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Abstract. Solving high dimentional, multimodal, non-smooth global optimization
problems faces challenges concerning quality of solution, computational costs or even
the impossibility of solving the problem. Evolutionary algorithms, in particular, differ-
ential evolution algorithm (DE) proved itself as good method of global optimization.
On the other side, approach based on subgradient methods (SG) are good for optimiz-
ing non-smooth functions. Combination of these two approaches enables to improve
the quality of the algorithm, using the best features of both methods.
In this paper, a new hybrid evolutionary approach (SSGDE) based on differential evo-
lution and subgradient algorithm as the local search procedure is proposed. Behavior
of the proposed SSGDE algorithm were studied in a numerical experiment on three
groups of generated tests. Comparison of the new hybrid algorithm with the pure DE
approach showed the advantage of the SSGDE. The proposed algorithm makes it possi-
ble to obtain an improvement in the average best value of the achieved global minimum
by three orders of magnitude compared to DE for the non-differentiable test function
characterized by high dimensionality, a large number of local extrema, and a significant
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ravine. Thus, it has been experimentally established that the proposed method finds
the global minimum in the best way for all considered dimensions of the problem with
respect to the differential evolution method.
Keywords: global non-smooth optimization, hybrid method, differential evolution,
subgradient method.

1. Introduction

Hybridization of algorithms for solving optimization problems is a topic issue,
and scientific research in this area is aimed at developing algorithms that have
the advantages of combined approaches. The resulting new properties of hybrid
algorithms create additional opportunities for their application in various fields to
solve global optimization problems [1].

Evolutionary algorithms are often used as part of hybrid algorithms, which is
due to the fact that they allow finding good solutions for a large class of complex
problems, including those related to multicriteria, multimodal, poorly formalized
problems and problems with high dimensionality [2, 3].

The advantages of genetic algorithms (GA) over other optimization methods
are related to the fact that they simultaneously analyze different regions of the
decision space and find new regions with better objective function values, avoiding
the situation of premature convergence at a local minimum [4].

One of the effective population algorithms is the differential evolution algorithm,
which was introduced by R. Storn and K. Price [5] for the stochastic population
method of global optimization. This method was proposed for solving practical
optimization problems with the conditions of finding a true global minimum with
fast convergence and the possibility of changing a smaller number of control param-
eters [5]. This algorithm is used to solve problems in the n-dimensional continuous
domain to find the global minimum (maximum) of multimodal, nonlinear, non-
differentiable functions.

During the execution of the differential evolution algorithm, a population of can-
didate solutions is formed, which is improved in an evolutionary way in the process
of numerous iterations. Therefore, although the differential evolution algorithm
is not biologically determined, it is still classified as an evolutionary computation
[2, 6].

Compared to the evolutionary algorithms, the differential evolution method re-
duces the complexity of genetic operations and enables to dynamically track the
search being performed and adjust its strategy. The advantages of the basic DE
algorithm are its independence from information about the problem being solved,
relative ease of implementation, joint search taking into account both local and
group global information, the possibility of using it as part of hybrid algorithms in
order to improve performance [7].

The positive results of the DE algorithm have been demonstrated in solving
problems characterized by the complexity of equations, the number, variety and
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variability of the conditions taken into account. The joint use of regular and ran-
dom processes in the algorithm contributes to finding the global extremum of the
function. The algorithm is used to solve optimization problems in the energy sec-
tor, related, for example, to the optimal distribution of power units and ensuring
reliable power supply to consumers by minimizing the non-admission of electricity
during the repair of network equipment [8, 9, 10]. In material science, DE algo-
rithm is used for structure prediction of materials [11]. In engineering, DE is used
for feature selection in motor fault diagnosis problem [12], for multiple disk clutch
brake design and weight minimization of a speed reducer problems [13]. To optimize
the parameters of two models aimed at estimating evapotranspiration, DE and GA
proposed in [14].

When solving practical problems of multi-criteria optimization containing con-
flicting optimality criteria, in order to obtain better results when using the DE
algorithm, its modified solutions are developed by selecting parameters, applied
mutation operators, schemes for accounting for objective functions, criteria associ-
ated with variables and their constraints [15, 16, 17].

A modified solution for the DE algorithm was used in solving problems of opti-
mizing fuzzy rules in self-organizing neural systems when building controllers [18].
Clustering methods are used to extract a set of fuzzy rules, then the DE method
is used to tune the parameters of membership functions [19]. The advantages of
the multicriteria DE method are presented in relation to the optimization of the
parameters of a fuzzy control system and in solving engineering problems [20].

The DE method has demonstrated its effectiveness in solving many practical
problems of global multiobjective optimization, but its performance depends on the
correct setting of control parameters. For them, there are already proposed values,
but when solving specific problems, the need for their individual selection remains
relevant [7].

The control parameters of the DE algorithm (crossover rate, scaling factor value)
affect the convergence of the algorithm and the convergence rate. To improve the
efficiency of the DE algorithm, various solutions are being developed. One of them
offers a DE algorithm with a self-adaptive scaling factor and a crossover rate with
an elimination mechanism to reduce premature convergence of the algorithm and
converge to a local optimum [7].

The development of the practical application of differential evolution algorithms
is associated both with the choice of control variables for a certain type of problem
being solved, and with hybridization with other optimization methods.

Hybridization of any evolutionary global search algorithm with local search al-
gorithms or with individual learning procedures is one of the developing areas of
research on heuristic hybrid global optimization methods represented by memetic
algorithms. One of the promising directions for modifying memetic algorithms is
hybridization and meta-optimization [21].

The structure of the memetic algorithm is presented by P. Moscato [22]. Memetic
algorithms as a wide class of algorithms are represented by the hybridization of
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evolutionary algorithms (genetic, differential evolution, etc.), local optimization al-
gorithms.

Typical optimization problems encountered in practice, to which hybrid algo-
rithms are successfully applied, are the optimization of the architecture of neural
networks, the selection of neural network parameters and weights to achieve the
best performance [23], including classification [24], regression, finding optimal pa-
rameters for fuzzy control systems [25] and others.

When solving optimization problems in the field of machine learning, non-
smooth functions often arise, the lack of differentiability of which creates serious
theoretical difficulties. To solve such problems, two main approaches are used: the
creation of smooth approximations of non-smooth functions and an approach based
on subgradient methods [26, 27]. The efficiency of non-smooth optimization meth-
ods in terms of reliability, speed, and accuracy of results is comparable to efficient
methods for solving smooth, ill-conditioned problems [28, 29].

When solving problems of minimizing non-differentiable functions, subgradient
algorithms with space dilation in the direction of the difference of two successive sub-
gradients have shown good results [28]. To overcome the problem of the convergence
rate of subgradient methods, the scientists of the N.Z. Shor group developed fami-
lies of subgradient methods with space dilation in the direction of the subgradient
and in the direction of the difference of two successive subgradients (r-algorithms)
[30].

Along with the development of non-smooth optimization methods with space
metric transformation in order to increase the speed and quality of convergence of
algorithms, as well as to reduce the amount of memory required for their imple-
mentation, various modifications of the subgradient method are being developed.
In the study of relaxation subgradient methods in [31], an increase in the efficiency
of the modified algorithm for non-smooth unconstrained ravine-type optimization
problems was demonstrated, but a significant increase in the time costs of the al-
gorithm on problems of large dimension was noted. To overcome this shortcoming
and expand the range of nonsmooth high-dimensional problems to be solved [32],
an algorithm was proposed with correction of the solution in the iterative process.
The algorithm reduces or increases the initial step of one-dimensional descent at
iterations depending on the progress obtained, which is determined by the increase
coefficient qM > 1 and decrease coefficient qm < 1 specified for the step. A small
step decrease rate removes the looping of the method by increasing the neighborhood
of the choice of subgradients of the function for solving. The choice of the decrease
coefficient value is important for problems of minimizing non-smooth functions, and
its value is inversely proportional to the convergence rate of the algorithm. For the
best result, this value is recommended to be initially selected experimentally.

In [33], good results are shown for the convergence rate of the relaxation sub-
gradient method with a two-rank correction of the metric matrices on complex
non-smooth functions. The use of this algorithm to search for the initial approx-
imation (initial parameters) when training an artificial neural network on small
training samples has increased its quality. But it should be noted that the studies
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carried out in [34] also show results when the successful convergence of gradient
methods to a local minimum does not mean that they are able to converge to a
global minimum.

Thus, the practical application of subgradient methods for solving minimization
problems is associated with an assessment of the effectiveness of their work. This
is most relevant in high-dimensional problems for convex functions with different
ravines and requires selection of the method parameters. Another area of research
is solving the problem of unattainability of the specified stopping criteria by the
algorithm or their achievement with significant time costs. Solutions aimed at
improving the efficiency of convergence of methods for various applied problems are
presented both by modification of optimization algorithms and by the development
of hybrid algorithms [35, 36].

The aim of our study is combining the ability of evolutionary algorithm to find a
global minimum with the abilities of subgradient methods [37] to search locally for
convex non-differentiable functions and smooth functions that difficult to minimize
(for example, ravine-type functions [28]), to improve the convergence of the hybrid
algorithm on multimodal non-convex functions.

The rest of the paper is organized as follows. In Section 2, the problem of the
study is formulated, as long as the method of differential evolution and subgradient
method are described. In Section 3, the implementation of proposed algorithm is
given. In Section 4, experiments with algorithm were made. Section 5 concludes
the work.

2. Problem statement and description of methods

Consider the minimization problem [2]:

min
x

f(x),(2.1)

where f(x) is objective function (cost function), x is the independent variable, which
is an n-dimensional vector in continuous space:

x = (x1, x2, . . . , xn)
T ∈ Rn.(2.2)

The number of elements n in the vector x is the dimension of the optimization
problem. Define a local minimum x∗ as f(x∗) < f(x) for all x, such that:

∥x− x∗∥ < ε,(2.3)

where ∥x− x∗∥ is some measure of distance, and ε > 0 is some user-defined neigh-
borhood size. We define the global minimum as:

f(x∗) ≤ f(x),(2.4)

for all x, possibly with constraints on the allowable values of x.
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The DE algorithm operates on a population of possible solutions P of the gen-
eration g, each individual solution is an individual of population that is a potential
optimal solution [38]:

Pg = {Xg
i }, i = 1, . . . , Np,(2.5)

where Np is population size. The variables that make up an individual are called
genes:

Xg
i = {xg

i,j}, j = 1, . . . , n,(2.6)

where n is number of variables (genes) of the individual. In this sense, we can say
that the category ”vector of variables” plays the same role here as the category
”genotype” in biology [39]. The population is initialized randomly, taking into
account the existing constraints on the allowed values of x:

P0 = {x0
i,j} = {randi,j · (hj − lj) + lj},(2.7)

where rand is a function that generates random values uniformly distributed in
the range [0,1), lj and hj are the lower and upper bounds for the element xj .
Then, differentiation and recombination operations are applied to each individual
of the population, the main idea of which is to form a candidate solution from
the difference of two other random vectors (individuals), then scaling the resulting
difference vector and adding it to the third random vector (individual) [2]. Thus, the
traditional crossover and mutation operators are not used in the DE algorithm, but
specialized operators are used that modify the value of the current individual based
on three other random individuals π = {ξ1, ξ2, ξ3}, extracted from the population
[40]. The resulting candidate solution is obtained by the formula:

τ = ξ3 + F · (ξ2 − ξ1),(2.8)

where F > 0 is step size (scaling factor, constant of differentiation) that determines
the influence of the difference vector on the mutant vector. Next, the recombination
process is performed, in which one of the genes of the trial vector inherits the gene
of the current individual with some probability C:

wj =

{
τj if randj ≤ C
indj otherwise,

(2.9)

where j = 1. . . n, τj is the j − th component of the candidate solution τ , randj
is random value from uniformly distributed values interval in the range [0, 1], C is
crossover probability (constant of crossover), C ∈ [0, 1], indj is j− th component of
the current individual. Then, the resulting candidate solution is evaluated based on
the value of the cost function. If the value of the cost function for the trial vector is
not greater than for the current individual, then it replaces the current individual:

ind =

{
w if f(w) ≤ f(ind)
ind otherwise.

(2.10)

Next, a subgradient algorithm is applied to the individual, described in [26, 27].
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According to [41], subgradient of the convex function f(x) at the point x0 ∈
domf is vector g(x0) satisfying the condition

f(x)− f(x0) ≥ ⟨g(x0), x− x0⟩ , x ∈ domf.(2.11)

Hereinafter, ⟨·, ·⟩ is a dot product of vectors. The anti-subgradient at the point x0

forms an acute angle for any direction from the point x0 to the point x, which has
a smaller value f(x). The subgradient method for minimizing non-differentiable
functions is based on the fact that if there is a minimum of the function f(x) and
the point x0 is not a minimum point, then when shifting from this point in the
direction −g(x0), the distance to the minimum point is reduced.

The subgradient method is represented by an iterative sequence {xk}∞k=0 built
in accordance with the following rule [26]:

xk+1 = xk − γksk+1, γk = argmin
γ

f(xk − γsk+1),(2.12)

where k is the iteration number, γk is the stepsize, x0 is a given starting point, and
the descent direction sk+1 is a solution of a system of inequalities on s ∈ Rn [26]:

⟨s, g⟩ > 0, ∀g ∈ G.(2.13)

Here, G is a set of subgradients calculated on the descent trajectory of the algorithm
at a point xk.

Vector s∗ is the solution of the system (2.13). It forms an acute angle with each
of the subgradients of the set G. If the subgradients of some neighborhood of the
current minimum of (2.12) act as the setG, then iteration (2.12) for sk = s∗ provides
the possibility of going beyond this neighborhood with a simultaneous decrease in
the function.

The following approach had been proposed in [26] to reduce the system (2.13)
to a system of equalities. Let G ⊂ Rn belongs to some hyperplane, and its vector
η(G) closest to the origin be also the vector of the hyperplane closest to the origin.
In this case, the solution of the system ⟨s, g⟩ = 1, ∀g ∈ G is also a solution for
(2.13):

⟨s, gi⟩ = yi, i = 0, 1, ..., k, yi ≡ 1.(2.14)

Figure 2.1 shows the projection of a subgradient set lying on a straight line in the
plane of vectors g1 and g2. The vector η(G) ∈ G lies in this plane and is the normal

of the hyperplane ⟨s∗, g⟩ = 1 formed by the vectors g at s∗ = η(G)/||η(G)||2.
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Fig. 2.1: Projection of a subgradient set G

3. Algorithmic implementation

The proposed SSGDE algorithm is based on the classical differential evolution
algorithm and the subgradient local search algorithm described in [26, 27]. In
accordance with Wang’s classification, this hybrid algorithm can be classified as
high-level embedded hybridization [3]. The following rules for combining DE and the
subgradient algorithm were used in the algorithm: after evaluating a DE candidate
solution a subgradient algorithm is applied to the vector xi, the resulting new
candidate solution is evaluated, and if it turns out to be the best, then the current
vector xi is replaced by a new solution. Thus, the DE algorithm works as is, but
at the end of each cycle, a subgradient method is applied to a possibly already
modified individual, which leads to an improvement in the convergence of DE, due
to the fact that each individual reaches a local minimum, in the vicinity of which
it is located [3, 42, 43, 44]. The proposed hybrid algorithm is represented by the
following pseudocode (3.1):

Algorithm 3.1.
Step 1. Set options:
F = step size (scaling factor);
C = crossover probability ∈ [0, 1];
G = subgradient algoritm running probability ∈ [0, 1];
Np = population size;
Ng = number of generation.
Step 2. Initialize the population of candidate solutions P0 ← {xi}, i ∈ [1, Np].
Step 3. Calculate the fitness values of all individuals in the population f(P0).
Step 4. While not (termination condition) do:
Step 4.1. For each generation gk, k ∈ [1, Ng], do:
Step 4.1.1 For each individual xi, i ∈ [1, Np], do:
Step 4.1.1.1 r1 ← choose randomly int ∈ [1, Np]: r1 /∈ {i}
Step 4.1.1.2 r2 ← choose randomly int ∈ [1, Np]: r2 /∈ {i, r1}
Step 4.1.1.3 r3 ← choose randomly int ∈ [1, Np]: r3 /∈ {i, r1, r2}
Step 4.1.1.4 Create differential mutation vector vi ← xr1 + F · (xr2 − xr3)
Step 4.1.1.5 ψr ← choose randomly int ∈ [1, n]
Step 4.1.1.6 For each dimension j ∈ [1, n], do:
Step 4.1.1.6.1. rj ← choose randomly real ∈ [0, 1)
Step 4.1.1.6.2. If (rj ≤ C) or (j = ψr) then uij ← vij else uij ← xij End if
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Step 4.1.1.6.3. Next iteration of loop 4.1.1.6 (dimension index)
Step 4.1.1.7. If f(ui) < f(xi) then xi ← ui

Step 4.1.1.8. qi ← choose randomly real ∈ [0, 1]
Step 4.1.1.9. If (qi < G) then si ← subgg(xi) (apply the subgradient algorithm)
Step 4.1.1.9.1 If f(si) < f(xi) then xi ← si
Step 4.1.1.10. Next iteration of loop 4.1.1 (individual index)
Step 4.1.2. Next iteration of loop 4.1. (generation index)
Step 4.2. End while

4. Experimental design

To find the optimal settings for the developed SSGDE algorithm, to prove its
performance, and to compare the obtained algorithm with the original DE algo-
rithm at the experimental level, a series of computational experiments was carried
out. Tests were performed on a computer with ”AMD FX(tm)-8320” Eight-Core
Processor 3.50 GHz, 14 GB of random access memory and ”Windows 10 Pro” op-
erating system. The software implementation of the algorithm was carried out in
Delphi.

For each group of tests, 30 Monte Carlo simulations were run, and then the
results were averaged. Initialization of the initial population of candidate solutions
for the original DE algorithm and the tested SSGDE algorithm (initial approxima-
tion of a function) was obtained using a random number generator in the range
[-100,100]. Then, for each iteration of the DE algorithm, with a probability G,
a subgradient algorithm was launched. The initial approximation of the function
being optimized was the coordinates of the current candidate solution of DE after
modification and evaluation.

The specific parameters of differential evolution F (step size, scaling factor) and
C (crossover probability) for both tested algorithms were chosen using the grid
search procedure. For subsequent experiments F = 0.4, C = 0.7. For testing,
an artificial problem was used, which contains several difficulties, namely, high
dimensionality, a large number of local extrema, and a significant ravine. To find
out the influence of these factors on the efficiency of the algorithm, several series of
tests were performed for different values of the test function parameters that affect
these factors. Below is the analytical expression (4.1) for the test function used in
the computational experiments.

f(x) = min


M∑
i=1

n∑
j=1

aij |xj − cij |+ bi

 .(4.1)

This test function consists of a set of non-differentiable, one-extremal functions,
to which the minimum operator is applied. In the formula (4.1) M is the number of
component functions, n is the problem dimension. The minima of these functions
are at points cij and take minimal values equal to bi. The coefficient aij is the stretch
coefficient, which affects the degree of ”gullyness” of the ith function along the j
coordinate. The landscape of this test function for n = 2 is shown in Figure 4.1.
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Fig. 4.1: Landscape of a two-dimensional test function (4.1)

The computational complexity of the DE and SSGDE algorithms was measured
using the number of computations of the minimized function ifun.

4.1. First group of tests

The proposed SSGDE algorithm is a memetic algorithm (MA). Memetic algo-
rithms combine one of the evolutionary global optimization algorithms with one of
the local optimization algorithms [4, 45]. In order to trace the influence of the local
search provided by the subgradient method on the convergence of the differential
evolution algorithm, the first group of computational tests was carried out.

In this group of tests, we studied the dependence of the best approximation to
the optimum for the SSGDE algorithm on the limitation on the number of function
calculations in the subgradient block of the algorithm. This limitation affects the
”depth” of the local search of the subgradient method.

The stopping criteria for this test group were:

For global search:

1. By the value of the function (when the desired accuracy δ of the optimal
solution is reached):

f(xk)− f∗ ≤ δ, δ = 10−5.(4.2)

2. By the number of generations DE (forced stop if the number of generations
exceeds a predetermined number): Ng = 25.

For the local search block of the subgradient algorithm:

1. By the number of function evaluations: ifunmax. This parameter varied from
a range of values {1000, 2000, 3000, 4000, 5000}.

Additional fixed parameters of the algorithm used in this group of tests, as well as
the results obtained, are shown in the Table 4.1 and in the Figure 4.2.
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Table 4.1: Dependence of the efficiency of the SSGDE algorithm on the limitation
on the number of function evaluations ifunmax in the subgradient method for the
test function (4.1) with the following values: the number of dimensions n = 100,
the number of functions M = 100, the stretch coefficient amax = 1; population size
Np = 100; probability of running subgradient algorithm: G = 1.

ifunmax ifun fm (min) TimeL s.
1000 2.51e+06 5.08e-02 2.20e+02
2000 5.01e+06 3.32e-04 4.44e+02
3000 5.93e+06 6.21e-05 5.32e+02
4000 5.92e+06 6.20e-05 5.26e+02
5000 5.92e+06 5.66e-05 5.24e+02

It can be seen from the Table 4.1 and Figure 4.2 that the accuracy of the SSGDE
algorithm increases with the number of function calculations in the subgradient
method and reaches the desired accuracy at ifunmax ≈ 3000.

10
−5

10
−4

10
−3

10
−2

 1000  2000  3000  4000  5000

fm

ifunmax

Fig. 4.2: Dependence of the minimum value of the achieved optimum fm on the
limit on the number of evaluations of the function ifunmax in the block of the
subgradient algorithm

4.2. Second group of tests

The second group of tests was carried out in order to trace how the increase in
the dimension of the problem n affects the ability of the algorithm to find the global
minimum. In this group of tests, n was increased to 1000. The following algorithm
termination criteria were applied:

1. By algorithm running time Tmax = 600 sec.

2. By the value of the function (4.2).

For the local search block of the subgradient algorithm:
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1. By the number of function evaluations ifunmax = 3000.

The mean value of the number of evaluations of the function ifun and the
gradient ig, as well as the fm (min), fm (mean) and fm (median) value of the
reached optimum were calculated over 30 Monte Carlo simulations. For calculations
in this group of tests, the following fixed algorithm parameters were used: test
function (4.1) with the following values: number of functions M = 10000, stretch
coefficient amax = 1; DE parameters: population size Np = 100, probability of
running subgradient algorithm: G = 1.

The results are shown in Table 4.2.

Table 4.2: Comparison of DE and SSGDE algorithms

ifun ig fm
Method min mean median
DE 5.99e+03 - 4.54e+04 4.69e+04 4.66e+04

SSGDE 7.47e+03 7.36e+03 2.43e-04 5.15e+01 3.91e+01

Table 4.2 shows that SSGDE performs significantly better than DE. The dif-
ference between the average value of the best achieved minimum fm (mean) for
the DE and SSGDE algorithm is 3 orders of magnitude, and between the minimum
value of the achieved minimum fm (min) is 8 orders of magnitude.

4.3. Third group of tests

In the third group of tests, the number of M functions was increased to 100000.
The purpose of this test was to check how the algorithm behaves on high-dimensional
problems with a large number of local extrema and with the presence of functions
with a high degree of ravine.

The ravine coefficient aij of the test function (4.1) was varied from the values
of the series {1, 10, 100, 1000, 10000, 100000}. The following algorithm termination
criteria were applied:

1. By the value of the function (4.2);

2. By algorithm running time Tmax = 1800 sec.

For the local search block of the subgradient algorithm:

1. By the number of function evaluations ifunmax = 500.

The results are shown in Table 4.3.

The results of this test show that as the stretch coefficient amax increases by
one order, the best accuracy of the achieved minimum fm also decreases by one
order, i.e. there is an inverse linear relationship. The graph of this dependence is
shown in Figure 4.3. At the same time, the SSGDE algorithm shows three orders
of magnitude better accuracy of the achieved minimum of the function fm (min),
than the DE algorithm.
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Table 4.3: Dependence of the efficiency of the DE and SSGDE algorithms on the
value of the stretch coefficient amax. Number of dimensions n = 1000, population
size Np = 100, probability of running subgradient algorithm: G = 0.1

amax ifun ig fm
Method min mean median
DE 1 1975 - 4.88e+04 5.52e+04 5.46e+04

10 1967 - 4.86e+05 5.56e+05 5.74e+05
100 2182 - 4.80e+06 5.44e+06 5.42e+06

1000 2176 - 4.88e+07 5.47e+07 5.38e+07
10000 2133 - 4.80e+08 5.41e+08 5.33e+08
100000 2024 - 4.76e+09 5.41e+09 5.41e+09

SSGDE 1 2082 1938 3.13e+01 8.13e+01 7.63e+01
10 1984 1843 3.60e+02 8.38e+02 7.56e+02
100 2022 1882 3.94e+03 6.67e+03 6.43e+03

1000 2051 1911 3.10e+04 5.26e+04 5.28e+04
10000 2108 1970 2.96e+05 3.58e+05 3.53e+05
100000 1963 1828 2.89e+06 3.22e+06 3.21e+06
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Fig. 4.3: Dependence of the minimum value of the achieved optimum fm (min) on
the stretch coefficient amax
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5. Conclusion

Differential evolution is an efficient, reliable and simple evolutionary method, how-
ever, it has some disadvantages such as slow convergence. Hybridization in this
case can contribute to obtaining additional capabilities of the algorithm in solving
global optimization problems.

In this study, we propose a new SSGDE algorithm combining differential evo-
lution with properties of subgradient minimization method. Hybridization of DE
with subgradient local search makes it possible to achieve a significant improvement
in the convergence of the optimization algorithm for large-dimensional, multimodal,
non-convex, non-differentiable, ravine-type functions.

Computational experiments on three groups of tests were conducted, in which
the influence of the dimension of the problem, the number of function evaluations,
and the stretch parameter on the efficiency of the algorithm was studied. The
best approximation was achieved for a stretch parameter equal to 1. In addition,
the proposed algorithm was compared with the differential evolution algorithm.
Experimental results confirm the efficiency of the new algorithm.

For further conclusions about the choice of optimal settings for SSGDE algo-
rithm when solving various optimization problems, including global multi-parameter
optimization, additional studies of the algorithm’s efficiency with changing param-
eter values for problems of equal high dimension and with other functions are re-
quired.
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