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RIGHT CONOID HYPERSURFACES IN FOUR-SPACE

Erhan Giler and Mustafa Yildiz
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Abstract. The right conoid hypersurfaces in the four-dimensional Euclidean space E*
are introduced. The matrices corresponding to the fundamental form, Gauss map, and
shape operator of these hypersurfaces are calculated. By utilizing the Cayley—Hamilton
theorem, the curvatures of these specific hypersurfaces are determined. Furthermore,
the conditions for minimality are presented. Additionally, the Laplace—Beltrami oper-
ator of this family is computed, and some examples are provided.
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1. Introduction

A ruled surface

t(u,v) = a(v)+uf(v)
= (0,0,h(v)) + u(cos f (v),sin f (v),0)

is termed a right conoid in three-dimensional space E? if it can be generated by the
translation of a straight line that intersects a fixed straight line, while ensuring that
the lines maintain a perpendicular relationship throughout the generation process.
By considering the zy-plane as the perpendicular plane and selecting the z-axis as
the reference line, the parametric Eq. for the right conoid is given by

x(u,v) ucos f (v)
t(u,v) = | ylu,v) | = | wusinf(v)
z(u,v) h(v)
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Helicoid, Whitney umbrella, Wallis’s conical edge, Pliicker’s conoid, hyperbolic
paraboloid are each examples of a right conoid surface. See Berger and Gostiaux
[2], Do Carmo [4], Gray [5], Kreyszig [6] for details.

The aim of this study is to investigate the properties of the right conoid hyper-
surfaces in the four-dimensional Euclidean space E*. Specifically, we aim to compute
the matrices associated with the fundamental form, Gauss map, and shape operator
of these hypersurfaces. By employing the Cayley-Hamilton theorem, our objective
is to determine the curvatures of these particular hypersurfaces. Additionally, we
aim to establish the conditions for minimality within this context. Moreover, we
seek to unveil the connection the Laplace—Beltrami operator of that kind hypersur-
faces.

In Section 2., a detailed explanation of the fundamental principles and concepts
underlying four-dimensional Euclidean geometry is provided.

Section 3. is dedicated to the presentation of the curvature formulas applicable
to hypersurfaces in E4.

In Section 4., a comprehensive definition of right conoid hypersurfaces is offered,
emphasizing their distinctive properties and characteristics.

In Section 5., the focus shifts to the discussion of the Laplace-Beltrami oper-
ator for a smooth function in E?, and the application of the previously examined
hypersurfaces in its computation.

In the last section, we present a conlusion.

2. Preliminaries

In this paper, we use the following notations, formulas, Egs., etc.

Let M be an oriented hypersurface in E**! with its shape operator S, position
vector 2. Consider a local orthonormal frame field {ej, ea, . .., €, } consisting of prin-
cipal directions of M coinciding with the principal curvature k; for i = 1,2,...,n.
Let the dual basis of this frame field be {f1, fa,..., fn}-

We let s; = 0;(ki1, ko, ..., k), where o; denotes the j-th elementary symmetric
function defined by

aj(al,ag,...7an): E ailai2...aij.
1§i1<i2<...<ij§?’b

We consider the notation

rf = Uj(k17 k27 LR} ki*la ki+17 ki+27 LR} kn)

According to the given definition, we have 7'? =1and sp+1 = Spy2 =---=0. The
function s, is referred to as the k-th mean curvature of the oriented hypersurface M.
The mean curvature H = %81 is also defined, and the Gauss—Kronecker curvature
of M is K = s,. If s; =0, the hypersurface M is known as j-minimal.
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In Euclidean (n + 1)-space, getting the curvature formulas &C;, i = 0,1,...,n,
(See [1], [3], and [7] for details.), we have the following characteristic polynomial
Eq. Ps(A\) =0of S:

n
(2.1) D (=1 spAmF = det(S — AT,) = 0.
k=0
Here, Z,, indicates the identity matrix. Hence, we reveal the curvature formulas as

(T.L) Ki=s;.

1
In this paper, we have identified a vector with its transpose. Let r = r(u, v, w)
be an immersion from M3 C E3 to E4.

Definition 2.1. An inner product of two vectors ¢! = (90%’@%’@%’%11)7 o2 =
(0%, 03,03, %) of E* is determined by

(o', 0%) = 105 + 3005 + 303 + Q105

Definition 2.2. A triple vector product of ¢! = (1, 3, 3, 1), ©* = (V3,2 03, ¢3),
903 = (‘P?a Sﬁg, s0§, 902) in E* is defined by

€1 €2 €3 €4

1 1 1 1

1 2 3 _ 1 P2 P33 Pq
X X = det

LR o 93 w3 w)

R T T

Definition 2.3. The matrix (g;;) " -(hi;) determines the shape operator matrix
S of hypersurface r in Euclidean 4-space E*, where, (8i) 35 and (byj),, 5 describe
the first and the second fundamental form matrices, respectively, and g,; = (ri,1;) ,
bij = (1, 0), in5 = 1,2,3, tu = 25 when i = 1, tuy = ok, when i =1land j =2,
etc., e, denotes the natural base elements of E*, and

(22) Fu X F’U X Ziw

lrw X 1o X Euwll

determines the Gauss map of the hypersurface t.

3. Curvatures in Four-Space

In this section, we reveal the curvature formulas of any hypersurface ¢ = r(u, v, w)
in E*.

Theorem 3.1. A hypersurface r in E* has the following curvature formulas, Ko =
1 by definition,
(3.1) 3K = 2, 3K, = -, Ky =2,

%] €3 €3
where c3A3+ A2+ c1 A\ +¢o = 0 describes the characteristic polynomial Eq. Ps(\) =
0 of the shape operator matriz S, ¢z = det (gi;), co = det(bs), and (gij)5y53,
(hij)5y 5 denote the first, and the second fundamental form matrices, respectively.
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Proof. The matrix (gij)il'(hij> describes the shape operator matrix S of hyper-
surface ¢ in Euclidean 4-space E*. We reveal the characteristic polynomial Eq.
det(S — A\Z3) = 0 of S. Thus, we obtain the curvatures

Ko = 1,
€2
3, = k1+k52+k‘3:—:,
3
¢
3, = k1k2+k1k3+k2k3:?17
3
Ks = k1k2/€3=—cfoa
€3

O
Definition 3.1. A hypersurface ¢ is called j-minimal if Kj =0, where j =1,2,3.
Theorem 3.2. A hypersurface ¢ = r(u,v,w) in E* has the following relation
KolV — 3IC I 4 3/CoIl — K3l = Os,

where I, I T, TV determines the fundamental form matrices, Os represents the zero
matriz having order 3 of the hypersurface.

Proof. Regarding n = 3 in (2.1), it runs. 0O

4. Right Conoid Hypersurfaces

In this section, we define the right conoid hypersurface (RCH), then find its
differential geometric properties in Euclidean 4-space E*.

In E4, we consider a ruled hypersurface

t(u,v,w) = a(v,w)+ub (v,w)
= (03070ah(vaw))
+u (cos f (v) cos g (w) ,sin f (v) cos g (w) ,sing (w) ,0).

Then, we present the following.

Definition 4.1. A right conoid hypersurface is an immersion ¢t : M3 C E3 —
E* with the reference line x4, parametrized by

21 (u, v, w) u cos f (v) cos g (w)
4D wew = | R e b
xa(u, v, w) h (v, w)

Here, u € R—{0}, f = f(v), g = g(w), h = h(v,w) denote the differentiable
functions, and 0 < f, g < 2m.
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Taking the first derivatives of RCH determined by Eq. (4.1) with respect to
u, v, w, respectively, we obtain the first fundamental form matrix

1 0 0
(4.2) (g;) = | 0 w’flcos’g(w)+hi  hyhy ;
0 Byl u?g2 + hZ

and f, = 61;’ 2= 81}2, etc.. Hence, g = det (g;;) = u*W, where

W = f2 (u’gs, + hi) cos® g (w) + higa,.

Using the Gauss map formula (2.2) , we obtain the following Gauss map of the RCH
determined by Eq. (4.1):

— ol cos £ (v) sin g (w) cos g (w) — hyg, sin f (v)

(4.3) G— 1 — fohyw sin f (v) sin g (w) cos g (W) + hygw cos f (v)
' oWL/2 fohuw cos? g (w)
_ufvgw COSQ( )

By taking the second derivatives w.r.t. u,v,w, of RCH described by Eq. (4.1), and
by using the Gauss map given by Eq. (4.3), we find the second fundamental form
matrix

b1 = 0, b2 = 7fvgwf;vcosg hiz = 7fvgwlz/vcosg’
[121 — fvgwhv COSg7
w
(44) h22 _ u (fghw Sing COS g + Guw (hvfm; - fvhmz)) COos g
W b
_ ufvgw (hvgw SiIlg + oy cos g) o fvgwhw COs g
bas = — W » ba = T
_ ufuguw (hoGuwsing + hyy cos g)
b2 = — W )
h33 _ _ uf'u (hwgww - gwhww) COSg7
w

and fy, = 8u27 Suw = 8u8’u7 etc.. By using (4.2) and (4.4), we compute the following



822

E. Giiler and M. Yildiz

shape operator matrix S of (4.1). S = (s45), 5 has the following components

511

512

513

521

5922

5923

531

532

533

0,
hyguw fo cos g
W b
hwGuw fo COS g
W b
hvgfj,fv cos g
W2 ’
1 .
oz hw fo (guhs + f3 (h%, + u?gy,) cos® g) sing
—H]w (fvh'uhwhvw + (hi; + U2gz2u) (hva'u - fvhv'u) + U2g12uhvav) COSs g],
fo
uW?
—hvg?u (hfu + uQQ?U) sin g],

[(—gwhw (hwhow + hohww) — U2 g2 hpw + hvhﬁ)gww) cosg

thgw ff cos® g,
1 . )

W [*UQfggwhvw COS3 g

_hvgw (fvhvhvw - fvhwhvv + hthfvv) COS g

—hy fo (gihi + f2 (ngi + hfu) cos? g) sin g,
fv

uWW?

+hv (gw (hwhvw + h'uhww) — h'uhwgww) COS g + g?uhghw Sing]_

[’LLng (gwhww - hwgww) COS3 g

Finally, using (3.1), with (4.2), (4.4), respectively, we find the curvatures of the
RCH defined by Eq. (4.1) as follows.

Theorem 4.1. Let t be a RCH determined by Eq. (4.1) in E*. 1 contains the
following curvatures, Ko = 1, by definition,

1

Ky = - 32 [u2f3 (gwhww - hwgww) COSS g
+2fug2hohw sing + fohy (b2 4+ u’gs,) singcos® g
+(gwfv (thhwhvw + hihww — hyo (hqzu + UZQEU))

+hy (gwfvv (hi; + 2u2gz2u) - fvhvhwgww)) COS g}v
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_
3w

—hwfy (hey + 4?95 (Guwhww — hwguww) sin g cos® g

+13g2 h,, (29w (hi, +u?g2) hyw + hohuw (hwGuww — Guwhww)) sin g cos® g

390 (9w ol (he +u?gy) + foguhy (205, +u?gy,)

= fohwhogwo (5, +v?gy,)

tgwhww (fohoo (R +u”gs) = hofou (G, + 2u%gy,))

Fhohow fovGuw (h?ﬂ + 2u2912u)) cost g + hf,gi)fg’ (h?u + uggi) sin? g cos? g

03 g (foguhiw = Gwhwhow fow + fogulty + fogwhvohuw

— FohwGwwhos = 2Gwho fovhuww + 2hohu fouguww) cos® g + fug5 by sin® g

+h3g0, (2fuhvw — hu fon) sing cos g],

[f29uha (b + u?gy,) cos® g

f390 cos g
uWo
+f3(fv (h?u + UQQE,) (2gwhvhwhvw + gwh?;hw'w - gwhfuh'uv - h?,hwgww)

+h2 by foo (B2, + 2u?g2)) cos® g

+hwhZg2 2 (3h%, + 2u”g2) sing cos® g

+h2 g2 (2 foguwhohwhve + foguhihwe — fogwhihv
—fvhzhwgww + gwhvhi}fw) cos g + 2fvgﬁ)h3hw sin g].

represents the mean curvature, K3 denotes the Gauss—Kronecker curva-

(W3, f3 (B2, +u’gy,) sing cost g

Proof. By using the Cayley-Hamilton theorem, we reveal the following character-
istic polynomial Eq. Ps(\) =0 of RCH defined by Eq. (4.1):

where

Ko
3K,
3Ko

K3

KCoA3 — 3102 + 3K\ — K3 = 0,

1,

5922 + 33,

—$12521 — $13531 + $22533 — 523532,

—512521533 + 512531523 + 532 (521513 + S22523) — 522 (513531 + 523532) -

The curvatures IC; of ¢ are obtained by the above Eqs.. O

Theorem 4.2. Let ¢t be a RCH described by Eq. (4.1) in E*. ¢ has the following
principal curvatures

512521633 — §12631523 — $521513532 + §13522631 k
— h2,

ki =
5125921 + 513531

ks = 0.
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Proof. By using Eq. det(S — kZ3) = 0, it is clear. [

For the sake of brevity, we use the following notations

= —guho ¥ foo + folhwguwe + Gu fo®hyy — O,
Gwhww — hwGuww,

h?u + uggi,

= hi +2u%g,

= foguwhe 2hwhuw + hohww) -

O e & D -
|

Corollary 4.1. Lett be a RCH defined by Eq. (4.1) in E*. 1 is 1-minimal iff the
following partial differential Eq. appears

u? f3Q cos® g + f3h,®singcos? g+ 2f,g2h2h,, sing
+ (6 + hy (gwfvv\l/ - fvhvhwgww) - fvgwhvvq)) cosg =0,

where u, W # 0.

Corollary 4.2. Letr be a RCH determined by Eq. (4.1) in E5. ¢ is 2-minimal iff
the following partial differential Eq. occurs,

ffgihfuq) cosb g — ffhquQ sin g cos® ¢

+ 292 hy (260 Phyw — hyhy ) sin g cos® g

+f39w(fvgwhq2;wq) + gq?;;fvhq% (Qh?u + ugg?ﬂ) + hwGuww (Ao foo ¥ = fohuw®)
+Gwhww (—ho fou U + foho®)) cost g + g2 h2® sin? g cos? ¢
+h12;g§u(gwfv (Qihz + h?;w) + (]- - ZthUv) Q- gwhwhvwfvv) 0082 g
+fogS it sin® g + 13¢5, (2fohvw — hu fou) singcos g = 0,

where f,, W #£ 0.

Corollary 4.3. Lett be a HRF given by Eq. (4.1) in E5. 1 is 3-minimal iff the
following partial differential Eq. holds

h3 f2Wsin gcost g

+f3(gwhvhi;fvv\ll + qu) (gwhw <2hvhvw - hwhv'u) + h%Q)) COS3 g
+f292h2hy (3h2, + 2u?g2)) sin g cos? g

+2fpgt hh,sing = 0,

where fy, gw,cos g, u, W # 0.

Note that the solutions for A in Corollary 4.1, Corollary 4.2, and Corollary 4.3
are open problems.
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5. Right Conoid Hypersurfaces with Ar = Qr in E4

In this section, our focus is on the Laplace—Beltrami operator of a smooth func-
tion in E*. We will proceed to compute it utilizing the RCH defined by Eq. (4.1).

Definition 5.1. The Laplace—Beltrami operator of a smooth function ¢ = ¢(zt, 2%, 23) |p
(D C R®) of class C? depends on the first fundamental form (g;;) of a hypersurface
t, is defined by

4

_ 1 9 ([ 1/2_ij 00
(5.1) A¢g1/2_2893ﬂ<g gj(‘)mj)’

i,j=1

where (g7) = (1)~ and g = det (gy;) -
Therefore, we give the following.

Theorem 5.1. The Laplace—Beltrami operator of the RCH ¢ denoted by Eq. (4.1)
is given by Ar = 3K1G, where Ky describes the mean curvature, G represents the
Gauss map of ¢.

Proof. The Laplace—Beltrami operator of the RCH given by Eq. (4.1) is determined

I B R RYCeRe § O ([ 1/2,2208 0 (1720300
Ar = g1/2[8u<g 9 ou +8v 8% By +(9v &% B

0 Oor 0 Or
5.9 9 (172 320F 9 (17233 9L
(52) +3w<g %) Taw \B 8 5w )]
where
(5.3) g'' = 1, ¢2=0, g =0,
g = 0, g®= w?gs +h%u’ 23 _ 7hvhw’
g g
By 5 u’f%cos?g+ h?
931 = 0, 932 = ) 933 = ’
g g

and g = u? (f2 (u?g2 + h2) cos? g (w) + h2g2). By taking the derivatives of the
functions determined by Egs. (5.3) in (5.2), w.r.t. u,v,w, resp., we obtain Ay =
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(Ary, Axa, Ars, Ary) with components

1
Ay, = — Y0 [—u? f2h,Qcos fsingcos? g — f2h2 ® cos fsin® g cos® g

—u? f3g,hQsin f cos® g — 2f2g2 h2h2, cos f cos gsin® g
—f2guhoh,®sin fsin gcos® g + fuheI cos fcos? gsing
—2fug3 h3hy sin f sin g + h,g,T'sin f cos g],

1
Ay, = — YTZ [—u? f2h,,Qsin fsingcos? g — h2 fi®sin fsin? gcos® g

+u2f5’gwhvﬂ cos f cos® g+ fuhyI' cos? gsin fsing
4+ f3Guwhohy,® cos f cos® gsing — 2f%g2 h2h2 sin f cos g sin? g
—hoygul cos fcos g + 2f,93 h3h,, cos f sin g],

1
Ars = —W[fvhw(UQfSQCOSSQ-i—fgthI)COS4gSing—FCOSSQ
u
+2f,92 h2h,, cos? g sin g)],
1 2 ¢3 4 3 3
Aty = ——=[ufoguw(—uf;Qcos™ g — fihy,®cos® gsing

uW?
4T cos? g — 2f,92 h2h,, cos gsin g)].

O

Definition 5.2. The hypersurface  is called harmonic if each componets of Ay is
Zero.

Example 5.1. Substituting f (v) =v, g (w) =w, h(v,w) =w on a RCH defined by Eq.
(4.1) in E*, we have

1
(5.4) G = W (= cosvsinw, — sin v sin w, cos w, —u) ,
u
1
0 0 ()7
tan w
S = 0 u(u2+1)1/2 0 ’
1
(u2+1)3/2 0 0
the principal curvatures are given by k1 = u%ﬂ = —ko, ks = (t%sl/z, and the curva-
uluw
tures are determined by
K tan w
1 = 75
3u (u? +1)%/2
1
Ky = ———F—0,
3(u?2+1)
K tan w
3 = -

w(u? +1)%2
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Then, .
an w . . .
Ar = ————— (—cosvsinw, — sinv sinw, cosw, —u) .
u(u? +1)

Finally, the hypersurface is non-minimal and non-harmonic.

Example 5.2. By taking f (v) = v, g(w) = w, h(v,w) = v on a RCH determined by
Eq. (4.1) in E*, the Gauss map is determined by
1
Gg=——————(—sinv,cosv,0,—ucosw).
(u? cos? w 4 1)*/? ( )

Then, the shape operator matriz is given by

0 cos w 0
(u2 cos? 'w+1)1/2
cos w _ u sin w
S = (u2 cos?2 w+1)3/2 0 (u2 cos? w+1)3/2
0 sin w 0

u(u2 cos? w+1)1/2

cos!/? (2w)

WTeosTuwr1 = k2, ks = 0. The curvatures

The principal curvatures are determined by k1 =
are described by
Ki = 0,
cos 2w
Ko = — 20
3 (u?cos?w+1)
Ks = 0.

Therefore, Ax = (0,0,0,0). That is, the hypersurface is 1-minimal, 3-minimal, and har-
monic.

6. Conclusion

This research has focused on the study of right conoid hypersurfaces in the four-
dimensional Euclidean space E*. The main objective was to analyze and understand
the geometric properties of these hypersurfaces.

We computed the matrices associated with the fundamental form, Gauss map,
and shape operator of the right conoid hypersurfaces. These matrices provide crucial
information about the local geometry of the surfaces, including their curvatures
and tangent spaces. By employing the Cayley-Hamilton theorem, the curvatures of
these specific hypersurfaces were determined. This theorem allowed for an effective
computation of the curvatures by expressing the characteristic polynomial of the
matrices in terms of the matrices themselves. Moreover, the research presented
the conditions for minimality in the context of right conoid hypersurfaces. These
conditions define when a hypersurface can be considered minimal within this specific
family. Additionally, the research explored the Laplace-Beltrami operator of the
right conoid hypersurfaces.

This research contributes to the understanding of right conoid hypersurfaces in

E*, providing valuable insights into their geometric properties, curvatures, mini-
mality conditions, and their relation to the Laplace—Beltrami operator.
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