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Abstract. The purpose of this paper is to establish some fixed point results in the set-
ting of metric-like space by defining an («a, 8)-admissible z-contraction mapping imbed-
ded in simulation function. Our results generalize and extend several well known results
in the literature of fixed point theory. A suitable example is also established to verify
the validity of the results obtained.
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1. Introduction

As generalization of the standard metrics spaces, metric-like spaces were con-
sidered by Amini-Harandi [3] and proved some fixed point theorems. There after
several authors have proved fixed and common fixed point theorem in metric-like
space, for example see [1, 7, 5, 6, 9, 8, 10, 11, 21]. In 2012, Samet et al. [24] intro-
duced the concept of a-contraction and a-admissible mappings and proved various
fixed point theorems in complete metric spaces. Afterward, many authors obtain
generalization of the result [24]. (For instance see [15, 17, 18, 19, 22]).
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Recently, Chandok[12] have introduced the notion of («, 5)-admissible mappings
and obtained some fixed point results. Some of authors (For instance [13, 14]) ob-
tained fixed point results by using the notion of («, /3)-admissible mappings and
certain contractive conditions. On the other hand, Khojasteh et al [16] introduced
a new class of mappings called simulation functions. In [16], they proved several
fixed point theorems and shows that many results in the literature are simple con-
sequences of their obtained results. In sequel, Argoubi et al.[4] modified the above
said definition and proved some fixed point theorems with nonlinear contractions.
There are many fixed point results in the setting of simulation function. (For in-
stance [1, 14, 15, 20, 23]).

In this paper, we consider simulation functions to show the existence of fixed
points of (a, §)-admissible z-contraction mapping in metric-like spaces. Our work
generalizes and extends some previous results in the literature. We modify and
generalize the results of Alsamir et al.[1], A. Dewangan et al.[14] and S. H, Cho[13].
Furthermore, we also give an examples to illustrate the main results.

2. Preliminaries

Let us recall some notations and definitions that we will need in the sequel.
Throughout this paper we assume the symbols R and N as a set of real numbers
and a set of natural numbers respectively.

Definition 2.1. [3] Let X be a non empty set. A function o : X x X — [0, 00) is
said to be a metric-like space (or a dislocated metric) on X if for any z,y,z € X,
the following conditions hold:

(01) o(z,y) =0=z =y;
(02) U(.’E,y) = U(y,.’b);
(03) o(x,2) < olx,y) +o(y, 2).

The pair (X, o) is called metric-like space.

Then a metric-like on X satisfies all conditions of a metric except that o(z, z) may
be positive for x € X. Following [3], we have the following topological concepts.

Each metric-like o on X generates a topology 7, on X, whose base is the family
of open o-balls, then for all z € X and € > 0

By(X,6) ={y € X :|o(z,y) —o(z,z)| <€}
Now, let (X, o) be a metric-like space. A sequence {z,} in the metric-like space
(X, 0) converges to a point € X if and only if lim,, o 0 (2, z) = o(z, ).

Let (X, 0) be a metric-like space, and let T': X — X be a continuous mapping.
Then lim, o0 T, = & = limy, 00 T(x,) = T(z). A sequence {z,} is Cauchy in
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(X,0), iff limy, ;00 0(Tm, s ) exists and is finite. Moreover, the metric-like space
(X,0) is called complete, iff for every Cauchy sequence {z,} in X, there exists
x € X such that

ngrfoo o(rp,r) =o(x,r) = n,}ggoo O (Tps Ton).-

It is clear that every metric space and partial metric space is a metric-like space
but the converse is not true.

Example 2.1. Let X = {0,1} and

B 2, ifx=y=0;
o(z,y) = { 1, if otherwise.

Then (X, o) is a metric-like space. It is neither a partial metric space (¢(0,0) £ o(0,1))
nor a metric-like space (¢(0,0) = 2 # 0).

Remark 2.1. A subset A of a metric-like space (X, o) is bounded if there is a point
b € X and a positive constant k such that o(a,b) <k for all a € A.

Remark 2.2. [3] Let X = {0,1} such that o(z,y) =1 for each z,y € X and let z, =1
for n € N. Then it is easy to see that z,, — 0 and z,, — 1 and so in metric-like space, the
limit of convergence sequence is not necessarily unique.

The following lemma is known and useful for the rest of paper.

Lemma 2.1. [3] Let (X,0) be a metric-like space. Let {x,} be a sequence in X
such that ©, — x, where x € X and o(x,y) = 0. Then for all y € X we have
hmn—>00 O—(I’na y) = O'(I, y)

Definition 2.2. [12] Let X be a non-empty set, T: X — X and o, : X x X —
R*. We say that T is an («, 3)-admissible mapping if a(z,y) > 1 and S(z,y) > 1
imply that «(Tz,Ty) > 1 and S(Tx,Ty) > 1 for all z,y € X.

Khojasteh et al.[16] introduced a new class of mappings called simulation func-
tions and proved several fixed point theorems and established that many results in
the literature are simple consequences of their obtained results.

Definition 2.3. [16] A function ¢ : [0,00) X [0,00) — R is called a simulation
function if ¢ satisfies the following conditions:

(¢1) €(0,0) =0;
(&) C(t,s) <s—tforallt,s>0;
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(¢3) If {tn}, {sn} are sequences in (0, 00) such that lim, o t,
= lim, 00 $n, =1 € (0,00), then lim,, o sup {(t,, sn) < 0.

The following unique fixed point theorem is proved by Khojasteh et al.[16].

Theorem 2.1. Let (X,d) be a metric space and T : X — X be a z-contraction
with respect to a simulation function , that is

((d(Tz, Ty), d(x,y)) > 0
forallz,y € X. Then T has a unique fized point.
It is worth mentioning that the Banach contraction is an example of z-contraction
by defining ¢ : [0,00) x [0,00) — R via ((t,s) = As — ¢ for all s,¢ € [0,00), where
A€ 0,1).

Argoubi et al.[4] modified Definition (2.3) as follows.

Definition 2.4. [4] A simulation function is a function ¢ : [0,00) X [0,00) — R
that satisfies the following conditions:

(1) C(t,s) <s—tforalls,t>0;

(#4) If {t,} and {s,} are sequences in (0, 00) such that lim, e t, = lim, e Sy =
[ € (0,00), then lim,,_, o sup ((tn, s,) < 0.

It is clear that any simulation function in the sense of Khojasteh et al.[16](Definition
(2.3)) is also a simulation function in the sense of Argoubi et al.[4] (Definition (2.4)).
The converse is not true.

Example 2.2. [4] Define a function ¢ : [0, 00) X [0,00) — R by

_ 1, if (s,t) =(0,0);
Sty s) = { As —t, otherwise.

where A € (0,1). Then ( is a simulation function in the sense of Argoubi et al.[4].

Some other examples of simulation functions in the sense of Definition (2.3) (see
[2, 16, 23])are as follows:

(1) C(t,s) =cs—tforallt,s € [0,00) where ¢ € [0,1).

(#3) C(t,s) =s— ¢(s) —t for all t,s € [0,00), where ¢ : R — R is a lower semi
continuous function such that ¢(¢t) = 0 iff ¢ = 0.
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3. Main Results
Now, we are ready to prove our first result with the following definitions.

Definition 3.1. [1] Let (X,0) be a metric-like space. Given T' : X — X and
a,B: X x X — RT. Such T is said an («, §)-admissible z-contraction with respect
to ( if

(3.1) (e, y)B(x, y)o(Tx, Ty), 0(x,y)) > 0

for all z,y € X, where ( is a simulation function in the sense of Definition (2.3).
Now, we prove our first fixed point result.

Theorem 3.1. Let (X,0) be a complete metric-like space and T : X — X be a
(a0, B)-admissible z-contraction mapping with respect to a ¢ simulation function if

there exist ¢ : RT — RT with ¢(t) < t such that

(3-2) CWla(z,y)B(z,y)o(Tx, Ty)),p(m(z,y))) = 0

for all x,y € X, where

[1+o(x,Tz)lo(y,Ty) }

m(x,y) = max {a(x, Y), 1+ o(1)

Assume that

(1) T is («, B)-admissible;

(2) there exists an element xg € X such that a(zo, Txo) > 1 and
B(m(thO) Z 1;

(3) T is o-continuous.

Then T has a unique fized point u € X with o(u,u) = 0.

Proof. By condition (2) of this theorem there exists g € X such that a(xg, Txo) >
1 and B(xg,Txo) > 1. Define the sequence {z,} in X such that x,; = Tz, for
all n € NU{0}. If , = xny; for some n, , = xp41 = Ta,. So x, is fixed
point of T" and the proof is completed. From now on assume that x,, # z,1 for all
n € NU{0}. Since T is an («, 8)-admissible mapping, we derive

a(xg, Txo) = a(xg,21) > 1 = a(Txo, Tr1) = a1, 22) > 1.
Continuing this process, we get

(3.3) (T, Tpy1) > 1, for all n>0.
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Similarly,
(3.4) B(Tn, Tpt1) =1, for all n>0.

From (3.2)(3.3), and (3.4), we have

0 < C(w(a(xn’ xn—l)ﬁ(xm xn—l)U(Txnv Txn—l))7 ¢(m($m xn—l)))

(3~5) = C(T/)(O‘(xna xn—l)ﬂ(xnv $n—1)‘7($n+17 xn))v 1/)(m(33m xn—l)))-

Since

14 o(xn, Txy)o(zn—1,TTn_1) }

m( Ty, Tno1) = max{a(xmxn,l), T p—
nytn—1

[1 + O'(l‘n, zn+1)]0'(337L—17 $n) }

= max{a(ﬂﬁmxn—l)’ 1+ o0(xpn, Tn-1)

(3.6) = max{a(xn,xn_l),o(xn,xn+1)}.
If follows from (3.5) and (3.6) that

0 < ((W(a(wn, 2n_1)B(Tn, Tn_1)0(Tni1,2n)),
Y(max{o(rn, Tn-1),0(Tn, Tni1)}))
< Y(max{o(zn, Tn-1),0(Tn,Tni1)})

(3.7) (@ T 1)B(En, Tn 1) (@nt1, ).
Consequently, we obtain that for all n = 0,1, 2, 3...

(o (2n, Tni1)) < P(max{o(zn, Tn-1),0(Tn, Tni1)})-
If max{o(zn, Tn-1),0(Tn, Tnt1)} = 0(Tn,Tny1) for some n, then

V(0 (Tn, Tny1)) < Y(0(Tn, Tnt1)),

which is a contradiction.

Hence max{o(xn,Tn-1),0(Tn, Tnt1)} = o(xn,xn_1), for all n > 0 and hence
from (3.7) we get,

0< l/J(U(wm l'n,l)) - w(a(xna :Enfl)ﬂ(xna xnfl)a—(anrla xn))

or

(3.8) V((@n, Tn—1)B(Tn, Tno1)0(Tnt1, Tn)) < Y(0(Tn, Tn_1)).
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By using the property of ¢, we get

(3.9) Ty Tre1) BTy Trno1)0(Tnt1, Tn) < (T, Tro1)

for all n > 0. The sequence {o(zy,2,—1)} is nondecreasing, so there exists r > 0
such that lim,,_,~ o(zy,z,—1) = r. We prove that

(3.10) nli)n;o 0(Xp, tn—1) = 0.

Suppose that r > 0. By the properties of ¢, (3.5), (3.8) and (3.9) and the condition
(C3)

0< nlggo sup C(d’(a(xmwnfl)ﬁ(xnaxnfl)g(xrﬁla xn))a 1/J(U(xn,xn,1))) <0,

which is a contradiction. Therefore » = 0. This implies that lim, o 0(Zpn, Zn-1) =
0.

Now we will show that {x,} is a Cauchy sequence. Suppose on the contrary that
{z,} is not a Cauchy sequence. Then there exists ¢ > 0 for which we can assume
subsequences {Z,, } and {z,,} of {z,} with m(k) > n(k) > k such that for every
k,

(3.11) (T, Ty, ) > €.
That is,
(3.12) (T Tmy—1) < E.

By the triangular inequality and using (3.11) and (3.12), we get

€ S U(Z’nk,l'mk) S U(mnkvwmkfl) + U(mmkflaxmk)
< €+ 0(Tmp—1,Tm,)-

Letting k — oo in the above inequalities and by using (3.10) and (3.11), we have

(3.13) ler{:o (T, Ty, ) = €.

Also, from the triangular inequality, we have
U(mnk ) xmk) < U(xnk ’ xnk-‘rl) + U(xnk-‘rlv xmk)v

|J(xnk+17xmk) - O-(mnkamk” < U(xnk’xnk+1)'

On taking limit as &k — oo on both sides of above inequality and using (3.10) and
(3.13), we get

(314) leI{:OU($nk+1,1'mk) =€
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Similarly it is easy to show that

(3.15) lIm o(Xn, 41, Tme+1) = m o(Tp,, Tmet1) = €
k—o0 k—o0

Moreover, since T is an («, 8)-admissible mapping, we have
(3.16) (X, s Ty ) > 1 and  B(zp,, Tm,) > 1.

We deduce that

1+ o0(zn,, Ton,)|o(@m,, TTm, ) }
14+ 0(Tn,, Tmy)

[1 + O.(xnk7xnk"l‘l)]a(mmk’xmk‘i‘l) }
14+ 0(Tn,, Tmy) ’

m(mnk ) l‘mk) = max {U(mnk , l‘mk)7

= max {o(avn,c s Ty, )s

Taking k — oo and using (3.10), (3.13) and (3.14), we obtain

(3.17) lim Y(m(xn, , Tm,)) = €.

k—o0
By the fact T is an («, 3)-admissible z-contraction with respect to ¢, together with
(3.13), (3.16) and (¢3), we get
0 S k:linolo sup C(/Ir[](a(xnk y Loy, )5(50%}9 y Ty, )U(Ink+l7 xmk—i-l))a

P(M(Tny, Tm,,))) <0,

which is a contradiction. Hence, {z,} is a Cauchy sequence. Owing to the fact that
(X,0) is a complete metric-like space, there exists some u € X such that

(3.18) nlgr;o 0(Tp,u) = o(u,u) = n}?}bgm o(zp, Tm) =0

Moreover, the continuity of 7" implies that

(3.19) lim o(zpy1,Tu) = lim o(Tx,, Tu) = o(Tu, Tu) = 0.

n—oo n—roo

Using Lemma 2.1 and (3.19), we have

(3.20) lim o(xni1,Tu) = o(u, Tu).

n—oo
Continuing (3.19) and (3.20), we deduce that o(Tu,u) = o(Tu,Tu). That is Tu =
u. To prove the uniqueness of the fixed point, suppose that there exists w € X such
that Tw = w and w # w. Then

(3.21) 0 < ¢((alu, w)B(u, w)o(Tu, Tw)), (m(u, w)))
where
14 o(u,Tu)o(w, Tw)
m(u,w) = max {a(u, w), 1+ o(u, ) }
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(3.22) mu,w) = o(u,w)

from (3.21), (3.22) and ({2) we have

0 < ((W(a(u,w)Bu,w)o(Tu,Tw)),Y(o(u,w)))

(3.23) < Ylo(u,w)) — P(a(u, w)B(u, w)o(Tu, Tw)).
By using the property of ¢, we have
0 < o(u,w) — a(u,w)B(u,w)o(Tu, Tw) < 0.

Which is a contradiction, so u = w. [

Theorem (3.1) remains true if we drop the continuity hypothesis by the following
property:

(H): If {x,} is a sequence in X such that a(x,,r,51) > 1 and
B(@n, Tn+1) > 1 for all n, then there exists a subsequences {x,, } of {x,} such
that a(xy,, Tn,+1) > 1 and B(xn,, Tn,4+1) > 1 for all k € N and a(z,Tz) > 1
and B(z,Tx) > 1.

Theorem 3.2. Let (X,0) be a complete metric-like space and let T be a self-
mapping on X satisfying the following conditions:

(1) T is («, B)-admissible;
(2) there exists xg € X such that oz, Txo) > 1 and B(xo, Txo) > 1;
(3) (H) holds;

(4) T is an («, B)-admissible z-contraction mapping with respect to a ¢ simulation
function if there exist ¢ : RT — RY with ¢(t) < t such that

C(W(alz,y)B(x,y)o(Tz, Ty)), ¥ (m(z,y))) = 0,

for all x,y € X, where

[1+o(x,Tz)lo(y,Ty) }

m(e,y) = max {o(z,y), =1

Then T has a unique fized point u € X with o(u,u) = 0.
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Proof. Following the proof of Theorem (3.1), we construct a sequence {x,} in X
defined by x,,+1 = T'z,, which converges to some u € X. From definition of (a, §)-
admissible mapping and (H), there exists a subsequence {x,, } of {z,} such that
a(xn,, Tne+1) > 1 and B(xy,, Tn,+1) > 1 for all £ € N. Thus applying condition
(3.2) for all k, we have

0 < C(W(a(ng, w)B(wn,, w)o(TTn,, Tu)), Y (m(zn,,u)))
= C(w(a(xﬂk’u)ﬁ(xnmU)U(l'nkJrlvTu))ad}(m(xnmu)))

(3.24) < Y0y 1)) — D )BTy 0) (g 1, T)).
By suing the property v, we have

(3.25) 0 < m(xn,,u) — (X, , w)B(Tn,, W) (Tnyt+1, T0).

Also from (3.22) and (3.25), we get

(3.26) 0 < o(xn,,u) — a(@n,, w)B(Tn,, w)o(Tn,+1, Tw)

which is equivalent to

0(@np 41, Tu) = 0 (T, , Tu) < a(Tn,, w)B(xn,, w)o(TTy,, Tu)

(3.27) < (@, ,u).

Letting & — oo in the above, we have o(u,Tu) = 0. Using similar arguments as
above, we can show that w is a fixed point of 7. The uniqueness of the fixed point
of T is obtained by similar arguments as these given in the proof of Theorem (3.1)

Now, we apply Theorem (3.1) to obtain the following result which is known as
Banach type. O

Corollary 3.1. Let (z,0) be a complete metric-like space and let T be a self-
mapping on X satisfying the following conditions:

(1) T is (o, B)-admissible;

(2) there exists o € X such that a(xo,Txo) > 1 and B(xo, Txo) > 1;
(3) T is o-continuous;
(4)

Y(a(x,y)B(x,y)o(Tz, Ty)) < AMp(m(z,y))), for all x,y € X and X € [0,1)
andalsow Rt — RT with ¥(t) < t,4(0) = 0.

Then T has a unique fized point u € X with o(u,u) = 0.

Proof. Following the lines of Theorem (3.1), by taking as a o-simulation function,
C(t,s)=As—t. O
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Corollary 3.2. Let (X,0) be a complete metric-like space and T be a self-mapping
on X satisfying the following conditions:

(1) T is (0, B)-admissible;

(2) there exists xg € X such that a(xg, Txo) > 1 and B(xo, Txo) > 1;
(3) T is o-continuous;
(4)

4) there exists a lower semi continuous function v : Ry — Ry with ~y~1 = {0}
such that

a(z,y)B(x,y)o(Tz, Ty) < m(z,y) — v(m(z,y))
for all xz,y € X. Then T has a unique fized point u € X with o(u,u) = 0.

Proof. Following the proof of Theorem (3.1), it sufficient to take ((¢,s) = s —7(s) —
t. O

If we consider in Theorem (3.1), a(z,y) = B(x,y) = 1 for all z,y € X, we have:

Corollary 3.3. Let (X,0) be a complete metric-like space and let T be a self-
mapping on X. Suppose that there exists a o-simulation function ¢ such that

(((o(Tz, Ty)), d(m(z,y))) = 0

forall z,y € X. Then T has a unique fized point u € X with o(u,u) = 0.
We present the following illustrated example.

Example 3.1. Let X = [0,00),0(z,y) =z +y forall z,y € X and T : X — X be
defined by

47
4x, otherwise.

T(z):{’ if 0<z<1,

consider ((t,s) = As —t, where 0 < 1/4 < A < 1.

We define two mappings o, f: X x X = R™T as
5 .
— 3 lf 0 S z,y S 1)
o, y) { 0, otherwise.

30 0<z,y<1
_ 27 1 = 7y = b
Blw.y) = { 0, otherwise.

Let ¢ : Rt — R™ be defined as (t) = ¢ for all t > 0. We shall prove that Corollary
3.1 can be applied. Clearly (X, o) is a complete metric-like space. Let z,y € X such
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that a(z,y) > 1 and B(x,y) > 1. Since z,y € [0,1] and so Tz € [0,1],Ty € [0,1] and
a(Tz,Ty) =1 and B(Tz,Ty) = 1. Hence T is («, B)-admissible. Condition (2) is satisfied
with o = 1. Condition (3.2) is also satisfied with x,, = T"z1 = 1/n.

If 0 <z <1, then a(z,y) = 5/3 and B(z,y) = 3/2.
Now
Y(az,y)B(x,y)o(Tz, Ty)), v (m(z,y)) = oz, y)B(z,y)o(Tz, Ty), m(z,y)

where

[
=
&

m(z,9) 1—|—x—|—Tx](y—|—Ty)}

l1+z+4+y

[1 +m+w/4](y+y/4)}

= maXx {I
l1+z+4+vy
¥

I
g
&

[4+5$](5y) _
1+x+y)}_{x+y}

(a(z,y)B(z,y)o(Tz, Ty)), Y (m(z,y)) = a(z,y)B(z,y)o(Tz, Ty), x +y

(Wlalz,y)B(z,y)o(Tx, Ty)), ¥(m(z,y))) = ((a(z,y)B(x,y)

If 0 <z <1andy > 1, then ((¢¥(a(z,y)B(x,y)o(Tz, Ty)),p(m(x,y))) > 0. Since
a(z,y) = B(xz,y) = 0. Consequently, all assumptions of Corollary 3.1 are satisfied and
hence T has a unique fixed point which is u =0

4. Conclusion

In this attempt, we studied («, 3)-admissible z-contraction mappings imbedded in
simulation function and proved some fixed point theorems in metric-like spaces.
Our results are generalized and extended forms of recent results in the literature.
Finally, we have illustrated an example in support of our obtained results.
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