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Abstract. In this paper, we introduce the concept of generalized statistical convergence
of measurable functions of order α for 0 < α ≤ 1 at ∞ and at a point c ∈ R. In addition to 
this, we defined generalized strongly p-Cesàro summability (0 < p < ∞) of a locally
integrable function at ∞ and at a point c ∈ R. Using these definitions, we present some 
basic results.
Keywords: statistical convergence, measurable function, p-Cesàro summability.

1. Introduction

In 1951, Steinhaus [22] and Fast [11] introduced the notion of statistical conver-
gence and later in 1959, Schoenberg [20] reintroduced it independently. Bilalov and
Sadigova [3], Caserta et al. [4], Çolak [6], Connor [7], Et et al. [10], Fridy [12], Isik
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2020 Mathematics Subject Classification. Primary 40A05; Secondary 40C05, 46A45
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Muş Alparslan University, Muş, Türkiye
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and Akbas ([1],[15]), Salat [19], Sadigova et al. ([17], [18]), Şengül et al. ([2],[21])
and many others investigated some arguments related to this notion.

Recently, different approaches to statistical convergence have been made by some
authors, namely: Çolak [6] defined the α-density of a subset K of N as follows:

δα(K) = lim
n→∞

1

nα
|{ k ≤ n : k ∈ K}|

provided that the limit exists, δα(K) is said to be the α-density of a subset K,
where α is a real number such that 0 < α ⩽ 1. Also, statistical convergence of order
α and strong p-Cesàro summability of order α were studied by Çolak [6].

Móricz [16] defined the statistical limit of measurable function at ∞ as follows:

lim
b→∞

1

b− a
|{a < x < b : |f(x)− ℓ| > ε}| = 0.

Gökhan et al. ([13],[14]) introduced the definition of pointwise and uniform sta-
tistical convergence of sequences of real valued functions and Duman and Orhan [8]
studied independently. Then, Çınar et al. [5] defined pointwise and uniform statis-
tical convergence of order α for sequences of functions and pointwise λ and lacunary
statistical convergence of order α for sequences of functions were introduced by Et
et al. [9].

2. Main Results

Let’s begin our work by introducing some new definitions.

A closed interval in Rm is given by I(a, b) = {x = (x1, x2, ..., xm) : ai ⩽ xi ⩽ bi}
where a = (a1, ..., am) and b = (b1, ..., bm). Let (Im(a,∞),B(Rm)) be a measurable
space where B is Borel σ-algebra where Im(a,∞) = {(x1, x2, ..., xm) : ai ≤ xi,i =
1, 2, ...,m} and µ : I(a,∞) → [0,∞] be a measure function.

Definition 2.1. Let 0 < α ⩽ 1 and K ⊂ I (a,∞) be a measurable function. We
can define the generalized density of K on I (a,∞) of order α at infinity as follows:

δα(K) = lim
min bi→∞

µ({I(a, b) ∩K})
(µ(I(a, b)))

α

where µ(I(a, b)) =
m∏
i=1

(bi − ai).

The generalized density of order α is well defined for 0 < α ⩽ 1. If α > 1, then
we can see that the generalized density of every subset of I is zero.
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Let K be an arbitrary subset of I(a,∞) such that K =
m∏
i=1

Ki where Ki is a

subset of (ai,∞), i = 1, 2, 3, ...,m. For any b = (b1, b2, ..., bm) ⊂ Rm, it is clear that

K ∩ I(a, b) =

m∏
i=1

Ki ∩ (ai, bi)

holds. This implies that

µ (K ∩ I(a, b)) =

m∏
i=1

µ (Ki ∩ (ai, bi)) .(2.1)

So, we can give the following fact:

Lemma 2.1. Let K ⊂ I(a,∞) such that K =
m∏
i=1

Ki. If µα−density of Ki, exists

for all i = 1, 2, 3, ...,m, then

δα(K) =

m∏
i=1

δα(Ki).

Proof. From (2.1), we have

µ (K ∩ I(a, b))

µ (I(a, b))
α =

m∏
i=1

µ (Ki ∩ (ai, bi))

µ (I(a, b))
α

=
µ (K1 ∩ (a1, b1))

µ ((a1, b1))
α · · · µ (Km ∩ (am, bm))

µ ((am, bm))
α .

Hence, by taking limit we get

δα(K) =

m∏
i=1

δα(Ki).

Corollary 2.1. If δα(Ki) = 0 for any i = 1, 2, 3, ...,m, then δα(K) = 0 holds.

Corollary 2.2. If δα(K) = 0, then δα(Ki) exists for all i = 1, 2, 3, ...,m. Further-
more ∃i ∈ {1, 2, 3, ...,m}, δα(Ki) = 0.

Remark 2.1. If δα(Ki) does not exist for any i ∈ {1, 2, 3, ...,m} and δα(Kj) ̸= 0 for all
j ∈ {1, 2, 3, ...,m} \ {i}, then δα(K) does not exist.
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Proof. Without loss of generality let K1 and K2 such that δα(K1) does not exist,

δα(K2) exists but is not zero. Since 0 ⩽ µ(K1∩I(a,b))
µ(I(a,b)) ⩽ 1, then

lim sup
b1→∞

µ (K1 ∩ (a1, b1))

µ ((a1, b1))
̸= lim inf

b1→∞

µ (K1 ∩ (a1, b1))

µ ((a1, b1))
.

Therefore,

lim sup
min bi→∞

µ (K ∩ I(a, b))

µ (I(a1, b1))
̸= lim inf

min bi→∞

µ (K ∩ I(a, b))

µ (I(a, b))

holds. This completes the proof.

Definition 2.2. Let 0 < α ⩽ 1 and f : I(a,∞) → R be a measurable function. f
is said to be generalized statistically convergent to ℓ with order α at ∞, if for every
ε > 0, the following limit

lim
min{bi:i=1,2,3,...m}→∞

1

(µ(I(a, b)))
αµ ({x ∈ I(a, b) : |f(x)− ℓ| > ε}) = 0,

exists. It is denoted by stα−limx→∞ f(x) = ℓ. The set of all generalized statistically
convergent function of order α at ∞ is denoted by Sα(I).

Throughout the paper we shall assume that µ(I(a, b)) =
m∏
i=1

(bi − ai) and f :

I(a,∞) → R be a measurable function (in Lebesgue’s sense).

Remark 2.2. If limx→∞ f(x) = ℓ then stα − limx→∞ f(x) = ℓ holds. So, Sα(I) ̸= Ø.

Remark 2.3. There exists a function f ∈ Sα(I) such that f has no classical limit.

Example 2.1. Let f : I(a,∞) → R be a function and b = (b1, b2, ..., bm) ⊂ I(a,∞) be
an arbitrary points. Define the following function

f (x) =

{
1, if bi −

√
bi < xi < bi, i = 1, 2, 3, ...m,

0, otherwise
.

Hence,

lim
min bi→∞

µ ({x ∈ I(a, b) : |f(x)− 0| > ε})
(µ(I(a, b)))α

= lim
min bi→∞

√
b1
√
b2...

√
bm

m∏
i=1

(bi − ai)
α

= 0

holds for every ε > 0 and α ∈ ( 1
2
, 1]. So, f is generalized statistically convergent to zero

with of order α, but not a convergent function.
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Theorem 2.1. Let 0 < α ⩽ 1 and f be a measurable function and c ∈ R. If
stα − lim f(x) = ℓ1 and stα − lim g(x) = ℓ2, then

(i) stα − limx→∞ cf(x) = cℓ1,

(ii) stα − limx→∞(f(x) + g(x)) = ℓ1 + ℓ2.

Proof. (i) The proof is evident when c = 0. Assume that c ̸= 0, then we have the
proof (i) follows from

1

(µ(I(a, b)))α
µ ({x ∈ I(a, b) : |cf(x)− ℓ1| > ε})

=
1

(µ(I(a, b)))
αµ

({
x ∈ I(a, b) : |f(x)− ℓ1| >

ε

|c|

})
.

(ii) For all bi > ai and ε > 0, we have

1

(µ(I(a, b)))
αµ ({x ∈ I(a, b) : |f(x) + g(x)− (ℓ1 + ℓ2)| > ε})

⩽
1

(µ(I(a, b)))
αµ

({
x ∈ I(a, b) : |f(x)− ℓ1| >

ε

2

})

+
1

(µ(I(a, b)))
αµ

({
x ∈ I(a, b) : |g(x)− ℓ2| >

ε

2

})
.

This proves the proof.

Theorem 2.2. Let 0 < α ⩽ 1 and f be a measurable function. If for each x ∈
I(a, b), stα − limx→∞ f(x) = ℓ1 and stα − limx→∞ f(x) = ℓ2, then ℓ1 = ℓ2.

Proof. Omitted.

Corollary 2.3. Sα(I) is a real vector space for all 0 < α ⩽ 1.

Theorem 2.3. Let 0 < α ⩽ β ⩽ 1 and f be a measurable function. Then Sα(I) ⊆
Sβ(I) and this inclusion is strict for some α and β such that α < β.

Proof. Omitted.

To show that the inclusion is strict, consider the sequence in Example 2.1.
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Definition 2.3. Let 0 < α ⩽ 1 and f be a measurable function. f is said to be
generalized statistically Cauchy function of order α in a neighborhood of ∞, if there
exists an element s = (s1, s2, ...sm) ∈ I (a,∞) and min si > min ai such that

lim
min bi→∞

1

(µ(I(a, b)))
αµ ({x ∈ I(a, b) : |f(x)− f(s)| > ε}) = 0,(2.2)

holds for every ε > 0.

Theorem 2.4. Let 0 < α ⩽ 1 and f be a measurable function. Then the following
statements are equivalent:

(i) f is generalized statistically convergent with order α.

(ii) f is a generalized statistically Cauchy with order α.

(iii) f can be represented as the sum of two measurable functions g and h, such
that

lim
x→∞

g(x) = stα − lim
x→∞

f(x)(2.3)

and

lim
min bi→∞

1

(µ(I(a, b)))
αµ ({x ∈ I(a, b) : h(x) ̸= 0}) = 0, i = 1, 2, 3, ...m.(2.4)

Furthermore, in case f is bounded, then both g and h are also bounded.

Proof. “(i) ⇒ (ii)” : Assume that the function f is generalized statistically conver-
gent to ℓ with α. Let ε > 0, by the definition of generalized statistically convergent
we have

|f(x)− ℓ| < ε

2
(2.5)

for almost all x ∈ I(a, b). Let us choose one of x ∈ I(a, b) satisfying (2.5) and
denoted it by s. Then, for every ai < xi ⩽ bi,i = 1, 2, 3, ...m, following inequality

|f(x)− f(s)| ⩽ |f(x)− ℓ|+ |ℓ− f(s)| ⩽ |f(x)− ℓ|+ ε

2

holds for almost all x ∈ I(a, b). Then, following inclusion

{x ∈ I(a, b) : |f(x)− f(s)| > ε} ⊆
{
x ∈ I(a, b) : |f(x)− ℓ| > ε

2

}
holds and implies that f is a generalized statistically Cauchy with order α.

“(ii) ⇒ (iii)” : If K and J are two intervals such that each of them contains
the function value f(x) for almost all x ∈ I(a, b), then so does their intersection
K ∩ J . Now we apply (2.1) with ε1 = 1/2. It can be concluded that the interval
K = [f(s) − 1/2, f(s) + 1/2] contains the function value f(x) for almost all x ∈
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I(a, b). Then, we apply (2.1) with ε2 = 1/4 to obtain some t > a( means ti > ai for
each i = 1, 2, ...,m) such that the interval J := [f(t)− 1/4, f(t) + 1/4] contains the
function value f(x) for almost all x ∈ I(a, b). Considering the above observation,
the interval K1 := K ∩ J also contains the function value f(x) for almost all x.
Plainly, K1 is a K1 ⊂ R closed interval whose length |K1| ⩽ 1/2.

Next, we apply (2.1) with ε3 = 1/8 to obtain some r > a such that the interval
J1 = [f(r) − 1/8, f(r) + 1/8] contains the function value f(x) for almost all x ∈
I(a, b). Hence we have K2 = K1 ∩ J1 contains the function value f(x) for almost
all x ∈ I(a, b). Also, K2 is a closed interval whose length |K2| ⩽ 1/4.

By induction, we construct a sequence {Kn : n = 1, 2, ...} of closed intervals such
that Kn ⊇ Kn+1, |Kn| ⩽ 2−n and Km contains the function value f(x) for almost
all x ∈ I(a, b). Using the Nested Intervals Theorem, there is a unique number ℓ
such that ℓ ∈ Kn for each n ⩾ 1.

Moreover, we can select numbers (ai <)c1 < c2 < ... such that cn → ∞ as
n → ∞ and

1

(µ(I(a, b)))
αµ ({x ∈ I(a, b) : f(x) /∈ Kn}) < 1/n,(2.6)

if bi > cn i = 1, 2, 3, ...m.

This makes the definition of the functions g and h plausible. For ai < xi ⩽ c1,
we set

g(x) = f(x) and h(x) := 0.

If xi > c1, then cn < xi ⩽ cn+1 for some n ⩾ 1, and we set

g(x) =

 f(x), if f(x) ∈ Kn

ℓ, otherwise

and h = f − g.

It is clear that g and h are measurable functions and f = g + h. We want to
show that the ordinary limit of g(x) exists as x → ∞ and equals ℓ. For this, let an
arbitrary ε > 0 such that ε < 1, and choose a positive integer t such that 2−t < ε.
If xi > ct, then cn < xi ⩽ cn+1 for some n ⩾ t. If f(x) ∈ Kn, then g(x) = f(x) and
by definition,

|g(x)− ℓ| ⩽ |Kn| ⩽ 2−n ⩽ 2−t < ε(2.7)

while if x /∈ Kn, then g(x) := ℓ. Then, (2.7) holds for all xi > ct. Thus we have
(2.3).

By definition h(x) ̸= 0 if and only if g(x) ̸= f(x). It means that if cn < bi ⩽ cn+1

for some n ⩾ 1, then by definition,

{x ∈ I(a, b) : h(x) ̸= 0} =

n−1⋃
t=1

{ct < xi ⩽ ct+1 : f(x) /∈ Kt}
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∪{cn < xi ⩽ bi : f(x) /∈ Kn} ⊆ {a < x ⩽ b : f(x) /∈ Kn}.

By (2.6), we have

1

(µ(I(a, b)))
αµ ({x ∈ I(a, b) : h(x) ̸= 0}) < 1/n, for cn < bi ⩽ cn+1 n = 1, 2, 3, ....

Since n → ∞ as b → ∞, this proves (2.4).

If there exists C > 0 such that |f(x)| ⩽ C for all x, then f is bounded. Then
by definitions of g and h, we have

|g(x)| ⩽ max{C, ℓ} and |h(x)| ⩽ C + ℓ,

for all x ∈ I(a, b) with xi ∈ (ai,∞) , i = 1, 2, 3, ...m.

“(iii) ⇒ (i)” : This implication is valid under even the weaker assumptions that
f = g + h,

stα − lim
x→∞

g(x) = ℓ and stα − lim
x→∞

h(x) = 0,

because of the additivity property of generalized statistical limit.

3. Strong Cesàro summability at ∞

In this section, we are going to define generalized strongly p−Cesaro summable
of order α at ∞ of multi variable measurable functions. Denote dx = dx1dx2...dxm

and
∫

I(a,b)

:=
∫ b1
a1

∫ b2
a2

...
∫ bm
am

.

Definition 3.1. Let f be a measurable (in Lebesgue’s sense) function on some
interval (ai,∞), where ai > 0 for i = 1, 2, ..m and 0 < α ≤ 1. Then it is said that
f is generalized strongly p−Cesaro summable of order α at ∞ if there exists ℓ ∈ C
such that

lim
min bi→∞

1

(µ(I(a, b)))
α

∫
I(a,b)

|f(x)− ℓ|p dx = 0

where |f(x)− ℓ|p is locally integrable (in Lebesgue’s sense) over the interval (ai,∞).

Theorem 3.1. (i) If f is generalized strongly p-Cesàro summable with order α at
∞ to ℓ ∈ C for some 0 < p < ∞, then the generalized statistical limit with order α
of f at ∞ exists and equals the same ℓ.

(ii) If the generalized statistical limit with order α of f at ∞ exists and equals
ℓ ∈ C, and f is bounded, then f is generalized strongly p-Cesàro summable at ∞
to the same ℓ for every 0 < p < ∞.
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Proof. (i) Let f be a generalized strongly p−Cesàro summable function to ℓ with
order α. For a given ε > 0, we can easily get

∫
I(a,b)

|f(x)− ℓ|p dx ≥ εpµ({x ∈ I(a, b) : |f (x)− ℓ| > ε})

from Markov’s inequality for all 0 < p < ∞. Dividing both sides of the above
inequality by (µ(I(a, b)))

α
and taking the limit as min bi → ∞, we obtain

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : |f (x)− ℓ| > ε})

≤ 1

εp
lim

min bi→∞

1

(µ(I(a, b)))
α

∫
I(a,b)

|f(x)− ℓ|p dx = 0.

Thus, f is generalized statistically convergent function of order α at ∞ to ℓ ∈ C.
(ii) Assume |f (x)| ≤ B for all x and f is a generalized statistically convergent

function of order α at ∞ to ℓ ∈ C. We can write

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : |f (x)− ℓ| > ε}) = 0.

Then ∫
I(a,b)

|f(x)− ℓ|p dx

=



[∫
{a1≤x1≤b1:|f(x)−ℓ|≤ε} +

∫
{a1≤x1≤b1:|f(x)−ℓ|>ε}

]
[∫

{a2≤x2≤b2:|f(x)−ℓ|≤ε} +
∫
{a2≤x2≤b2:|f(x)−ℓ|>ε}

]
. . .

[∫
{am≤xm≤bm:|f(x)−ℓ|≤ε} +

∫
{am≤xm≤bm:|f(x)−ℓ|>ε}

]


|f(x)− ℓ|p dx

≤
m∏
i=1

(bi − ai) ε
p + (B + |ℓ|)p µ({x ∈ I(a, b) : |f (x)− ℓ| > ε}).

We conclude that

lim
min bi→∞

1

µ(I(a, b))

∫
I(a,b)

|f(x)− ℓ|p dx ≤ εp.
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4. Statistical limit inferior and superior at ∞

In this Section, we consider the real-valued measurable function f on some
interval (ai,∞), where ai ≥ 0. A(f) will denote the set of those u ∈ R such that
for 0 < α ≤ 1

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f (x) < u}) ̸= 0

holds, by which we mean that either this limit does not exist at all, or it does exist
but positive. Now, the generalized statistical limit inferior of order α of the function
f at ∞ is defined by

stα − lim inf
x→∞

f(x) = inf A(f),

provided A(f) is not empty; otherwise we set stα − lim infx→∞ f(x) = ∞.

Similarly, the statistical limit superior of order α of the function f at ∞ defined
by stα-lim supx→∞ f(x) = supB(f). B(f) will denote the set of those v ∈ R for
which

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f (x) > v}) ̸= 0.

Here are some basic features of these concepts.

(i) lim infx→∞ f(x) ≤ stα−lim infx→∞ f(x) ≤ stα−lim supx→∞ f(x) ≤ lim supx→∞ f(x)

(ii) If u = stα − lim infx→∞ f(x) is finite, then for every ε > 0,

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f(x) < u+ ε}) ̸= 0

and

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f(x) < u− ε}) = 0.

Conversely, if the two relations mentioned above hold for every ε > 0, then
u = stα − lim infx→∞ f(x).

(iii) A function f is said to be statistically bounded if for some C ∈ R,

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : |f(x)| > C}) = 0
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holds. If f is statistically bounded, then stα − limx→∞ f(x) = ℓ exists if and
only if

stα − lim inf
x→∞

f(x) = stα − lim sup
x→∞

f(x) = ℓ.

(iv)The relation stα − lim infx→∞ f(x) = ∞ is equivalent to the following one:
for every C ∈ R

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f(x) < C}) = 0,

holds.

We denote it by stα − limx→∞ f(x) = ∞ . The symmetric counterpart stα −
limx→∞ f(x) = −∞ is meant analogously.

(v) stα − lim supx→∞ f(x) = −stα − lim infx→∞ (−f(x)) .

(vi) A function f is said to be statistically positive if

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f(x) ≤ 0}) = 0.

If f is statistically positive, then

stα − lim sup
x→∞

f(x) = 1/stα − lim inf
x→∞

(1/f(x))

with the agreements that 1/0 = ∞ and 1/∞ = 0.

(vii) stα−lim infx→∞(f1(x)+f2(x)) ≥ stα−lim infx→∞ f1(x)+ stα−lim infx→∞ f2(x).

(viii) However, if the statistical limit stα − limx→∞ f1(x) exists, then

stα − lim inf
x→∞

(f1(x) + f2(x)) = stα − lim
x→∞

f1(x) + stα − lim inf
x→∞

f2(x).

Similarly, statements are valid for ”stα− lim sup” in place of ”stα− lim inf”. We
formulate only the counterpart of (ii) as follows:

(ii′) If v = stα − lim supx→∞ f(x) is finite, then for every ε > 0,

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f(x) > v − ε}) ̸= 0

and

lim
min bi→∞

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) : f(x) > v + ε}) = 0.

Conversely, if the two relations mentioned above hold for every ε > 0, then
v = stα − lim supx→∞ f(x).
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Theorem 4.1. stα − lim f(x) = ℓ ⇐⇒ stα − lim inf f(x) = stα − lim sup f(x).

Proof. Assume that stα − lim f(x) = ℓ holds. So α−statistical density of

A (ε) = {x ∈ I (a,∞) : |f (x)− ℓ| ≥ ε}(4.1)

is zero for every ε > 0. We have

{x ∈ I (a,∞) : |f (x)− ℓ| ≥ ε} = {x ∈ I (a,∞) : f (x) ≥ ε+ ℓ} ∪ {x ∈ I (a,∞) : f (x) < ℓ− ε} .

Then, from (4.1) we have

δα ({x ∈ I (a,∞) : f (x) ≥ ε+ ℓ}) = 0(4.2)

and
δα ({x ∈ I (a,∞) : f (x) < ℓ− ε}) = 0(4.3)

hold. Equation (4.1) also implies that

δα ({x ∈ I (a,∞) : |f (x)− ℓ| < ε}) = δα (I (a,∞))(4.4)

and we have

δα ({x ∈ I (a,∞) : f (x) < ε+ ℓ}) = δα (I (a,∞))(4.5)

and
δα ({x ∈ I (a,∞) : f (x) ≥ ℓ− ε}) = δα (I (a,∞)) .(4.6)

So, (4.2)-(4.6) implies that ε + ℓ ∈ A (f) , ℓ − ε ∈ B(f) for all ε > 0. Then,
stα − lim inf f(x) = ℓ and stα − lim sup f(x) = ℓ.

Now assume that stα − lim inf f(x) = stα − lim sup f(x) = ℓ holds. From this
assumption, we have

inf A(f) = supB(f) = ℓ.

So, for every ε > 0, there exists ℓ′ ∈ A(f) and ℓ′′ ∈ B(f) such that ℓ − ε < ℓ′′,
ℓ′ < ε+ ℓ satisfied. Then,

δα ({x ∈ I (a,∞) : f (x) ≥ ε+ ℓ}) ≤ δα ({x ∈ I (a,∞) : f (x) > ℓ′}) = 0(4.7)

and

δα ({x ∈ I (a,∞) : f (x) < ℓ− ε}) ≤ δα ({x ∈ I (a,∞) : f (x) < ℓ′′}) = 0.(4.8)

From (4.7) and (4.8), the following equality

δα ({x ∈ I (a,∞) : |f (x)− ℓ| ≥ ε}) = δα ({x ∈ I (a,∞) : f (x) ≥ ε+ ℓ})

+δα ({x ∈ I (a,∞) : f (x) < ℓ− ε})

is satisfied. So, this fact completes the proof of theorem.
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5. Statistical Limit at c ∈ Rn

Let A ⊂ Rm for m ≥ 1 and A be a Lebesgue measurable subset of Rm. Let us
define the approximate density of A in the r neighborhood of an x point in Rm as
follows

dr(x) =
µ(A ∩Br(x))

µ(Br(x))

where Br(x) denotes the closed ball of radius r centered at x.

According to Lebesgue’s density theorem, the density of almost every point x of
A is

d(x) = lim
r→0

dr(x)

exists and is equal to 0 or 1.

Definition 5.1. The Lebesgue measurable function f is called statistically con-
vergent of order α (α ∈ (0, 1]) at c if there exists some ℓ ∈ C such that for every
ε > 0

lim
µ(I(a,b))→0

I(a,b)∋c

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) ⊂ Rm : |f(x)− ℓ| ≥ ε}) = 0.

It is denoted by stα − lim
x→c

f(x) = ℓ. Clearly ℓ is unique.

Definition 5.2. The Lebesgue measurable function f is called statistically Cauchy
of order α (α ∈ (0, 1]) at c if there exists some ℓ ∈ C such that for every ε > 0

lim
µ(I(a,b))→0

I(a,b)∋c

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) ⊂ Rm : |f(x)− f(x0)| ≥ ε}) = 0.

Theorem 5.1. The following statements are equivalent:

i) f has a statistical limit of order α at c ∈ R,
ii) f is Cauchy of order α in a neighborhood of c,

iii) f can be represented in a neighborhood of c as the sum of two measurable
functions g an h in the same neighborhood of c such that lim

x→c
g(x) = stα − lim

x→c
f(x)

and lim
µ(I(a,b))→0I(a,b)∋c

1
(µ(I(a,b)))αµ({x ∈ I(a, b) ⊂ Rm : h(x) ̸= 0}) = 0.

Furthermore, in case f is bounded in a neighborhood of c, then both g and h are
also bounded there.

Proof. The proof is similar to that of Theorem 2.4.
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Definition 5.3. Let 0 < p < ∞. f is said to be strongly p- Cesàro summable of
order α at c ∈ Rm if there exists a number ℓ ∈ C such that

lim
µ(I(a,b))→0

I(a,b)∋c

1

(µ(I(a, b)))
α

∫
I(a,b)

|f(x)− ℓ|pdx = 0.

We accept that the function |f(x) − ℓ|p is integrable in the neighborhood of c,
although it is not written here.

Theorem 5.2. Let 0 < p < ∞. If f at c ∈ Rm to ℓ ∈ C for some p is strongly
p-Cesàro summable of order α, then the statistical limit of f at c exists and equals
the same ℓ.

Proof. The proof is similar to that of the Theorem 3.2.

6. Statistical limit inferior and superior at c ∈ Rm

In this section, we will consider functions that can be measured in the neigh-
borhood of point c ∈ R. This time, we indicate the set of those u ∈ R for which
Ax(f)

lim
µ(I(a,b))→0

I(a,b)∋c

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) ⊂ Rm : f(x) < u}) ̸= 0.

If Ax(f) is not empty, stα−lim inf
x→c

f(x) = inf Ax(f) is the statistical limit inferior

of f at c otherwise we set stα − lim inf
x→c

f(x) := ∞.

Let Bx(f) denote the set

Bx(f) = {v ∈ R : δµ(x ∈ I : f(x) > v) ̸= 0}.

The statistical limit superior of order α of f at point c is given by

stα − lim sup f =

{
supBx(f), if Bx(f) ̸= Ø
−∞, if Bx(f) = Ø

denoted by stα − lim inf
x→c

f(x).

If u = stα − lim inf
x→c

f(x) is finite then for every ε > 0,

lim
µ(I(a,b))→0

I(a,b)∋c

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) ⊂ Rm : f(x) < u+ ε}) ̸= 0(6.1)

and

lim
µ(I(a,b))→0

I(a,b)∋c

1

(µ(I(a, b)))
αµ({x ∈ I(a, b) ⊂ Rm : f(x) < u− ε}) = 0.(6.2)

Conversely, if (6.1) and (6.2) hold for every ε > 0, then u = stα − lim inf
x→c

f(x).
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13. A. Gökhan and M. Güngör: On pointwise statistical convergence. Indian J. Pure
Appl. Math., 33 (9) (2002), 1379–1384.
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