)% + w?)dx
0

117
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Inserting (4.29)-(4.31) into (4.28), we find

L
10 < [ {or+ 0+ (2 0t + (o1 + o o
L
—(ko — 2€) f (@2 + P2 + wh)dx
I OOO
Ce fo L ](; {7160 + g2(9)@sm2)? + g3(s)(D22)*) dx
+ce f {z%(x, 1,1+ z%(x, 1,6+ zg(x, 1, t)} dx
0

(4.32)

Then (4.27) is proved. [

Lemma 4.4. Then the functional defined in (4.5) satisfies

4 I5(t) < —2c&1(H)I6(t) — Cf%ff) f z3(x, 1, t))dx+él() f @2 (x, t)dx
0 0
(4.33) ~2c&(OI () - $22 f 2(x, 1, £))dx +'52( f V2 (x, t) dx
L
—2cs(b)lg(h) - S0 f 21,1, ))dx +’53(” f W, 1) dx
0

Where to1, To2 To3 , T11, T2o and Tag are a positive constants.

Proof. Differentiating (4.5) with respect to t and using the third equation in (3.4),
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we have

k< 4 [é (HePn® f f e, t))dpdx]
_ é (t)e T1(t)p f f (x p, dkdx

~&1(f)pe Py (h) f f 2(x, p, t))dpdx
+r_(t) _Tl(fp"fl(t)él(tff (x p, 1)dpdx

=& (He mrp 22(x, p, t))dpdx
1 o Jy A P p
L Al

(4.34) & (Hpe P () f f 2(x, p, D)dpdx
v [ f 51 ()=, p, DM
< ~&(Bpe T () f f 2(x, p, )dpdx
&)L f 2(x,1, dx
+50 [él(t) f [z7(x, 0, £))dx — 23 (x, 1 t)]dx]
< —208y(Bl(t) — L0 f 2(x, 1, H)dx +'51(t) fo @2 (x, 1) dx,

in the same way for I;(t) and Is(t)

(4.35) I;ﬁ< “2eE (DI (t) — Cf;g) f 2(x,1,t) dx+52—(t) f V2 (x, 1) dx,
0

(4.36) If‘d—(:)< “2c&3(D)I(t) — 653“) f 2(x,1,B)dx + 53() fo W (x, t) dx

Summing (4.34), (4.35) and (4.36), we get the desired result. So the proof of Lemma
4.4is completed. O

Now, let N7, N> > 0 and

(437) L(t) = NlE(i') + Nz(Il + I + 13) + Iy + I,
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where E is the energy functional associated to (3.4) and defined in (3.7). Note that
E is non-increasing according to (3.8),

B0 < (1 - % - s ) lold - (7 - § - i I3

-~ ¢ T 2 S(1-T1(1) wVI-d; 2
~( =5 - i el = (2052 — 1, 1R

_ (éz(l—fg(t)) I \/@)
2

3 llz2(x, 1, )II3

&A-10)  mNI-d
- (M = B e 1, 1

L ) . .
+% f f g‘,l (S)(axﬂl)stdx + 1 f f g;(s)(aJ(UZ)zdsdx
0 0 2 0 0

L oo
+3 fo fo 95(5)(Dx113) dsdx.



Well-posedness and Asymptotic Stability to a Bresse System 121

Using (3.8),(4.21) and (4.27) with (4.33), we get

L
L’ (t) < =Na(c1 — c¢s) f {l)l}x + ((Px +1¢+ la))2 + (wy — l(p)Z} dx
0

—{Napr(g? = (1 + 1) = Nac = 29} [ gy
0

+N1(y —ﬂ— 1d1 f(ptdx

(co + N2 + “5““} 21z, 1, )

2711

2T 22

a
a
(4.38) ‘{Nl(( T -y )
v (D - BER) (g 4 coNa + B2 o, 1, 1B
| =)-

(co + N + 20 } lz3(x, 1, D2

2’[’;

L 3 0o
+Na(ce + (3)(9y;)?dsd
e C‘”fo;fo 9i(5) @urPelsdx
L o 3
+(%—c5Nz) f f Z(g;(s)axn,»)zdsdx
0 Y0 S
L 1 3
-2 (D23 (x, p, Hdpdx.
f0f0;5<>z,<xp \pdx

We choose N large enough so that

- 0_ VR SL0) S
p1= {szl(fh O(1 + 1)) — Nac o1 + Ny (#1 5 Wi )} >0

I N P Y N [ S W1 () B
B2 = {Nl(lil > ZM) -~ Nzy2}>0

(= a0 @ ) &n =
ﬁB = {Nl ([Jl > 5 m\] Tos Nz[,lz} >0
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1—-1/(t 1-d
by = {Nl E1( 2’51( ) 2 \/2 1) (€ + CON, + cf;ﬁ‘)} -0
1-7() BVIi-d
Bs = {N1 2 ;2( ) i 5 2 1= (cs + co)No + —Cjiz)} >0
Ps = {Nl SU-60) fVlzd) (cs + ce)N2 + Cég(t)} 7
2 2 2733

such that min{f, 2, B3} > 0. (Note that g? > (O because g; is continuous non-negative
and g;(0) > 0 ) and we find, for some positive constants c4

L 3 )
L'(t) < —c4E(t) + Na(ce + C(j)f Z f gi(s)(ani)stdx
0 “='Jo

L o 3
+(5 - esNa) fo fo Z(9§(5)3x17i)2d5dx-
i=1

On the other hand, by (4.37) and definition of E(t) and I;, there exists a positive
constant Ny(not depending on Nj) such that

(4.39)

(4.40) (N7 = N)E(#) < L(t) < (N1 + NgE(b).

Thus, choosing Ny > N3 and using the fact that,g; < 0, we conclude

Y] 0o
(4.41) L'(t) € —c4E(t) + Na(ce + +C5)f Z f gi(8) (1) *dsdx.
0 ='Jo

Lemma 4.5. ([17]) For any i = 1,2,3, there exist positive constants «; such that the
following inequalities hold

L 00
(4.42) fo fo 9i(s)(9xni)* < —a;E'(t) if (H2) holds

(4.43) COL' (1) < ~mCOE®) - 2pE'(1), V1> to.

Proof. Define x(t) = C(t)L(t)+2n2E(t), which is equivalent to E(f) and C'(t) < 0Vt > 0,
we obtain

X'(t) < T(HL(E) — mal(HE()
(4.44) < —al(HE®), VY S to.

Integrating the last inequality over (to, t), we conclude that

t
- f C(s)ds
(4.45) x(H) < x(0)e vt .
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Then, the equivalent relation between x(t) and E(t) yields

(4.46)

t
—a | C(s)ds
E(t) < Ke >fto .

This completes the proof. [
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