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Ser. Math. Inform. Vol. 39, No 3 (2024), 451–467

https://doi.org/10.22190/FUMI230717031J

Original Scientific Paper

GENERALIZATION OF PELL SEQUENCE AND PELL-LUCAS 
SEQUENCE, NEW RESULTS AND CIRCULANT MATRICES 

ASPECTS

Seyyed Hossein Jafari Petroudi1 and Maryam Pirouz2

1 Department of Mathematics, Payame Noor University

P. O. Box , 1935-3697, Tehran, Iran
2 Guilan University, Rasht, Iran

1. Introduction

Circulant matrices have excited many researchers ever since their first occurrence
in a paper by Catalan and have been widely used in the analysis of time series .
Also, being a special type of Toeplitz matrix, it has many applications in solutions to
differential and integral equations, spline functions and various problems in physics,
mathematics, statistics and signal processing [14].

Because of interesting and exciting applications of well-known Fibonacci se-
quences and some generalizations of this sequence in the area of numerical analysis,

Received: July 17, 2023, revise: February 24, 2024, accepted: April 19, 2024
Communicated by Saeed Asaeedi Mail, Gholam Hossein Fath-Tabar Mail and Predrag Stan-
imirović
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combinatory theory, matrix theory and computer sciences, mathematicians have
been fascinated by these sequences.

For instance, Bueno [1] considered a particular right circulant matrix involving
Fibonacci sequence and obtained the formulae for the Euclidean norm and eigen-
values of this matrix.

Bozkurt [4] computed the spectral norms of some matrices connected integer
sequences such as Fibonacci, Lucas, Pell and Perrin numbers. Cerda Morales [5]
considered a particular Jacobsthal sequence, namely, q-Jacobsthal sequence {Jq,n}
and obtained a generating matrix for the terms of sequence {Jq,kn} for a positive
integer k. Then, by the aid of this matrix, new identities for this sequence were
established.

Nali and Sen [11] obtained norms of circulant matrices involving a generalization
of Fibonacci numbers. The authors in [12] studied (k, h)-Pell sequence and (k, h)-
Pell-Lucas sequence and found a formulae of nth term and sum of the first n terms
of these sequences.

The first objective of this paper is to investigate new results about (k, h)-Pell
sequence and (k, h)-Pell Lucas sequence. The second objective is to study the norm
properties of circulant matrices associated these recursive sequences. The paper is
organized as follows:

In section 2, we give the generating functions of (k, h)-Pell sequence and (k, h)-
Pell-Lucas sequence. We obtain some new identities and give formulas for the sums
of a finite number of terms and squares of finite terms of (k, h)-Pell sequence and
(k, h)-Pell-Lucas sequence .

In section 3, inspired by the work of Cerin [6], firstly, we demonstrate a theorem
that gives formulas for the sums of a finite number of consecutive terms of (k, h)-
Pell sequence and (k, h)-Pell-Lucas sequence. By using this theorem, we give some
examples that state formulas for the sums of squares of consecutive terms, product
of consecutive terms alternating sums of consecutive terms and alternating sums of
product of consecutive terms of these sequences.

In section 4, we consider particular circulant matrices involving (k, h)-Pell se-
quence and (k, h)-Pell-Lucas sequence. We obtain some formulas for computing the
eigenvalues and determinants of these circulant matrices. Then, we obtain upper
and lower bounds for their spectral norms.

In section 5, we give numerical examples related to eigenvalues, determinants
and Euclidean norm of particular circulant matrices connected (k, h)-Pell sequence
and (k, h)-Pell-Lucas sequence for k = 1 and h = 1.
The well-known Pell sequence {Pn} has the recursive relation

Pn = 2Pn−1 + Pn−2,(1.1)

[6], where P0 = 0, P1 = 1. Now, we consider a generalization of this sequence [12]
which is called (k, h)-Pell sequence and is denoted by Γn. This sequence has the
recursive relation

Γn = 2kΓn−1 + hΓn−2,(1.2)
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where Γ0 = 0, Γ1 = 2k and k, h ∈ Z, k2 + h > 0. Also, we consider generalization
of Pell-Lucas sequence which is called (k, h)-Pell-Lucas sequence and is denoted by
{Θn} . This sequence has the recursive relation

Θn = 2kΘn−1 + hΘn−2,(1.3)

where, Θ0 = 2 and Θ1 = 2k (see [12]).

More information about Pell sequence, Pell -Lucas sequence, Fibonacci sequence
and some generalizations and applications of these sequences can be found in [3],
[7]- [10] and [13]- [18].

It is known that

n−1∑
k=0

xk = 1 + x+ x2 + · · ·+ xn−1 =
xn − 1

x− 1
,(1.4)

Let A = (aij) is an n×n matrix, then the maximum column length norm c1(.) and
maximum row length norm r1(.) of matrix A are defined respectively by

c1(A) = max
j

√∑
i

|aij |2 , r1(A) = max
i

√∑
j

|aij |2.(1.5)

The ℓp norm of A is defined by

∥A∥p = (

n∑
i=1

n∑
j=1

|aij |p)
1
p .(1.6)

For p = 2 , this norm is called ” Frobenius” or ”Euclidean” norm and showed by
∥A∥E .
Let A = (aij) and B = (bij) are m × n matrices. Then, the Hadamard product of
A and B is defined by A ◦B = (aijbij).

The spectral norm of A is defined by

∥A∥2 =
√

max
1≤i≤n

λi,(1.7)

where, λi is the eigenvalue of matrix AAH and AH is conjugate transpose of matrix
A. There is a relation between Frobenius and spectral norm, that is

1√
n
∥A∥E ≤ ∥A∥2 ≤ ∥A∥E .(1.8)

Let A,B and C be m × n matrices and A = B ◦ C, (Hadamard product of B and
C) then we have

∥A∥2 ≤ r1(B)c1(C).(1.9)
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2. New identities and summation formulas

In this section, we give the generating functions of (k,h)-Pell sequence and (k,h)-
Pell-Lucas sequence. Then, using the Binet like formulas of (k,h)-Pell sequence and
(k,h)-Pell-Lucas sequence, we represent new identities related to these sequences.
Also, we obtain some formulas for the sums of a finite number of terms, sums of
squares of finite terms of (k,h)-Pell sequence and (k,h)-Pell-Lucas sequence.
We start this section with a lemma, which is similar to the well-known Binet formula
[12].

Lemma 2.1. (Binet-Like formula)Let Γn be a sequence as1.2 in and Θn be a
sequence as in 1.3. Then, we have

Γn =
2k

p
(αn − βn) , Θn = αn + βn.(2.1)

where, α = k +
√
k2 + h, β = k −

√
k2 + h and p = α− β.

As a result of lemma 2.1, we have the following theorem.

Theorem 2.1. Let Γn be a sequence as in 1.2 and Θn be a sequence as in 1.3.
Then, the following identities are valid.

Γn+1Γn−1 − Γ2
n = 4k2(−1)nhn−1,

Θn+1Θn−1 −Θ2
n = 4(−1)n−1hn−1(k2 + h),

Γn+1Θn−1 − Γn−1Θn+1 = 4k(−1)n−1hn−1,

Γn+1Γn+2 − ΓnΓn+3 = 8k3(−1)nhn,

Θn+1Θn+2 −ΘnΘn+3 = 8k(−1)n+1hn(k2 + h),

Γ2
2n+1 − Γ2n−1Γ2n+3 = −Γ2

2h
2n−1,

Θ2
2n+1 −Θ2n−1Θ2n+3 = 16k2(k2 + h)h2n−1,

Γ2nΓ2n+1 =
k2

k2 + h

[
Θ4n+1 − 2h2nk

]
,

ΓnΘn = Γ2n,

Θ2nΘ2n+1 = Θ4n+1 + 2h2nk,

ΓnΓn+1Γn+2 =
k2

k2 + h
[Γ3n+3 − (−h)n(h2Γn−1 + kΓn+ 2)],

ΘnΘn+1Θn+2 = Θ3n+3 + (−h)n(h2Θn−1 + kΘn+ 2)].

Proof. We prove the first identity. By lemma 2.1, we have:

Γn+1Γn−1 − Γ2
n =

2k

p
[αn+1 − βn+1]

2k

p
[αn−1 − βn−1]− [

2k

p
(αn − βn)]2

= (
2k

p
)2
[
2αnβn − αn+1βn−1 − αn−1βn+1

]
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= (
2k

p
)2[−αn−1βn−1(α2 + β2 − 2αβ)]

=
4k2

p2
(−[αβ]n−1)(α− β)2

=
−4k2

p2
(−h)n−1p2 = 4k2(−1)nhn−1.

Thus, the proof of first identity is completed. The other cases can be proved by
the similar method.

Theorem 2.2. Let Γn be a sequence as in 1.2 and Θn be a sequence as in 1.3.
Then, the generating function of Γn is

f(x) =
2kx

1− 2kx− x2h
,(2.2)

and the generating function of Θn is

g(x) =
2 + 2kx

1− 2kx− x2h
(2.3)

Proof. Suppose that the generating function of Γn has the formal power seriesf(x) =∑∞
n=0 Γnx

n. Thus, we get

f(x)− 2kxf(x)− x2hf(x) =

∞∑
n=0

Γnx
n − 2kx

∞∑
n=0

Γnx
n − x2h

∞∑
n=0

Γnx
n

=

∞∑
n=0

Γnx
n − 2k

∞∑
n=1

Γn−1x
n − h

∞∑
n=2

Γn−2x
n

= Γ0 + (Γ1 − 2kΓ0)x+

∞∑
n=2

(Γn − 2kΓn−1 − hΓn−2)x
n.

Since Γn − 2kΓn−1 − hΓn−2 = 0, by substituting the initial values Γ0 and Γ1, we
obtain that f(x)(1− 2kx− x2h) = 2x. Hence, we get

f(x) =

∞∑
m=0

Γnx
n =

2kx

1− 2kx− x2h
.

Similarly, we obtain the generationg function of Θn.

Theorem 2.3. Let Γn be a sequence as in 1.2 and i be a natural number. Then,
we have

n∑
m=0

Γmi =
Γi − Γ(n+1)i + (−h)iΓni

1−Θi + (−h)i
.(2.4)
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Proof. According lemma 2.1 we have

n∑
m=0

Γmi =
2k

p

n∑
m=0

(
αmi − βmi

)
=

2k

p

[
n∑

m=0

(αi)m −
n∑

m=0

(βi)m

]
.

By 1.4 we get

n∑
m=0

Γmi =
2k

p

[
1− (αi)n+1

1− αi
− 1− (βi)n+1

1− (β)i

]
=

2k

p

[
(1− (αi)n+1)(1− βi)− (1− (βi)n+)(1− αi)

(1− αi)(1− βi)

]
.

After some computations, we deduce that

n∑
m=0

Γmi =
2k

p

[
(αi − βi)− ((αi)n+1 − (βi)n+1) + αiβi((αi)n − (βi)n)

1− (αi + βi) + αiβi

]

=

2k
p (αi − βi)− 2k

p ((αi)n+1 − (βi)n+1) + 2k
p αiβi((αi)n − (βi)n)

1− (αi + βi) + αiβi

=
Γi − Γ(n+1)i + (−h)iΓni

1−Θi + (−h)i
.

Thus, the proof is completed.

Theorem 2.4. Let Θn be a sequence as in 1.3 and i be a natural number. Then,
we have

n∑
m=0

Θmi =
2−Θi −Θ(n+1)i + (−h)iΘni

1−Θi + (−h)i
.(2.5)

Proof. The proof is similar to Theorem 2.3.

Example 2.1. For i = 1, 2 by theorems 2.3 and 2.4 we have the following summation
formulas.

n∑
m=0

Γm =
2k − Γ(n+1) − hΓn

1− 2k − h
,

n∑
m=0

Γ2m =
Γ2 − Γ2n+2 + h2Γ2n

1−Θ2 + h2
,

n∑
m=0

Θm =
2− 2k −Θn+1 − hΘn

1− 2k − h
,

n∑
m=0

Θ2m =
2−Θ2 −Θ2n+2 + h2Θ2n

1−Θ2 + h2
,

Also, for i = 3 we have

n∑
m=0

Γ3m =
Γ3 − Γ3n+3 − h3Γ3n

1−Θ3 − h3
,

n∑
m=0

Θ3m =
2−Θ3 −Θ3n+3 − h3Θ3n

1−Θ3 − h3
.
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Theorem 2.5. Let Γn be as in 1.2 and Θn be as in 1.3. Then, we have

n−1∑
m=0

Γ2
m =

4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(−h)n − 1

h+ 1

]
,

n−1∑
m=0

Θ2
m =

(
2−Θ2 + h2Θ2n−2 −Θ2n

1−Θ2 + h2

)
+ 2

(
1− (−h)n

1 + h

)
.

Proof. See [12]

3. More summation formulas

In this section, similar to the last section, inspiration by the work of Cerin [6],
we obtain formulas for the sums of a finite number of consecutive terms of (k,h)-
Pell sequence and (k,h)-Pell-Lucas sequence. Furthermore, we give some theorems
that state formulas for the sums of squares of consecutive terms and product of
consecutive terms of these sequences. Also, we present formulas, for the alternating
sums of consecutive terms and alternating sums of product of consecutive terms of
(k,h)-Pell sequence and (k,h)-Pell-Lucas sequence.

Theorem 3.1. Let Γn be as in 1.2 and Θn be as in 1.3. Then, we have

m∑
i=0

Γn+i =
hΓm+n + Γm+n+1 − hΓn−1 − Γn

h+ 2k + 1
,

m∑
i=0

Θn+i =
h(Θm+n −Θn−1) + Θm+n+1 −Θn

h+ 2k − 1
,

m∑
i=0

(−1)iΓn+i =
(−1)m+1hΓm+n + (−1)mΓm+n+1 − hΓn−1 + Γn

h+ 2k + 1
,

m∑
i=0

(−1)iΘn+i =
(−1)m+1hΘm+n − hΘn−1 + (−1)mΘm+n+1 +Θn

2k − h+ 1
.

m∑
i=0

Γ2n+2i =
h2(Γ2m+2n − Γ2n−2)− Γ2m+2n+2 + Γ2n

h2 −Θ2 + 1
,

m∑
i=0

Θ2n+2i =
h2(Θ2m+2n −Θ2n−2)−Θ2m+2n+2 +Θ2n

h2 −Θ2 + 1
,

m∑
i=0

(−1)iΓ2n+2i =
h2 [(−1)mΓ2m+2n + Γ2n−2] + (−1)mΓ2m+2n+2 + Γ2n

h2 +Θ2 + 1
,

m∑
i=0

(−1)iΘ2n+2i =
h2 [(−1)mΘ2m+2n +Θ2n−2] + (−1)mΘ2m+2n+2 +Θ2n

h2 +Θ2 + 1
.
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Proof. By definition of Γn, we have Γn+i =
2k
p (αn+i − βn+i). Thus, we get

m∑
i=0

Γn+i =

m∑
i=0

2k

p
(αn+i − βn+i)

=
2k

p

m∑
i=0

αn+i − 2k

p

m∑
i=0

βn+i

=
2k

p
αn

m∑
i=0

αi − 2k

p
βn

m∑
i=0

βi.

By using 1.4, we obtain

m∑
i=0

Γn+i =
2k

p

[
αn(

1− αm+1

1− α
)− βn(

1− βn+1

1− β
)

]
=

2k

p

[
(αn − αn+m+1)(1− β)− (βn − βn+m+1)(1− α)

(1− α)(1− β)

]
.

Hence, by doing a process similar to theorem 2.3, we get the following result

m∑
i=0

Γn+i =
−hΓm+n − Γm+n+1 + hΓn−1 + Γn

−h− 2k + 1

=
hΓm+n + Γm+n+1 − hΓn−1 − Γn

h+ 2k − 1
.

Other summation formulas can similarly be proved.

The following theorems present new summation formulas about the consecutive
terms and alternative consecutive terms of (k, h)-Pell sequence and (k, h)-Pell-Lucas
sequence, which we have presented without any proofs.

Theorem 3.2. Let Γn be as in 1.2 and Θn be as in 1.3. Then, we have

m∑
i=0

Γ2n+2i+1 =
h2[Γ2m+2n+1 − Γ2n−1]− Γ2m+2n+3 + Γ2n+1

h2 −Θ2 + 1
,

m∑
i=0

Θ2n+2i+1 =
h2[Θ2m+2n+1 −Θ2n−1]−Θ2m+2n+3 +Θ2n+1

h2 −Θ2 + 1
,

m∑
i=0

(−1)iΓ2n+2i+1 =
h2[(−1)mΓ2m+2n+1 + Γ2n−1] + (−1)mΓ2m+2n+3 + Γ2n+1

h2 +Θ2 + 1
.

m∑
i=0

(−1)iΘ2n+2i+1 =
h2[(−1)mΘ2m+2n+1 +Θ2n−1] + (−1)mΘ2m+2n+3 +Θ2n+1

h2 +Θ2 + 1
.
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Theorem 3.3. Let Γn be as in 1.2 and Θn be as in 1.3. Then, we have
m∑
i=0

Γ2
n+i

=
k2

k2 + h

[
Θ2n + h2(Θ2m+2n −Θ2n−2)−Θ2m+2n+2

h2 −Θ2 + 1
− 2(−h)n

(
1− (−h)m+1

1 + h

)]
,

m∑
i=0

Θ2
n+i

=

(
Θ2n + h2(Θ2m+2n −Θ2n−2)−Θ2m+2n+2

h2 −Θ2 + 1

)
+ 2(−h)n

(
(−h)m+1 − 1

1 + h

)
,

m∑
i=0

Γ2
2n+2i

=
k2

k2 + h

[
h4(Θ4m+4n −Θ4n−4)−Θ4m+4n+4 +Θ4n

h4 −Θ4 + 1
− (2h2n)

(
h2m+2 − 1

h2 − 1

)]
,

m∑
i=0

Θ2
2n+2i

=

[
h4(Θ4m+4n −Θ4n−4)−Θ4m+4n+4 +Θ4n

h4 −Θ4 + 1

]
+ (2h2n)

(
h2m+2 − 1

h2 − 1

)
,

m∑
i=0

Γ2
2n+2i+1

=
k2

k2 + h

[
h4(Θ4m+4n+2 −Θ4n−2)−Θ4m+4n+6 +Θ4n+2

h4 −Θ4 + 1
+ (2h2n+1)

(
h2m+2 − 1

h2 − 1

)]
,

m∑
i=0

Θ2
2n+2i+1

=

[
h4(Θ4m+4n+2 −Θ4n−2)−Θ4m+4n+6 +Θ4n+2

h4 −Θ4 + 1

]
− (2h2n+1)

(
h2m+2 − 1

h2 − 1

)
.

Theorem 3.4. Let Γn be as in 1.2 and Θn be as in 1.3. Then, we have
m∑

i=0

(−1)
i
Γ
2
n+i

=
k2

k2 + h

[
Θ2n + h2((−1)mΘ2m+2n + Θ2n−2) + (−1)mΘ2m+2n+2

h2 + Θ2 + 1
− 2(−h)

n

(
1 − hm+1

1 − h

)]
,

m∑
i=0

(−1)
i
Θ

2
n+i

=

(
Θ2n + h2((−1)mΘ2m+2n + Θ2n−2) + (−1)mΘ2m+2n+2

h2 + Θ2 + 1

)
+ 2(−h)

n

(
1 − hm+1

1 − h

)
,

m∑
i=0

(−1)
i
Γ
2
2n+2i

=
k2

k2 + h

[
h4((−1)mΘ4m+4n + Θ4n−4) + (−1)mΘ4m+4n+4 + Θ4n

h4 + Θ4 + 1
− (2h

2n
)

(
h2m+2(−1)m + 1

h2 + 1

)]
,

m∑
i=0

(−1)
i
Θ

2
2n+2i

=

[
h4((−1)mΘ4m+4n − Θ4n−4) + (−1)mΘ4m+4n+4 + Θ4n

h4 + Θ4 + 1

]
+ (2h

2n
)

(
h2m+2(−1)m + 1

h2 + 1

)
,
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m∑
i=0

(−1)
i
Γ
2
2n+2i+1

=
k2

k2 + h

[
h4((−1)mΘ4m+4n+2 + Θ4n−2) + (−1)mΘ4m+4n+6 + Θ4n+2

h4 + Θ4 + 1
+ (2h

2n+1
)

(
h2m(−1)m + 1

h2 + 1

)]
,

m∑
i=0

(−1)
i
Θ

2
2n+2i+1

=

[
h4((−1)mΘ4m+4n+2 + Θ4n−2) + (−1)mΘ4m+4n+6 + Θ4n+2

h4 + Θ4 + 1

]
− (2h

2n+1
)

(
h2m+2(−1)m + 1

h2 + 1

)
.

Theorem 3.5. Let Γn be as in 1.2 and Θn be as in 1.3. Then, we have
m∑
i=0

ΓiΓi+1 =
k2

k2 + h
[
Θ1(1 + h) + h2Θ2m+1 −Θ2m+3

1−Θ2 + h2
− (

1 + hm+1(−1)m

1 + h
)Θ1],

m∑
i=0

ΘiΘi+1 = [
Θ1(1 + h) + h2Θ2m+1 −Θ2m+3

1−Θ2 + h2
] + (

1 + hm+1(−1)m

1 + h
)Θ1,

m∑
i=0

Γ2n+2iΓ2n+2i+1

=
k2

k2 + h
[
Θ4n+1 + h4(Θ4m+4n+1 −Θ4n−3)−Θ4n+4m+5

1−Θ4 + h4
− (

1− h2m+2

1− h2
)h2nΘ1],

m∑
i=0

Θ2n+2iΘ2n+2i+1

= [
Θ4n+4m+5 − h4(Θ4m+4n+1 −Θ4n−3)−Θ4n+1

1−Θ4 + h4
− (

1− h2m+2

1− h2
)h2nΘ1].

4. Circulant matrices aspects

In this section, we consider particular circulant matrices involving (k,h)-Pell se-
quence and (k,h)-Pell-Lucas sequence. We obtain the eigenvalues and determinants
of these circulant matrices. Then, we find some upper and lower bounds for the
spectral norm of these circulant matrices.

Definition 4.1. [11] A matrix C = [ci,j ] ∈ Mn is called a Circulant matrix if it is
of the form ci,j = aj−i for j ≥ i, and ci,j = an+j−i for j < i.

Now, we define the n×n circulant matrices Cn and Dn with (k, h)-Pell sequence
and (k, h)-Pell-Lucas sequence respectively by

Cn = circ(Γ0,Γ1,Γ2, · · · ,Γn−1),(4.1)

and
Dn = circ(Θ0,Θ1,Θ2, · · · ,Θn−1),(4.2)

where, Γn is the nth term of (k, h)-Pell sequence and Θn is the nth term of (k, h)-
Pell-Lucas sequence.

From [3] we have the following theorem that presents a formula to compute the
eigenvalues of a circulant matrix.
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Theorem 4.1. Let C = circ(c0, c1, c2, · · · , cn−1) is an n × n circulant matrix.
Then, the eigenvalues of C are

λj =

n−1∑
k=0

ckw
jk, j = 0, 1, · · · , n− 1

where, w = exp( 2πin ) and i =
√
−1.

By applying this theorem, we have the following corollary about the eigenvalues
of circulant matrix 4.1.

Corollary 4.1. Let Cn be a circulant matrix as in 4.1 and Λj for j = 0, 1, 2, · · · , n−
1, be the eigenvalues of Cn. Then, we have

Λ0 =

n−1∑
m=0

Γm =
Γn + hΓn−1 − 2k

2k + h− 1
,

and for j ≥ 1 we have

Λj =
(2k − hΓn−1)w

j − Γn

1− (2k + hwj)wj
.

where, w = exp( 2πin ) and i =
√
−1.

Proof. For j = 0 the result follows from Corollary2.1 and theorem4.1.
For j ≥ 1, by lemma2.1 and theorem4.1 we have

Λj =

n−1∑
m=0

Γmwjm =

n−1∑
m=0

2k

p
(αm − βm)

(
e

2πij
n

)m
=

2k

p

n−1∑
m=0

(
(αe

2πij
n )m − (βe

2πij
n )m

)
.

According to 1.4, we get

Λj =
2k

p

1− αn
(
e

2πij
n

)n
1− αe

2πij
n

−
1− βn

(
e

2πij
n

)n
1− βe

2πij
n

 =
2k

p

[
1− αn

1− αwj
− 1− βn

1− βwj

]
,

where, w = exp( 2πin ) and i =
√
−1.

By some computations, we obtain

Λj =
2k

p

[
(α− β)wj − (αn − βn) + αβ(αn−1 − βn−1)wj

(1− αwj)(1− βwj)

]
=

2k

p

[
(α− β)wj − (αn − βn) + αβ(αn−1 − βn−1)wj

1− (α+ β)wj + (αβ)w2j

]
.
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Consequently, by lemma 2.1, we deduce that

Λj =
Γ1w

j − Γn − hΓn−1w
j

1− 2kwj − hw2j
=

(2k − hΓn−1)w
j − Γn

1− (2k + hwj)wj
.

Thus, the proof is completed.

Now, we obtain the determinant of circulant matrix 4.1. Firstly, we need the
following lemma from [3].

Lemma 4.1. Let x and y are real variables and w = exp( 2πin ) where, i =
√
−1.

Then
n−1∏
j=0

(x− ywj) = xn − yn.

As a result of the lemma 4.1 we have the following corollary.

Corollary 4.2. Let Cn be a circulant matrix as in 4.1. Then, determinant of Cn

is given by

det(Cn) =
(2k − hΓn−1)

n − (Γn)
n

1−Θn + (−h)n
.

Proof. By corollary 4.1, we have

det(Cn) =

n−1∏
j=0

Λj =

n−1∏
j=0

(2k − hΓn−1)w
j − Γn

(1− αwj)(1− βwj)
=

∏n−1
j=0

(
(2k − hΓn−1)w

j − Γn

)∏n−1
j=0 (1− αwj)

∏n−1
j=0 (1− βwj)

.

Consequently, according to lemma 4.1 we get

det(Cn) =
(2k − hΓn−1)

n − (Γn)
n

(1− αn)(1− βn)
=

(2k − hΓn−1)
n − (Γn)

n

1−Θn + (−h)n
.

Also, we have the following corollaries about the eigenvalues and determinant
of circulant matrix 4.2.

Corollary 4.3. Let Dn be a circulant matrix as in 4.2 and νj for j = 0, 1, 2, · · · , n−
1 be the eigenvalues of Dn. Then, we have

ν0 =

n−1∑
m=0

Θm =
Θn + hΘn−1 + 2k − 2

2k + h− 1
.

and for j ≥ 1 we have

νj =
2−Θn − (2k + hΘn−1)w

j

1− (2k + hwj)wj
.

where, w = exp( 2πin ) and i =
√
−1.
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Proof. The proof is similar to corollary4.1.

Corollary 4.4. Let Dn be a circulant matrix as in 4.2. Then, determinant of of
Dn is given by

det(Dn) = |Dn| =
(2−Θn)

n − (2k + hΘn−1)
n

1−Θn + (−h)n
.

Proof. The proof is similar to corollary 4.2.

By next theorem, we give the Euclidean norm of circulant matrix Cn.

Theorem 4.2. Let Cn be a circulant matrix as in 4.1. Then, the Euclidean norm
of Cn is

∥Cn∥E =
2
√
nk

p

√
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)
.

Proof. By definition of Euclidean norm, we have

∥Cn∥2E = n
(
Γ2
0 + Γ2

1 + Γ2
2 + · · ·+ Γ2

n−1

)
= n

n−1∑
k=0

Γ2
k.

By theorem2.5 we obtain

∥Cn∥2E = n
4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(−h)n − 1

h+ 1

]
.

Conseqently, by taking ( 12 )
th power from the both sides of the above equality,

we get

∥Cn∥2E =
2
√
nk

p

√
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)
.

Corollary 4.5. Let Cn be a circulant matrix as in 4.1. Then, we have the follow-
ing upper bound and lower bound for the spectral norm of Cn

2k

p

√
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)
≤ ∥Cn∥2

≤ 2
√
nk

p

√
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)
.
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Proof. It follows from 1.8 and theorem 4.2.

Now, we find the Euclidean norm of circulant matrix Dn.

Theorem 4.3. Let Dn be a circulant matrix as in 4.2. Then, the Euclidean norm
of Dn is

∥Dn∥E =
√
n

√
2−Θ2 + h2Θ2n−2 −Θ2n

1−Θ2 + h2
+ 2

(
1− (−h)n

1 + h

)
.

Proof. The proof is similar to theorem4.2.

Corollary 4.6. Let Dn be a circulant matrix as in 4.2. Then, we have the follow-
ing upper bound and lower bound for the spectral norm of Dn√

2−Θ2 + h2Θ2n−2 −Θ2n

1−Θ2 + h2
+ 2

(
1− (−h)n

1 + h

)
≤ ∥Dn∥2

≤
√
n

√
2−Θ2 + h2Θ2n−2 −Θ2n

1−Θ2 + h2
+ 2

(
1− (−h)n

1 + h

)
.

Proof. It follows from 1.8 and theorem4.3.

By using the definition of Hadamard product, we obtain an upper bound for the
spectral norm circulant matrix 4.1.

Theorem 4.4. Let Cn be a matrix as in 4.1. Then, we have the following upper
bound for the spectral norm of Cn.

∥Cn∥2 ≤ 4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)]
.

Proof. By definition of Hadamard product for Cn, we have

Cn =


Γ0 Γ1 Γ2 · · · Γn−1

Γ1 Γ2 Γ3 · · · Γ0

Γ2 Γ3 Γ4 · · · Γ1

...
...

...
...

...
Γn−1 Γ0 Γ1 · · · Γn−2



=


1 Γ1 Γ2 · · · Γn−1

1 1 Γ3 · · · Γ0

1 1 1 · · · Γ1

...
...

...
...

1 1 1 · · · 1

 ◦


Γ0 1 1 · · · 1
Γ1 Γ2 1 · · · 1
Γ2 Γ3 Γ4 · · · 1
...

...
...

...
Γn−1 Γ0 Γ1 · · · Γn−2


= A ◦B.
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By definition of maximum row length norm and maximum column length norm, we
have

r1(A) = max
i

√∑
j

|aij |2 =

√√√√n−1∑
j=0

Γ2
j

=

√
4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)]
.

Also, we have

c1(B) = max
j

√∑
i

|bij |2 =

√√√√n−1∑
j=0

Γ2
j

=

√
4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)]
.

According to 1.9, we obtain

∥Cn∥2 ≤ r1(A)c1(B)

=

(√
4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)])2

=
4k2

p2

[
h2Θ2n−2 −Θ2n −Θ2 + 2

h2 −Θ2 + 1
+ 2

(
(−h)n − 1

h+ 1

)]
.

Now, we obtain an upper bound for the spectral norm of 4.2.

Theorem 4.5. Let Dn be a matrix as in 4.2. Then, we have the following upper
bound for the spectral norm of Dn.

∥Dn∥2 ≤
(
2−Θ2 + h2Θ2n−2 −Θ2n

1−Θ2 + h2

)
+ 2

(
1− (−h)n

1 + h

)
.

Proof. The proof is similar to theorem4.4.

5. Numerical example

In this section, by using MATLAB software, we present two numerical exam-
ples about the eigenvalues, determinants and Euclidean norm of circulant matrices
Cn and Dn for some values of n.
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Example 5.1. Following table shows the eignvalues, determinants and Euclidean norm
of circulant matrix Cn associated with (k, h)-Pell sequence for some values of n (for h =
1, k = 1).

n det(Cn) ∥Cn∥E Eigenvalues of circulant matrix Cn

2 -4 2.8284 -2, 2

3 -72 7.7460 -3.4641, 3.4641, 6

4 10240 21.9089 -8.9443, -8, 8.9443, 16

5 8067200 58.9915 -24.67.6, -18.2034, 24.6706, 18.2034, 40

6 -3.8259+e10 156.0769 -66.0908, 46.1303, 66.0908, 46.1303, -42, 98

Example 5.2. Following table shows the eignvalues, determinants and Euclidean norm
of circulant matrix Dn associated with (k, h)-Pell-Lucass sequence for some values of n
(for h = 1, k = 1).

n det(Dn) ∥Dn∥E Eigenvalues of circulant matrix Dn

2 -4 2.8284 -2, 2

3 -224 10.9545 -5.2915, 5.2915, 8

4 39600 30.7246 -13.4164, -10, 13.4164, 22

5 4.02+e7 83.4266 -35.4980 , -25.5322 , 35.4980 , 25.5322 , 56

6 -3.0554+e11 220.6717 -93.8723 , -65.8179, 93.8723, 65.8179 , -58, 138
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