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Abstract. In this paper, we introduce the concept of generalized statistical convergence

of measurable functions of order « for 0 < a < 1 at co and at a point ¢ € R. In addition to
this, we defined generalized strongly p-Cesaro summability (0 < p < o0) of a locally

integrable function at co and at a point ¢ € R. Using these definitions, we present some
basic results.
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1. Introduction

In 1951, Steinhaus [22] and Fast [11] introduced the notion of statistical conver-
gence and later in 1959, Schoenberg [20] reintroduced it independently. Bilalov and
Sadigova [3], Caserta et al. [4], Colak [6], Connor [7], Et et al. [10], Fridy [12], Isik
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and Akbas ([1],[15]), Salat [19], Sadigova et al. ([17], [18]), Sengiil et al. ([2],[21])
and many others investigated some arguments related to this notion.

Recently, different approaches to statistical convergence have been made by some
authors, namely: Colak [6] defined the a-density of a subset K of N as follows:

1
=1 —_— < :
Oa(K) = lim ——|{k<n:keK}
provided that the limit exists, d,(K) is said to be the a-density of a subset K,
where « is a real number such that 0 < a < 1. Also, statistical convergence of order
a and strong p-Cesaro summability of order a were studied by Colak [6].

Méricz [16] defined the statistical limit of measurable function at co as follows:

lim —— [{a<z<b:|f(x)—f >} =0.

b—oco b — a

Gokhan et al. ([13],[14]) introduced the definition of pointwise and uniform sta-
tistical convergence of sequences of real valued functions and Duman and Orhan [8]
studied independently. Then, Cinar et al. [5] defined pointwise and uniform statis-
tical convergence of order « for sequences of functions and pointwise A and lacunary
statistical convergence of order « for sequences of functions were introduced by Et
et al. [9].

2. Main Results

Let’s begin our work by introducing some new definitions.

A closed interval in R™ is given by I(a,b) = {x = (z1,22,...,Tm) : a; < x; < b;}
where a = (a1, ..., am) and b = (b1, ..., by, ). Let (I"™(a, 00), B(R™)) be a measurable
space where B is Borel o-algebra where 1™ (a,00) = {(z1, T2, ..., Tm) @ a; < ;)i =
1,2,...,m} and p : I(a,00) — [0,00] be a measure function.

Definition 2.1. Let 0 < a < 1 and K C I (a,00) be a measurable function. We
can define the generalized density of K on I (a,oc0) of order « at infinity as follows:

o p({I(a,b) N K})
) = m

3

where p(I(a,b)) = IT (b; — ai).

3

Il
-

The generalized density of order « is well defined for 0 < a < 1. If @ > 1, then
we can see that the generalized density of every subset of I is zero.
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Let K be an arbitrary subset of I(a,o0) such that K = [] K; where K is a
i=1
subset of (a;,00), 1 =1,2,3,...,m. For any b = (b1, ba, ..., b,) C R™, it is clear that

m

KN I(a,b) =[] Kin(ai,b:)
i=1
holds. This implies that
(2.1) p (KN 1(a,0) =[] n(Kin(ai,bi)) .
i=1

So, we can give the following fact:

Lemma 2.1. Let K C I(a,00) such that K = [[ K;. If po—density of K;, exists
i=1
foralli=1,2,3,...,m, then

8*(K) = [ 6 (K3).
i=1

Proof. From (2.1), we have

1 (K N 1(a,b)) L (5 0 (i b))

pI(a,0)” — p((ab)"

— “(Kl n (alabl)) :U'(Km N (am;bm))
1 ((a,01))” p((@m, bm))”

Hence, by taking limit we get

8*(K) = [[ 6~ (k).
i=1
|
Corollary 2.1. If §%(K;) =0 for any i =1,2,3,...,m, then 6*(K) = 0 holds.

Corollary 2.2. If6*(K) =0, then §“(K;) exists for alli =1,2,3,...,m. Further-
more 3i € {1,2,3,...,m}, 6*(K;) =0.

Remark 2.1. If 6*(K;) does not exist for any ¢ € {1,2,3,...,m} and §%(K;) # 0 for all
j€41,2,3,...,m}\ {i}, then §%(K) does not exist.
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Proof. Without loss of generality let K; and Ko such that §*(K7) does not exist,

d*(K3) exists but is not zero. Since 0 < %{W < 1, then
K n b Kin b
lim sup p (K1 N (a1, b1)) £ lim inf p (K1 N (ag, 1))_

oo H((a1,01)) bimvoo (a1, b1))
Therefore,

lim sup pUE N I{a b)) # liminf p(K 0 Ia,b)

minb;—oo M (I(a1,b1)) * minbi—oo  p(I(a,b))
holds. This completes the proof. [J
Definition 2.2. Let 0 < o < 1 and f: I(a,00) — R be a measurable function. f

is said to be generalized statistically convergent to ¢ with order « at oo, if for every
€ > 0, the following limit
1

o By € b s 1) — > <) =0,

exists. It is denoted by st® —lim,_, o f(2) = £. The set of all generalized statistically
convergent function of order « at oo is denoted by S*(I).
m
Throughout the paper we shall assume that p(I(a,b)) = [] (b; —a;) and f :
i=1
I(a,00) — R be a measurable function (in Lebesgue’s sense).
Remark 2.2, If lim;_, o f(z) = £ then st* — lim,;_, f(z) = £ holds. So, S*(I) # @.
Remark 2.3. There exists a function f € S*(I) such that f has no classical limit.
Example 2.1. Let f : I(a,00) — R be a function and b = (b1, b2, ...,bm) C I(a,o0) be

an arbitrary points. Define the following function

f(z) = 1, ifb;—vVb <z <by, i=1,2,3 ..m,
10, otherwise

Hence,

lim w({z € I(a,b) : |f(z) — 0] > €})
min b; — o0 (n(I(a,b)))”
e

min b; — oo 1—[ (bz _ ai)a

=1

0

holds for every € > 0 and a € (%, 1]. So, f is generalized statistically convergent to zero
with of order «, but not a convergent function.
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Theorem 2.1. Let 0 < a < 1 and f be a measurable function and ¢ € R. If
st® —lim f(z) = €1 and st® —lim g(z) = {a, then

(i) st —lim, o0 cf (x) = cly,
(1) st® —lim,_ oo (f(x) + g(x)) = 1 + £o.

Proof. (i) The proof is evident when ¢ = 0. Assume that ¢ # 0, then we have the
proof (i) follows from

mﬂ({x € I(a,b) : lef(z) — 1] > &})

_ m“ <{x € Hab): |f(z) —ta] > ;}) .

(ii) For all b; > a; and € > 0, we have

1

(@ b))~ ({z € I(a,b) : |f(z) + g(x) — (b1 + £2)| > €})

< ot ({ee @ sl -al> £))

1

@)™

€
({x € I(a,b) : |g(z) — lo] > 5}) .
This proves the proof. [

Theorem 2.2. Let 0 < a < 1 and f be a measurable function. If for each x €
I(a,b), st® —lim, o f(x) =41 and st®* — lim, o f(x) = {a, then {1 = {s.

Proof. Omitted. O
Corollary 2.3. S%(I) is a real vector space for all 0 < a < 1.

Theorem 2.3. Let0 < a < S <1 and f be a measurable function. Then S“(I) C
SB(I) and this inclusion is strict for some a and 3 such that o < 3.

Proof. Omitted. O

To show that the inclusion is strict, consider the sequence in Example 2.1.
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Definition 2.3. Let 0 < o < 1 and f be a measurable function. f is said to be
generalized statistically Cauchy function of order « in a neighborhood of o, if there
exists an element s = (s1, $2,...8m) € I (a,00) and min s; > min a; such that

@2l (e € )1 1(@) ~ ()] > ) =0

holds for every ¢ > 0.

Theorem 2.4. Let0 < a <1 and f be a measurable function. Then the following
statements are equivalent:

(i) f is generalized statistically convergent with order a.
(ii) f is a generalized statistically Cauchy with order a.

(iii) f can be represented as the sum of two measurable functions g and h, such
that

(2.3) wl;rr;o g(x) = st — ml;rgo fx)
and
(24) lim ——u({z e I(a,b) : h(z) £0}) =0, i=1,2,3,.m.

min b; — oo (‘u(I(a, b)))

Furthermore, in case f is bounded, then both g and h are also bounded.

Proof. “(i) = (i4)” : Assume that the function f is generalized statistically conver-
gent to ¢ with a. Let € > 0, by the definition of generalized statistically convergent
we have

(2:5) HOBY

for almost all = € I(a,b). Let us choose one of x € I(a,b) satisfying (2.5) and
denoted it by s. Then, for every a; < x; < b;,i = 1,2, 3, ...m, following inequality

(@) = FO) < @) =0+ 10= £8)] < If() - €]+ 5

holds for almost all x € I(a,b). Then, following inclusion

{v € I(a,b) : [f(x) = f(s)| > e} € {w € I(a,b) : [F(2) = 0] > 5 }

holds and implies that f is a generalized statistically Cauchy with order «.

“(it) = (444)” : If K and J are two intervals such that each of them contains
the function value f(x) for almost all x € I(a,b), then so does their intersection
KN J. Now we apply (2.1) with e = 1/2. Tt can be concluded that the interval
K = [f(s) —1/2, f(s) + 1/2] contains the function value f(x) for almost all = €
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I(a,b). Then, we apply (2.1) with 3 = 1/4 to obtain some ¢ > a( means t; > a; for
each i = 1,2, ...,m) such that the interval J := [f(t) — 1/4, f(¢) + 1/4] contains the
function value f(x) for almost all z € I(a,b). Considering the above observation,
the interval K7 := K N J also contains the function value f(x) for almost all z.
Plainly, K7 is a K; C R closed interval whose length |K;| < 1/2.

Next, we apply (2.1) with €3 = 1/8 to obtain some r > a such that the interval
J1 = [f(r) —1/8, f(r) + 1/8] contains the function value f(z) for almost all © €
I(a,b). Hence we have Ky = K; N J; contains the function value f(z) for almost
all z € I(a,b). Also, K, is a closed interval whose length |Ks| < 1/4.

By induction, we construct a sequence {K, : n = 1,2, ...} of closed intervals such
that K,, O Kp41, |Kn| < 27" and K, contains the function value f(x) for almost
all z € I(a,b). Using the Nested Intervals Theorem, there is a unique number ¢
such that ¢ € K,, for each n > 1.

Moreover, we can select numbers (a; <)c; < ¢3 < ... such that ¢, — oo as
n — oo and

Gy € @) @) € ) < 1n

if b;>c, 1=123,..m.
This makes the definition of the functions g and h plausible. For a; < x; < ¢y,
we set

(2.6)

g(z) = f(x) and h(x):=0.

If x; > ¢1, then ¢, < ; < ¢y for some n > 1, and we set

f(x), if f(z) € Ky

g(z) =4 ¢, otherwise

and h=f—g.

It is clear that g and h are measurable functions and f = g + h. We want to
show that the ordinary limit of g(z) exists as * — oo and equals ¢. For this, let an
arbitrary € > 0 such that € < 1, and choose a positive integer ¢ such that 27¢ < .
If x; > ¢, then ¢, < ; < ¢py1 for some n > t. If f(z) € K, then g(z) = f(x) and
by definition,

(2.7) lg(z) — ) < |K,|<27"<27 <e
while if ¢ K,,, then g(z) := ¢. Then, (2.7) holds for all 2; > ¢;. Thus we have
(2.3).

By definition h(z) # 0 if and only if g(z) # f(x). It means that if ¢,, < b; < ¢py1

for some n > 1, then by definition,

n—1

{w € I(a,b) - hz) # 0} = | {ee < @i e« f2) ¢ Ko}

t=1
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Wen <oy <bs s fo) ¢ K} C{a<az<b: f(z) ¢ K}

By (2.6), we have

@Udjﬁﬁ”“xej@ﬁ%h@ﬂ#09<lﬁu for ¢, <b; <cppr n=1,2,3,...

Since n — oo as b — oo, this proves (2.4).

If there exists C' > 0 such that |f(z)| < C for all z, then f is bounded. Then
by definitions of g and h, we have

lg(z)] < max{C,¢} and |h(z)] <C+¢,

for all « € I(a,b) with z; € (a;,00),1=1,2,3,...m.
“(449) = (¢)” : This implication is valid under even the weaker assumptions that
f=g9+h
st* — lim g(z) =¢ and st® — lim h(z) =0,

Tr—r00 T—00

because of the additivity property of generalized statistical limit. [

3. Strong Cesaro summability at co

In this section, we are going to define generalized strongly p—Cesaro summable
of order «v at oo of multi variable measurable functions. Denote dx = dxidzs...dz,,

by b b
and [ = fall faj o
I(a,b)

Definition 3.1. Let f be a measurable (in Lebesgue’s sense) function on some
interval (a;,00), where a; > 0 for ¢ = 1,2,..m and 0 < « < 1. Then it is said that
f is generalized strongly p—Cesaro summable of order « at oo if there exists £ € C
such that

1
i e [ 15(@) - 0 dr =0
min b; — o0 (U(I(a7b))) ‘ ( ) |
I(a,b)

where |f(x) — ¢|” is locally integrable (in Lebesgue’s sense) over the interval (a;, c0).

Theorem 3.1. (i) If f is generalized strongly p-Cesaro summable with order o at
oo to £ € C for some 0 < p < oo, then the generalized statistical limit with order o
of f at oo exists and equals the same £.

(it) If the generalized statistical limit with order v of f at 0o exists and equals
£ e C, and f is bounded, then f is generalized strongly p-Cesaro summable at co
to the same ¢ for every 0 < p < oco.
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Proof. (i) Let f be a generalized strongly p—Cesaro summable function to ¢ with
order o. For a given € > 0, we can easily get

[ 1@t do = rutia € 1a.0): 11 (0) — 4 > <))

I(a,b)

from Markov’s inequality for all 0 < p < oco. Dividing both sides of the above
inequality by (u(I(a,b)))” and taking the limit as minb; — oo, we obtain

1

i T oy T € L@ b) s 1f (@) = £ > e})
Lo | .
< g dm e [ @ -0

I(a,b)

Thus, f is generalized statistically convergent function of order o at oo to £ € C.

(i) Assume |f (z)| < B for all z and f is a generalized statistically convergent
function of order a at oo to £ € C. We can write

: 1 () — _
mnlinloc Wﬂ({x €1I(a,b) : [f(z) — €] >¢e})=0.

/ |F(z) — 0P da

Then

(a,b)
[f{alézléblr\f(r)—ﬁ\és} + f{alérléblrlf(z)—flx}}
= [f{azﬁwzﬁbzi\f(m)*e\ﬁf} + f{amzsm:u(z)%be}}
: U{am<mebm:|f<x>—é|s6} +f{amgxmSbm:|f(x>—e|>e}}
|f(z) — € dz

H (bi — a;) e? + (B + |0)” u({z € I(a,b) : |f (x) — €] > }).

We conclude that

lim / |f(z) — 0 do < €P.
ab

min b; — o0 ,U
(a,b)
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4. Statistical limit inferior and superior at oo

In this Section, we consider the real-valued measurable function f on some
interval (a;,0), where a; > 0. A(f) will denote the set of those u € R such that
for0<a<1

1
lim  —————u({r € I(a.b) : f (2) < u}) £ 0
minb; 0o (((I(a,b)))
holds, by which we mean that either this limit does not exist at all, or it does exist
but positive. Now, the generalized statistical limit inferior of order « of the function
f at oo is defined by

st* — liminf f(x) = inf A(f),

T—r0o0

provided A(f) is not empty; otherwise we set st® — liminf, . f(z) = co.

Similarly, the statistical limit superior of order « of the function f at oo defined
by st*-limsup,_, . f(z) = sup B(f). B(f) will denote the set of those v € R for
which

1
lim  —————gu({r € I(a,b) : f(z) >v}) #0.
it (U(T(,5)))
Here are some basic features of these concepts.
() liminf, o f(z) < st*—liminf, o f(z) < st*—limsup,_, . f(z) <limsup,_, . f(z)

(#4) If uw = st* —liminf,_, o f(z) is finite, then for every ¢ > 0,

i !  flx U
mmlgfioo Wﬂ({f €l(a,b): f(z) <u+e})#0

and

i 1  flx U — =
m;nlgrioo Wﬂ({x €1I(a,b): f(z) < e}) =0.

Conversely, if the two relations mentioned above hold for every € > 0, then
u=st* — liminf,_, o f(z).

(797) A function f is said to be statistically bounded if for some C € R,

. 1 . _
mnhbnloo Wﬂ({l’ € I(a,b) : [f(z)| >C}) =0
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holds. If f is statistically bounded, then st® — lim, ,~ f(z) = ¢ exists if and
only if

st —lim inf f(z) = st® — limsup f(z) = .
T—r00 T—>00

(iv)The relation st® — liminf,_, f(z) = 0o is equivalent to the following one:
for every C' € R

1
lim @ ————sp({x€l(a,b): f(z)<C})=0,
min b; — 00 (M(I(a,b))) ({ ( ) ( ) })
holds.
We denote it by st® — lim, o f(z) = co . The symmetric counterpart st* —
lim, o f(2) = —00 is meant analogously.

(v) st —limsup,_, ., f(x) = —st® —liminf, o (—f(x)).
(vi) A function f is said to be statistically positive if
1
lim @ —————xupu({xel(a,b): f(x) <0})=0.
minb; oo (pu(I(a,b)))” d (a,b) : f(@) H

If f is statistically positive, then

st* —limsup f(z) = 1/st% — lirginf(l/f(z))

with the agreements that 1/0 = oo and 1/00 = 0.

(vit) st*—lminf, o (f1(x)+f2(x)) > st*—liminf, o f1(z)+ st*—liminf,, fo(z).

(viti) However, if the statistical limit st® — lim,_,~ f1(x) exists, then

st —liminf (fi(e) + fo(2) = st — lim_ fi(x) + st — liminf fo(a)

Similarly, statements are valid for ”st® —lim sup” in place of 7 st® —lim inf”. We
formulate only the counterpart of (ii) as follows:

(#') If v = st* — limsup,_, ., f(z) is finite, then for every ¢ > 0,

i ! s flzx v —
mmlggm Wﬂ({x €I(a,b): f(z) >v—e}) #0

and

1
lim —————xp({zr € l(a,b): f(x) >v+e})=0.
minb; oo (1W((a,b)))
Conversely, if the two relations mentioned above hold for every € > 0, then
v =st* —limsup,_, ., f(z).
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Theorem 4.1. st* —lim f(z) = ¢ <= st* — liminf f(x) = st* — limsup f(x).
Proof. Assume that st® — lim f(z) = £ holds. So a—statistical density of

(4.1) Ale) ={zel(a,00):|f(x) 1] =}

is zero for every € > 0. We have
{rel(a,00):|f(x)—l>c}={xe€l(a,00):f(z)>ec+L}U{zel(a,00): f(x)<l—c}.

Then, from (4.1) we have

(4.2) 0*{xel(a,0): f(z)>e+L})=0
and
(4.3) 0*{xel(a,00): f(z)<l—e})=0

hold. Equation (4.1) also implies that
(4.4) 0% ({z e I'(a,00) : | (2) — €] <e}) =0 (I (a,0))

and we have

(4.5) 0*{z eI(a,00): f(z) <e+{}) =6 (a,0))
and
(4.6) *{zel(a,00): f(z)>L—c})=06((a,0)).

So, (4.2)-(4.6) implies that e + ¢ € A(f), { —e¢ € B(f) for all € > 0. Then,
st* — liminf f(x) = ¢ and st* — limsup f(z) = ¢.

Now assume that st* — liminf f(z) = st* — limsup f(z) = ¢ holds. From this
assumption, we have

inf A(f) =sup B(f) = ¢.

So, for every € > 0, there exists ¢ € A(f) and ¢” € B(f) such that £ —e < ¢",
0" < &+ £ satisfied. Then,

(4.7) 6 ({z € I (a,00) : f(z) > e+ £}) <8 ({z € I (a,00) : f(z) > £'}) =0
and
(4.8) 6 {z € I(a,00): f(z)<l—e})<6*({z €I(a,00): f(z)<l'})=0.
From (4.7) and (4.8), the following equality

0 ({z e I(a,00) : |f(x) =€l 2z e}) = 0% ({w € I (a,00) : f(x) Z e+ 1})

+6%{z € I(a,00): f(x) <l—¢})

is satisfied. So, this fact completes the proof of theorem. [
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5. Statistical Limit at ¢ € R"

Let A C R™ for m > 1 and A be a Lebesgue measurable subset of R™. Let us
define the approximate density of A in the r neighborhood of an = point in R™ as
follows

(AN B, (@)
(@) == B, )

where B,.(z) denotes the closed ball of radius r centered at z.
According to Lebesgue’s density theorem, the density of almost every point = of
As

d(z) = lim d,.(x)

r—0

exists and is equal to 0 or 1.

Definition 5.1. The Lebesgue measurable function f is called statistically con-
vergent of order o (o € (0,1]) at ¢ if there exists some £ € C such that for every
e>0

: 1 m . _ _
M(I(ng)l)ﬁo Wﬂ(‘{x €1I(a,b) CR™:[f(z) —{| = e}) = 0.
I(a,b)>c

It is denoted by st® — lim f(z) = ¢. Clearly ¢ is unique.

Tr—c

Definition 5.2. The Lebesgue measurable function f is called statistically Cauchy
of order « (o € (0,1]) at c if there exists some ¢ € C such that for every € > 0

: 1 m oty _
N(I((Eg))l)ﬁo Wﬂ({z € I(a,b) CR™ 1 |f(x) — f(zo)| = €}) = 0.
I(a,b)>c

Theorem 5.1. The following statements are equivalent:
1) f has a statistical limit of order a at ¢ € R,
it) f is Cauchy of order « in a neighborhood of c,

1it) f can be represented in a neighborhood of ¢ as the sum of two measurable
functions g an h in the same neighborhood of ¢ such that lim g(z) = st* — lim f(x)
r—c r—c

d i e TrR € I(a,b) CR™: h 0}) = 0.
T 1(@) 07 450 P p({z € I(a,b) (z) # 0})

Furthermore, in case f is bounded in a neighborhood of ¢, then both g and h are
also bounded there.

Proof. The proof is similar to that of Theorem 2.4. [
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Definition 5.3. Let 0 < p < co. f is said to be strongly p- Cesaro summable of
order o at ¢ € R™ if there exists a number £ € C such that

1
fim / ) — fPPdz = 0.
wtCB o @@y ) M@
I(a,b)>c I(a,b)

We accept that the function |f(x) — £|P is integrable in the neighborhood of c,
although it is not written here.

Theorem 5.2. Let 0 <p < oo. If f at c € R™ to ¢ € C for some p is strongly
p-Cesaro summable of order a, then the statistical limit of f at ¢ exists and equals
the same .

Proof. The proof is similar to that of the Theorem 3.2. [

6. Statistical limit inferior and superior at ¢ € R™

In this section, we will consider functions that can be measured in the neigh-
borhood of point ¢ € R. This time, we indicate the set of those u € R for which

Ax(f)

H(I(Eg)l)_m mu({x € I(a,b) CR™: f(z) <u}) #0.
I(a,b)>c
If A, (f) is not empty, st* _ligl—}?f f(z) = inf A, (f) is the statistical limit inferior
of f at ¢ otherwise we set st* — 1i£nﬁi£1f f(x) := 0.
Let B, (f) denote the set
B.(f)={veR:0,(xel: f(x)>v)#0}.

The statistical limit superior of order « of f at point ¢ is given by
a1 _ [ supBa(f), if Bo(f) #0
st limsup f = { oo, if B(f) = 0
denoted by st®* — liminf f(x).
r—c
If u=st*— limjnf f(z) is finite then for every e > 0,

1

(6.1) #(I(Lig;)_}() Wu({x €I(a,b) CR™: f(z) <u+e})#0
I(a,b)>c

and 1

(6.2) M(I((E)I{})HO Wu({x € I(a,b) CR™: f(z) <u—e€})=0.
I(a,b)>c

Conversely, if (6.1) and (6.2) hold for every € > 0, then u = st® — liminf f(z).

r—c
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