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Abstract. Every classical algebra is a set equipped with binary operations that operate
under certain axiom principles. The generalization of classical algebras to hyperalge-
bras has been created with the aim of generalizing operations to hyperoperations that
apply to specific subject principles. This paper introduces the concept of reproduced
general hyperrings as a generalization of rings and investigates and analyzes some of
their essential properties. This study defines the notation of reproduced hyperideals in
reproduced general hyperrings, consider the ideals of finite rings and obtain the finite
and cyclic hyperideals. In the endl, we introduce and show that a principal Ideal do-
main finite reproduced general hyperring is Ideal-absorbing.
Keywords: hyperring, principal ideal domain, axioms.

1. Introduction

A ring is an algebraic structure that is equipped with two binary operations and in
this regard it can connect two elements to only one element at the same time. From
the practical point of view, connecting two elements to one element is a limitation
because in practice we may need to connect a group of elements. Because algebraic
structures are regular systems and their elements are related under specific subject
principles, these structures can have many applications in the real world. There-
fore, developing and removing the limitations of algebraic structures such as rings is
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very important. A hyperring is just a ring, that is equipped with a hyperaddition,
and hyperrings are considered in spaces of signs, also known as abstract real spectra
and objects which arise naturally in the study of constructible sets in real geometry.
Indeed, hyperrings as a generalization of rings are equipped with two hyperopera-
tions and operation or two hyperoperations. Since hyperoperations are maps with
a nonempty set range, can be helpful in the application of a group of elements.
The theory of hyperrings as a generalization of rings can be considered as a type of
elimination of the limitation of the connection of elements under the principles of a
special subject. The concept of Krasner hyperring was introduced by Krasner [14],
who used it as a tool for the approximation of valued fields or the second type of a
hyperring as multiplicative hyperring (the multiplication is a hyperoperation, while
the addition is an operation was introduced by R. Rota in 1982 [17]. Today, some
researchers have investigated some works in hyperrings such as a study on special
kinds of derivations in ordered hyperrings [16], the reducibility concept in general
hyperrings [6], regular parameter elements and regular local hyperrings [4], hyper-
ideals of (finite) general hyperrings [2], direct limit of Krasner (m,n)-hyperrings [1],
a generalization of graded prime hyperideals over graded multiplicative hyperrings
[11], extended centroid of hyperrings [18], weakly (k, n)-absorbing (primary) hyper-
ideals of a Krasner (m,n)-hyperring [8] and contribution to study special kinds of
hyperideals in ordered semihyperrings [15]. Fundamental relations are basic tools
in algebraic hyperstructures theory and some researchers worked on fundamental
relations of hyperrings such as Boolean rings based on hyperrings [3], commuta-
tive rings obtained from hyperrings (Hv-rings) with α∗–relations [9], Boolean rings
obtained from hyperrings with η∗1,m relations [10], fundamental relation and auto-
morphism group of very thin Hv–groups [12], height of prime hyperideals in Kras-
ner hyperrings[5] and The fundamental Relations in Hyperrings [19]. Hamidi et al.
constructed multigroups and hyperrings on every non–empty set, introduced and
analyzed a special relation on hyperrings and extended it to the smallest strongly
regular equivalence binary relation in such a way that the quotient of each given
hyperring on this relation is a commutative Boolean ring with identity. They try
to generalize the concept of rings to general hyperrings, to describe some of their
properties and the differences between hyperrings and general hyperrings.

Motivation and advantage: Algebraic structures as one of the important
branches of mathematics have many applications in the real world. These structures
as an algebraic system equipped with several algebraic operations can be used as
a mathematical model. In algebraic structures, under each operation, only two
elements can be equalized to one element, and this limits the algebraic structures.
Of course, this limitation can be overcome and covered by generalizing algebraic
structures to algebraic superstructures. The advantage of algebraic superstructures
is that, in addition to covering algebraic structures, they can relate both elements
to a set of elements. This advantage allows us to connect a network of elements
in the modeling of real-world problems. In this research, by developing rings into
hyperrings within the context of a ring, we create a new achievement in hybrid
substructures.

This paper introduces and works on the construction of reproduced general hy-



Reproduced Principal Ideal Domain on General Hyperring Zpnqm 165

perrings and shows that this class of hyperstructures has some identity elements
while having a unique zero element. It is natural to question as to what are the
relationships between elements whence are considered in the same set concerning
algebraic operations. Since any operation at most connects three elements, we need
to extend more elements in defined axioms. It motivates us to introduce the con-
cept of two algebraic hyperoperations in an underlying set. So the main motivation
is to introduce some identity elements concerning algebraic hyperproducts and to
consider the differences between other hyperstructures and structures. We obtained
some theorems and corollaries that in special conditions are similar to corresponded
theorems in (non-associative)rings, so we conclude that reproduced general hyper-
rings are a generalization of (non-associative)rings. Also, the concept of reproduced
ideals is presented in this work and we analyze the hyperideals on principal ideal
domain reproduced general hyperideals.

1.1. Preliminaries

In this section, we review some definitions and results from hyperstructures from
[7, 13], which we need in what follows. LetR be a nonempty set, P∗(R) = {S |Ø ̸=⊆
R} and ϱ = {(x,X) | x ∈ R,X ∈ P∗(R)} be a map. Then ϱ is called a hyperoper-
ation (hypercomposition), an algebraic hypercompositional structure (R, ϱ) is called

a hypergroupoid and for all nonempty subsets S, T of R, ϱ(S, T ) =
⋃

s∈S,t∈T

ϱ(s, t).

An algebraic hypercompositional structure (R, ϱ), where ϱ is a binary hyperoper-
ation, is called a hypergroupoid and a recall that a hypergroupoid (R, ϱ) is called a
semihypergroup, if for all x, y, z ∈ R, ϱ(ϱ(x, y), z) = ϱ(x, ϱ(y, z)) and a semihyper-
group (R, ϱ) is called a hypergroup, if for all x ∈ R, ϱ(x,R)R = ϱ(R, x)(reproduction
axiom). A general hyperring is an algebraic hypercompositional structure (R, ϱ, ς),
where (i) (R, ϱ) is a hypergroup, (ii) (R, ς) is a semihypergroup and (iii) for any
x, y, z ∈ R: ς(x, ς(y, z)) ⊆ ϱ(ς(x, y), ς(x, z)) and ς(ϱ(x, y), z) ⊆ ϱ(ς(x, z), ς(y, z).
A general hyperring (R, ϱ, ι, ς) is called commutative (with unit element), if for
all x, y ∈ R, ς(x, y) = ς(y, x) (if there exists an element ϵ ∈ R such that for all
x ∈ R, ς(ϵ, x) = ς(x, ϵ) = {x}). A nonempty subset I of R is called a (right)left
hyperideal, if (1), (I, ϱ) is a hypergroup and (2), (ς(R, I) ⊆ I)(ς(I,R) ⊆ I. A hyper-
ideal I is a both left and right hyperideal.

2. Hyperideals of general hyperrings

In this section, we apply the structure of rings and extend them to general hyper-
rings. Also the concept of reproduced ideals is introduced and investigated.

Definition 2.1. Let (R,+, ·) be a ring. Then R is said to be a (ϱ, ς)-reproduced
general hyperring, if there are hyperoperations “ϱ” and “ς”, that (R, ϱ, ς) is a general
hyperring and ϱ, ς are are dependent to + and ·, respectively.

Theorem 2.1. Assume k ∈ N. Then (Z2k,+, ·) is a (ϱ, ς)-reproduced general
hyperring.
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Proof. Fix 0 ̸= a ∈ Z2k, where 2a = 0. Clearly, (Z2k, ϱ) is a hypergroup, where for
any x, y ∈ Z2k, ϱ(x, y) = {x+ y, x+ y + a}. Now for any x, y ∈ Z2k, define ς(x, y) =
{xy, xy + a}. Simple computations show that (Z2k, ϱ, ς) is a general hyperring.

Example 2.1. By Theorem 2.1, (R = {a, b, c, d, e, f}, ϱ, ς) is a (ϱ, ς)-reproduced general
hyperring by the following hyperoperations:

ϱ a b c d e f

a {a, d} {b, e} {c, f} {d, a} {e, b} {f, c}
b {b, e} {c, f} {d, a} {e, b} {f, c} {a, d}
c {c, f} {d, a} {e, b} {f, c} {a, d} {b, e}
d {d, a} {e, b} {f, c} {a, d} {b, e} {c, f}
e {e, b} {f, c} {a, d} {b, e} {c, f} {d, a}
f {f, c} {a, d} {b, e} {c, f} {d, a} {b, e}

,

ς a b c d e f

a {a, d} {a, d} {a, d} {a, d} {a, d} {a, d}
b {a, d} {b, e} {c, f} {d, a} {e, b} {f, c}
c {a, d} {c, f} {e, b} {a, d} {c, f} {e, b}
d {d, a} {a, d} {d, a} {a, d} {d, a} {a, d}
e {a, d} {e, b} {c, f} {a, d} {e, b} {c, f}
f {a, d} {f, c} {e, b} {d, a} {c, f} {b, e}

.

Theorem 2.2. Let p be a prime and k ∈ N. Then Zpk ∪ {√p} is a (ϱ√p, ς√p)-
reproduced general hyperring.

Proof. Let x, y ∈ Zpk ∪ {√p}. Define

ϱ√p(x, y) = ϱ√p(y, x) =


{0,√p} x = −y or x = y =

√
p,

x+ y x, y ∈ Zpk , x ̸= −y,

y x = 0 or ( x =
√
p and y ̸∈ {0,√p})

and

ς√p(x, y) = ς√p(y, x) =


x.y x, y ∈ Zpk ,
√
p x ∈ Zpk ∖ {mp}, y =

√
p(m ∈ N),

0 x = mp, y =
√
p(m ∈ N),

{0,√p} x = y =
√
p.

Computations show that (Zpk ∪ {√p}, ϱ√p, ς√p) is a general hyperring.

Example 2.2. By Theorem 2.1, (Z4∪{
√
2}, ϱ, ς) is a (ϱ, ς)-reproduced general hyperring

by the following hyperoperations:

ϱ 0 1 2 3
√
2

0 0 1 2 3
√
2

1 1 2 3 {0,
√
2} 1

2 2 3 {0,
√
2} 1 2

3 3 {0,
√
2} 1 2 3√

2
√
2 1 2 3 {0,

√
2}

,
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ς 0 1 2 3
√
2

0 0 0 0 0 0

1 0 1 2 3
√
2

2 0 2 0 2 0

3 0 3 2 1
√
2√

2 0
√
2 0

√
2 {0,

√
2}

.

2.1. On hyperideals

Now, we present hyperideals of a general hyperring. In particular, we determine
hyperideals of finite commutative general hyperrings.

Definition 2.2. Let (R, ϱ, ς) be a general hyperring and Ø ̸= I ⊆ R. We say

(i) I is a general subhyperring of R, if (I, ϱ, ς) is a general hyperring;

(ii) I is a hyperideal of R, if ς(R, I) ∪ ς(I,R) ⊆ I.

Theorem 2.3. Suppose (R,+, ·) is a general hyperring and Ø ̸= I ⊆ R. Then I
is a hyperideal of R if and only if the following hold:

(i) for any x ∈ I, ϱ(x, I) = ϱ(I, x) = I;

(ii) for any r ∈ R and x ∈ I, we have ς(r, x) ∪ ς(x, r) ⊆ I.

Proof. Immediate by definition.

Theorem 2.4. Let (R, ϱ, ς) be a general hyperring and I be a hyperideal of R.
Then

(i) ∀ r ∈ R, x ∈ I, n ∈ N, we have ϱ (ς(r, x), ς(r, x), . . . ς(r, x))︸ ︷︷ ︸
n times

⊆ I;

(iv) if x ∈ I, then ς(x) ∈ I.

Proof. Immediate.

Assume (R,+, ·) is a general hyperring. We symbolize the set hyperideals of R
by I(R). Clearly, R ∈ I(R) ̸= Ø and will call R as a non-proper hyperideal of any
general hyperring.

Example 2.3. Let R = {e, ι, a, b}. Then (R, ϱ, ς) is a general hyperring as follows.

ϱ e ι a b

e e ι a b
ι ι R {ι, a} {ι, b}
a a {ι, a} R {a, b}
b b {ι, b} {a, b} R

and

ς e ι a b

e e e e e
ι e ι a b
a e a a a
b e b a {a, b}

.

Then I(R) = {I = {e}, J = R}.
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Theorem 2.5. Assume (R,+, ·) is a commutative general hyperring and I, I ′ ∈
I(R). Then

(i) ϱ(I, I ′) ∈ I(R).

(ii) if I ∩ I ′ ̸= Ø, then I ∩ I ′ ∈ I(R).

Proof. (i) Clearly, ϱ(I, I ′) ̸= Ø. Let a ∈ I and a′ ∈ I ′. Then for any z ∈
ϱ(ϱ(a, a′), ϱ(I + I ′)), there is b ∈ I, b′ ∈ I ′, that z ∈ ϱ(ϱ(a + a′), ϱ(b, b′)) =
ϱ(ϱ(a, b), ϱ(a′, b′)) ⊆ ϱ(I, I ′). If z ∈ ϱ(I, I ′) be an arbitrary element in ϱ(I, I ′),
then there are a, b, c ∈ I, and a′, b′, c′ ∈ I ′, that z ∈ ϱ(c, c′) ⊆ ϱ(ϱ(a, b), ϱ(a′, b′)) =
ϱ((a, a′), ϱ(b, b′)) ⊆ ϱ(ϱ(a, a′), ϱ(I, I ′)). Hence ϱ(ϱ(a, a′), ϱ(I, I ′)) = ϱ(I, I ′). Now,
for any r ∈ R, a ∈ I and a′ ∈ I ′, one obtains ς(r, ϱ(a, a′)) ∪ ς(ϱ(a, a′), r) =
ϱ(ς(r, a), ς(r, a′)))∪ϱ(ς(a, r), ς(a′, r)) = ϱ(ς(r, a), ς(r, a′)) ⊆ ϱ(I, I ′). Hence ϱ(I, I ′) ∈
I(R).

(ii) Since I ∩ I ′ ⊆ I, we get that I ∩ I ′ ∈ I(R).

Theorem 2.6. Assume (R,+, ·), (S,+, ·) are general hyperrings, f : R → S be a
homomorphism, and I ∈ I(R) and J ∈ I(S).

(i) If f is an epimorphism, then f(I) ∈ I(S).

(ii) f−1(J) ∈ I(R).

Proof. (i) Since Ø ̸= I, we have f(I) ̸= Ø. Let f(a) ∈ f(I). Then for ev-
ery f(b) ∈ f(I), there is a′ ∈ I, that b ∈ ϱ(a, a′), and so f(b) ∈ f(ϱ(a, a′)) =
ϱ(f(a), f(a′)) ⊆ ϱ(f(a), I). Hence f(I) ⊆ ϱ(f(a), f(I)). If c ∈ ϱ(f(a), f(I)) is an
arbitrary element, then there is a′ ∈ I, that c ∈ ϱ(f(a), f(a′)) = f(ϱ(a, a′)) ⊆ f(I).
Hence, ϱ(f(a), f(I)) = f(I). Now, for any s ∈ S and f(a) ∈ f(I), there is r ∈ R,
that

ς(s, f(a)) ∪ ς(f(a), s) = ς(f(r), f(a)) ∪ ς(f(a), f(r)) = (f(ς(r, a))) ∪ (f(ς(a, r)))

= f(ς(r, a) ∪ ς(a, r)) ⊆ f(I).

(ii) It is straightforward.

2.2. Reproduced ideals in reproduced general hyperring (Zn, ϱ, ς)

In this subsection, all reproduced ideals of finite reproduced general hyperring
R = (Zn, ϱ, ς) are computed and it is proved that every reproduced ideal of the
reproduced general hyperring (Zn, ϱ, ς) is characterized by the divisors of n.

Definition 2.3. Let (R,+, ·) be a ring and I ⊆ R be an ideal of R. We will
call I as a reproduced ideal of (ϱ, ς)-reproduced general hyperring (R, ϱ, ς), if I
is extended to a hyperideal of (R, ϱ, ς). We will denote the RI by the set of all
reproduced ideals of (ϱ, ς)-reproduced general hyperring (R, ϱ, ς).
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Theorem 2.7. Let n, d ∈ N and x, y ∈ R. Then

(i) ⟨x⟩ ∈ I(Zn, ϱ, ς),

(ii) ⟨0⟩ = {0},

(iii) ⟨x⟩ = ⟨y⟩ ⇔ gcd(x, n) = gcd(y, n) = d.

Proof.

(i) Let x ∈ R. By definition, we have ⟨x⟩ =
⋃
k∈N

{kx, 0} and show that it is a

hyperideal of R. Let y ∈ ⟨x⟩ and z ∈ ϱ(y, ⟨x⟩). Thus there is k, k′ ∈ N and w ∈ ⟨x⟩
that z ∈ ϱ(y, w) and so z ∈ ϱ(kx, k′x), z ∈ kk′x and z ∈ ⟨0⟩. There is k′′ ∈ N
that z ∈ {k′′x, 0} ⊆ ⟨x⟩. In a similar way, for any r ∈ Zn and y ∈ ⟨x⟩, we have
ϱ(r, ⟨x⟩) ⊆ ⟨x⟩. Hence ⟨x⟩ ∈ I(Zn, ϱ, ς).

(ii) One can see that ⟨0⟩ =
⋃
k∈N

{k0, 0} = {0}.

(iii) Let z ∈ ⟨x⟩. Then there is k ∈ N, that z = kx or z = 0. Since gcd(x, n) = d
and by item (i), there is k′ ∈ Z, that x = k′d. If z = kx, then z = kx = kk′d ∈ ⟨x⟩
and if z = 0, then z = k0 = 0 ∈ ⟨x⟩. Hence ⟨x⟩ ⊆ ⟨d⟩. Let z ∈ ⟨d⟩. Then there is
k ∈ N, that z = kd or z = 0. Since gcd(x, n) = d and by item (i), there is r, s ∈ Z
that rx + ns = d, and so rkx + nks = kd. Applying Theorem 2.1, we get that
z = krx or z = 0. Hence ⟨d⟩ ⊆ ⟨x⟩. Also for gcd(y, n) = d the proof is similarly,
then ⟨d⟩ = ⟨y⟩, there for ⟨x⟩ = ⟨y⟩.

Example 2.4. Consider the general hyperring (Z100, ϱ, ς). By Theorem 2.7, we have the
reproduced ideals of R = (Z100, ϱ, ς) as follows:

RI(Z100, ϱ, ς) = {I1 = {0}, I2 = {0, 2, 4, ..., 98}, I3 = {0, 4, 8, ..., 96},
I4 = {0, 5, 10, 15, . . . , 95}, I5 = {0, 25, 50}, I6 = {0, 10, 20, . . . , 90},
I7 = {0, 50}, I8 = {0, 20, . . . , 80}, I9 = Z45}.

Theorem 2.8. Let n ∈ N. Then

(i) |RI(Zn, ϱ, ς)| = |Div(n)|.

(ii) for any x, y ∈ R, ⟨x⟩ ∩ ⟨y⟩ = ⟨lcm(x, y)⟩.

Proof. (i) By Theorem 2.7, I ∈ RI if and only if there is sx ∈ R, that I = ⟨x⟩. Also
for any x ∈ R, gcd(x, n) = d if and only if ⟨x⟩ = ⟨d⟩. Thus |RI(Zn, ϱ, ς)| = |Div(n)|.

(ii) Let x ∈ R. By definition, we have ⟨x⟩ =
⋃
k∈N

{kx, 0}. Clearly, there is

k1, k2 ∈ N that lcm(x, y) = k1x and lcm(x, y) = k2y. Hence lcm(x, y) ∈ ⟨x⟩ ∩ ⟨y⟩
and so ⟨lcm(x, y)⟩ ⊆ ⟨x⟩ ∩ ⟨y⟩. Conversely. let a ∈ ⟨x⟩ ∩ ⟨y⟩. Then a = 0 or there
is k1, k2 ∈ N that a = k1x = k2y. Thus x | a and y | a and so lcm(x, y) | a. Hence
there is k ∈ N that a = k × lcm(x, y) and so ⟨a⟩ ⊆ ⟨x⟩ ∩ ⟨y⟩.
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Corollary 2.1. Let n ∈ N. Then RI(Zn, ϱ, ς) = {⟨d⟩ | d ∈ Div(n)}.

Example 2.5. Let p, q, r be primes, m, l, k ∈ N and n = pmqlrk. Then

I(Zn, ϱ, ς) = {⟨pt1qt2rt3⟩ | 0 ≤ t1 ≤ m, 0 ≤ t2 ≤ l, 0 ≤ t3 ≤ k}⟩.

Corollary 2.2. Assume p1, p2, . . . , pk are primes, k, α1, α2, . . . , αk ∈ N and n =
k∏

i=1

pαi
i . Then |RI(Zn, ϱ, ς)| =

k∑
i=1

(αi + 1).

2.3. Reproduced ideals in (Zpk ∪ {√p}, ϱ√p, ς√p, )

In this subsection, all reproduced ideals of finite reproduced general hyperring (Zpk∪
{√p}, ϱ√p, ς√p, ) are computed and it is proved that every reproduced ideal of the
reproduced general hyperring (Zpk∪{√p}, ϱ√p, ς√p, ) is characterized by the divisors
of n.

Theorem 2.9. Let p be a prime. Then in reproduced general hyperring (Zp ∪
{√p}, ϱ√p, ς√p), we have RI(R) = {R, {0}, {0,√p}};

Proof. Let I ∈ RI(R) \ {{0}, R}. Since Ø ̸= I is a hyperideal of R, there exists
a ∈ I and so {a, 2a, 3a, . . . , (p − 1)a, 0} ⊆ I. In addition, ∀ r ̸= √

p we have
υ√p(r, {a, 2a, 3a, . . . , (p− 1)a, 0}) ⊆ {a, 2a, 3a, . . . , (p− 1)a, 0}. Also for r =

√
p, we

have υ√p(r, {a, 2a, 3a, . . . , (p− 1)a, 0}) ⊆ {√p, 0}. Thus I = {√p, 0}.

Theorem 2.10. Let p be a prime and k ∈ N. Then in reproduced general hyperring
(Zpk ∪ {√p}, ϱ√p, ς√p), we have

(i) if I is a nontrivial hyperideal of R, then
√
p ∈ I;

(ii) ∀ 1 ≤ m ≤ pk−1, I
(m)
p = {mp, 2mp, . . . , tmp,

√
p | t ∈ N is the smallest s.t tm ≡

0 (mod pk−1)} is a hyperideal of R.

Proof. (i) Let 0 ̸= x ∈ I. Since I is a hyperideal of R and
√
p ∈ R, we get

that υ√p(
√
p, x) ⊆ I. On other hand ∀ x ∈ I, ς√p(

√
p, x) = 0,

√
p or {0,√p}. If

υ√p(
√
p, x) = 0, then by definition there exists m ∈ N that x = mp. Hence there is

n ∈ N that {0,√p} = ϱ√p (x, x, . . . x)︸ ︷︷ ︸
n times

⊆ I and so in any case
√
p ∈ I.

(ii) Let 1 ≤ m ≤ pk−1 and x, y ∈ I
(m)
p ∖ {√p}. Then there exists 1 ≤ k1, k2 ≤

t ∈ N that x+ y = (k1 + k2)(mp) ⊆ I
(m)
p , because of 0 ≤ (k1 + k2)(mp) ≤ pk−1. In

addition ∀ x ∈ I
(m)
p , ϱ√p(

√
p, x) = {x} ⊆ I

(m)
p and ϱ√p(

√
p,
√
p) = {0,√p} ⊆ I

(m)
p ,

imply that ∀ x, y ∈ I
(m)
p , ϱ√p(x, y) ⊆ I

(m)
p . Also ∀ r ∈ R∖{√p} and x ∈ I

(m)
p ∖{√p}

there exists 1 ≤ k ≤ t ∈ N that υ√p(r, x) = rk(mp) ⊆ I
(m)
p , because of 0 ≤

(rkm)p ≤ pk−1. On the other hand, υ√p(
√
p, x) ⊆ {0,√p}, implies that ∀ r ∈ R

and x ∈ I
(m)
p , we have υ√p(r, x) ⊆ I

(m)
p .
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Theorem 2.11. Let p be a prime and k ∈ N. Then in reproduced general hyperring
(Zpk ∪ {√p}, ϱ√p, ς√p), we have

(i) ∀ 1 ≤ m ≤ pk−1, we have |I(m)
p | = 1 +

pk−1

gcd(m, pk−1)
;

(ii) ∀ 1 ≤ m,m′ ≤ pk−1, I
(m)
p = I

(m′)
p if and only if gcd(pk−1,m) = gcd(pk−1,m′).

Proof. (i) Let 1 ≤ m ≤ pk−1. Using Theorem 2.10 (i),
√
p ∈ Imp , so |Imp | = 1+ |{t ∈

N | t is the smallest s.t tm ≡ 0 (mod pk−1)}| = q. Suppose t ∈ Z is the smallest
that tm ≡ 0 (mod pk−1). Thus pk−1 | tm. If gcd(pk−1,m) = 1, then pk−1 | t and
because t is the smallest, we obtain that t = pk−1. But for gcd(pk−1,m) = d ̸= 1,

have
pk−1

d
| t. Since pk−1m ≡ 0 (mod pk−1) and t ∈ N is the smallest that tm ≡ 0

(mod pk−1), we get that
pk−1

gcd(m, pk−1)
= t.

(ii) Let 1 ≤ m,m′ ≤ pk−1. Then by item (ii), I
(m)
p = I

(m′)
p if and only if

1 +
pk−1

gcd(m, pk−1)
= 1 +

pk−1

gcd(m′, pk−1)
⇐⇒ gcd(pk−1,m) = gcd(pk−1,m′).

Theorem 2.12. Let p be a prime, k ∈ N and 1 ≤ j ≤ pk−1. Then in reproduced
general hyperring (Zpk ∪ {√p}, ϱ√p, ς√p), we have

(i) I
(pi)
p = I

(rpi)
p , where rpi ̸= pj;

(ii) ∀ 1 ≤ m ≤ pk−1, I
(pk−1)
p ⊆ I

(m)
p ;

(iii) I
(pk−1)
p ⊆ I

(pk−2)
p ⊆ I

(pk−3)
p ⊆ I

(pk−4)
p ⊆ . . . ⊆ I

(p)
p .

Proof. The proof is similar to Theorem 2.11.

Theorem 2.13. Let p be a prime and k ∈ N. Then in reproduced general hyperring
(Zpk ∪ {√p}, ϱ√p, ς√p), we have

(i) RI(R) = {R, {0}, I(m)
p | 1 ≤ m ≤ pk−1};

(ii) |RI(R)| = k.

Proof. (i) Clearly R, {0} ∈ RI(R). Let I be a nontrivial hyperideal of R, using
Theorem 2.10 (i), 0,

√
p ∈ I. Suppose that 0 ̸= a ∈ I. If gcd(a, pk) = 1, then there

exist s, s′ ∈ Z that 1 = as+ s′pk. It follows that 1 ∈ I and we get that R = I. But
for gcd(a, pk) = d ̸= 1, since p is a prime, there exist 1 ≤ i ≤ k in such a way that
d = pi, consequently pi ∈ I.

(ii) It is immediate by (i).
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Definition 2.4. Let R be a reproduced general hyperring and M ̸= R be an
arbitrary hyperideal of R.

(i) M is called a maximal hyperideal of R, if the only reproduced hyperideals
containing M are M and R;

(ii) M is called a reproduced prime hyperideal of R, ∀ a, b ∈ R, ς(a, b) ⊆ M
implies that a ∈ M or b ∈ M .

Theorem 2.14. Let p be a prime and k ∈ N. Then in reproduced general hyperring

(Zpk ∪ {√p}, ϱ√p, ς√p), I
(1)
p is the reproduced maximal hyperideal of R.

Proof. Applying Theorem 2.11, for any I
(m)
p , I

(m′)
p ,∈ HI(R), we have |I(m)

p | ≥

|I(m
′)

p | if and only if
pk−1

gcd(m, pk−1)
≥ pk−1

gcd(m′, pk−1)
. In addition, for | pk−1

gcd(m, pk−1)
| =

s, s is maximum if and only if gcd(m, pk−1) = 1. Thus, m = 1, implies that

|I(m)
p | ≥ |I(m

′)
p |.

Example 2.6. Consider the general hyperring R = Z125 ∪ {
√
3}. Computations show

that

I
(1)
5 = I

(2)
5 = I

(3)
5 = I

(4)
5 = I

(6)
5 = I

(7)
5 = I

(8)
5 = I

(9)
5 = I

(11)
5

= I
(12)
5 = I

(13)
5 = I

(14)
5 = I

(16)
5 = I

(17)
5 = I

(18)
5 = I

(19)
5 = I

(21)
5

= I
(22)
5 = I

(23)
5 = I

(24)
5 = {5, 10, 15, 20, . . . , 115, 120, 0,

√
5},

I
(5)
5 = I

(10)
5 = I

(15)
5 = I

(20)
5 = {0, 25, 50, 75, 100,

√
5}, I(25)5 = {0,

√
5}

and so RI(R) = {I(1)5 , I
(5)
5 , I

(25)
5 , {0},Z125 ∪ {

√
3}}.

Let (R, ϱ, ς) be a general hyperring. Then will denote MRI(R) = {M ∈
RI(R) | M is a maximal hyperideal} and PRI(R) = {M ∈ RI(R) | M is a prime
hyperideal}.

Theorem 2.15. Let p be a prime and k ∈ N. Then in reproduced general hyperring
(Zpk ∪ {√p}, ϱ√p, ς√p), we have

(i) MRI(R) = {I(m)
p | gcd(m, p) = 1}.

(ii) |MRI(R)| = pk−2(p− 1).

Proof. (i) Let I
(m)
p ∈ MRI(R) and m ̸= 1. Since gcd(m, p) = 1, we get that

I
(m)
p = I

(1)
p and so by Theorem 2.14.

(ii) By (i), |MRI(R)| = φ(pk−1), where φ is Euler’s phi function.

Theorem 2.16. Let p be a prime and k ∈ N. Then in reproduced general hyperring

(Zpk ∪ {√p}, ϱ√p, ς√p), I
(1)
p is the reproduced prime hyperideal of R.
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Proof. Let p be a prime, x, y ∈ Zpk ∪ {√p} and ς(x, y) ⊆ I
(1)
p . Then ς(x, y) =

{0,√p}, ς(x, y) = {√p}, ς(x, y) = {0} or there exists 1 ≤ s ≤ t such that ς(x, y) =
{smp}, where tm ≡ 0 (mod pk−1). If ς(x, y) = {√p}, then x ∈ Zpk ∖ {mp}, y =
√
p(m ∈ N), and so y ∈ I

(1)
p . If ς(x, y) = {0}, then x = mp, y =

√
p(m ∈ N), and

so x, y ∈ I
(1)
p . If ς(x, y) = {0,√p}, then x = y =

√
p, and so x, y ∈ I

(1)
p . If there

exists 1 ≤ s ≤ t such that ς(x, y) = {sp ̸= √
p}, where tm ≡ 0 (mod pk−1), then for

s = 1, we have p ∈ I
(1)
p . Thus I

(1)
p is a reproduced prime hyperideal of R.

Theorem 2.17. Let p be a prime and k ∈ N. Then in reproduced general hyperring
(Zpk ∪ {√p}, ϱ√p, ς√p), we have

(i) PRI(R) = {I(m)
p | gcd(m, p) = 1}.

(ii) |PRI(R)| = pk−2(p− 1).

Proof. (i) Let I
(m)
p ∈ PRI(R) and m ̸= 1. Since gcd(m, p) = 1, we get that

I
(m)
p = I

(1)
p and so by Theorem 2.16, I

(m)
p is a reproduced prime hyperideal of R.

(ii) By (i), |PRI(R)| = φ(pk−1).

Definition 2.5. Let (R, ϱ, ς) be a general hyperring. Then (R, ϱ, ς) is called an
Ideal-absorbing, if the its set of all prime ideals and the its set of all maximal hyper
ideals is equal.

Corollary 2.3. Let p be a prime and k ∈ N. Then the reproduced general hyper-
ring (Zpk ∪ {√p}, ϱ√p, ς√p) is an Ideal-absorbing.

3. Conclusion and discussion

The current paper has defined the general hyperrings as a generalization of hy-
perrings and presented some properties in these hyperstructures. For each ring
considered, it is possible to work only with the elements of the context set. This
means that if we want to add another element to a ring, it is necessary to break
all the principles of the axiom and it is possible that the new complex will not
become a ring. But by adding an element to an arbitrary ring, a hyperring can be
formed, and this is one of the limitations of rings that is solved by hyperrings. This
advantage can be applied to all substructures including ideals and substructures
Also,

(i) principal ideal domain reproduced general hyperrings are constructed,

(ii) the set of all prime ideals and the set of all maximal hyper ideals of principal
ideal domain reproduced general hyperrings are computed, principal ideal
domain reproduced general hyperrings are constructed.
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(iii) the concept of Ideal-absorbing reproduced general hyperrings is defined and
is proved that the principal ideal domain reproduced general hyperrings are
Ideal-absorbing.

We hope that these results are helpful for further studies in general hyperring the-
ory. In our future studies, we hope to obtain more results regarding fuzzy general
hyperring, soft general hyperring, tropical general multifield and their applications.
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