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Abstract. In this paper, a new method is given for counting cycles in the Tanner
graph of a (Type-I) quasi-cyclic (QC) low-density parity-check (LDPC) code which the
complexity mainly is dependent on the base matrix, independent from the CPM-size of
the constructed code. Interestingly, for large CPM-sizes, in comparison to the existing
methods, this algorithm efficiently counts the cycles of any lengths in the Tanner graphs
of QC-LDPC codes. In fact, the algorithm recursively counts the cycles in the parity-
check matrix column-by-column by finding all non-isomorph tailless backtrackless closed
(TBC) walks in the base graph and enumerating theoretically their corresponding cycles
in the same equivalent class. Moreover, this approach can be modified in few steps to
find the cycle distributions of a class of LDPC codes based on Affine permutation
matrices (APM-LDPC codes). Interestingly, unlike the existing methods which count
the cycles up to 2g − 2, where g is the girth, the proposed algorithm can be used to
enumerate the cycles of arbitrary length in the Tanner graph. Moreover, the proposed
cycle searching algorithm outperforms a number of previously known methods, in terms
of computational complexity and memory requirements.
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Corresponding Author: Mohammad Gholami. E-mail addresses: gholami-m@sku.ac.ir (M. Gho-
lami), zghbaba123@gmail.com (Z. Gholami)
2020 Mathematics Subject Classification. Primary 11H71; Secondary 11T71, 14G50
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1. Introduction

Low-density parity-check (LDPC) codes, first discovered by Gallager [7], were redis-
covered about 30 years later to be Shannon limit-approaching codes over additive
white Gaussian noise (AWGN) channels [18],[13]. It is established that the perfor-
mance of LDPC codes under iterative decoding depends upon certain combinatorial
structures such as multiplicities and distribution of short cycles in the Tanner graph.
When there are short cycles in the Tanner graph, the belief-propagation algorithm
(BPA) does not converge to maximum likelihood performance [24]. This is because
a message delivered by a node along a cycle will propagate back to the node it-
self after several iterations causing decreasing of independence in the messages sent
afterward.

Large girth, however, is not sufficient to ensure a good graphical model. The
performance of two LDPCs with the same girth, but a different number of short
cycles, can be significantly different. The regularity or non-regularity of the cycle
structure of a graph (i.e., how a randomness effect of the graph appears) also af-
fects graphical code model quality. For example, the introduction of irregularity to
LDPC designs is known to improve performance [23]. In summary, good graphical
models of codes imply to have large girth, small number of short cycles, or some
cycle structures which are not overly regular. Based on the connection between the
performance of a code and the properties of its associated graphical model, charac-
terizing the cycle structure of a graphical model is of great interest. The difficulty
in enumerating and counting cycles and paths in arbitrary graphs may prevent an
efficient search of good LDPC codes with small short cycles. To solve the problem,
this paper presents a new algorithm of counting short cycles by analyzing the shapes
of the cycles of Tanner graph in base matrix for designing good LDPC codes which
is less complex than the existing algorithms.

Unlike the existing algorithms based on matrix multiplication [11], [13], which
are computationally complex and time-consuming, the proposed method has a lower
complexity for counting short cycles. In the proposed method, all of the chains
associated to TBC walks in the protograph of a QC-LDPC code are classified by
a non-isomorphic relation, while each chain corresponds to some cycles which are
enumerated by the period of some sets (in fact, these sets are the row indices
of the nonzero elements in a block which have the same topological shapes when
traversing the walk by starting from each element of the set). This method can be
used effectively to evaluate the performance of LDPC codes according to their short
circle distributions.

Several methods have investigated the parity-check matrices to ensure that the
associated TGs are free of short cycles [18], [13]. However, LDPC codes are often
designed without explicit constraints on the girth. In [1], a method for counting
cycles of length less than 8 is presented, however, this method is complex for longer
cycles and addresses the restricted problem of counting the cycles of length g, g+2
and g + 4 in bipartite graphs with girth g. In [14], a novel theoretical method is
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proposed to evaluate the number of closed paths of different lengths in an all-one
base matrix up to closed paths of length 10. The algorithm in [11], [17], which is
capable of counting short cycles g, g + 1, · · · , 2g − 1 in a general graph, and short
cycles of length g, g+2, · · · , 2g−2 in the Tanner graph. The algorithm [17] is based
on performing integer additions and subtractions in the nodes of the graph and
passing extrinsic messages to adjacent nodes. The complexity of the method [17] is
O(g|E|2), where |E| is the number of edges in the graph. The proposed method in
[21] is based on the relationship between the number of short cycles in the graph
and the eigenvalues of the directed edge-adjacency matrix of the graph. In order to
find the eigenvalues of the directed edge matrix of the graph, one needs to find the
eigenvalues of N matrices, each of size |Eb|×|Eb|. This reduces the complexity from
O(N3|Eb|3) to O(N |Eb|3), which |Eb| is the number of directed edges in matrix
of the base graph. Compared to the complexity O(g|E|2) = O(gN2|Eb|2) of the
algorithm in [17], the proposed algorithm is less complex if gN grows faster than
|Eb|. This would be the case for protograph codes with small base graph and
large lifting degree. In terms of memory requirements, for example, for a regular
LDPC code of variable node degree du, the proposed method needs N |Eb|2 memory
location eigenvalues of N matrices. The algorithm of [17], on the other hand, needs
2du|E| locations, which would be less than that of the proposed method if |Ub| > 2.

For fixed values of k ≤ 13, there are explicit formulae [12], [3] and [22], ex-
pressing the number of cycles of length k through adjacency matrix graph. The
computational complexity of these formulae for k ≤ 7 is of the same order as the
multiplication of n× n matrices, and for k ≥ 8, it is the amount of O(n[k/2] log n),
where n is the number of vertices. It is known that the complexity of counting
cycles of length k in arbitrary graphs inevitably increases with k [5]. A number
of works devoted to counting short cycles in bipartite graphs LDPC-code is char-
acterized by low density and the value of the girth g ≥ 6. The feature of most
the methods discussed below is that by limiting the length of the cycle (relative to
girth) is achieved while the O(n4). Thus, the authors of [11] (Halford) presented
an algorithm for girth g bipartite graph, and count the number of cycles of length
g, g + 2 and g + 4 with the same order of complexity that multiplication n × n
matrices (for fixed g). They showed that in addition to the girth, the number and
statistics of short cycles are also important performance metrics of the code. The
complexity of their method is O(gn3), where n is the size of the larger set between
the two node partitions.

In [8], [19], some affine permutation matrices (APM) are used to generate a class
of LDPC codes, called APM-LDPC codes, which are not QC in general. Unlike
Type-I conventional QC-LDPC codes, the constructed (J, L) APM-LDPC codes
with the J × L all-one base matrix can achieve minimum distance greater than
(J + 1)! and girth larger than 12. Moreover, the lengths of the constructed APM-
LDPC codes, in some cases, are smaller than the best known lengths reported for
QC-LDPC codes with the same base matrices. As an advantage, the constructed
APM-LDPC codes are flexible in lengths and rates. In some cases the lengths of the
constructed codes are smaller than the best known lengths reported for the lengths
of QC-LDPC codes in [2], [16], [6], [20], [10], [4]. Another significant advantage
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of the constructed APM-LDPC codes is that they have remarkably fewer cycle
multiplicities compared to QC-LDPC codes with the same base matrices and the
same lengths. Simulation results show that the constructed APM-LDPC codes with
lower girth outperform QC-LDPC codes with larger girth.

This paper is organized as follows. In Section 2., first, some preliminaries and
notations useful for the next sections of the paper are provided. Then, cycles
of QC-LDPC codes and APM-LDPC codes are investigated in Section 3.. Some
modular equations and allowable and non-allowable chains are defined to estimate
the number of cycles in the Tanner graph of a QC (APM) LDPC code. Finally,
for a given binary matrix B, an algorithm for counting the cycles of a QC (APM)
LDPC codes is introduced in Section 4. and then, the complexity of this algorithm
is investigated.

2. Preliminaries and Definitions

An undirected Graph G = (V,E) is defined as a set of nodes V and a set of edges
E, where E is some subset of the pairs {{u, v} : u, v ∈ V, u ̸= v}. A walk of
length k in G is a sequence of nodes v1, v2, · · · , vk+1 in V such that {vi, vi+1} ∈ E
for all i ∈ {1, · · · , k}. Equivalently, a walk of length k can be described by the
corresponding sequence of k edges. A walk is closed if the two end nodes are
identical, i.e., v1 = vk+1 in the previous description. A closed walk is backtrackless
if eis ̸= eis+1 for each 1 6 s 6 k and it is tailless if ei1 ̸= eik . Let v, k be some
positive integers and V = {1, 2, . . . , v}. By a (v, k) block-design, we mean a list of
k subsets Bi, 1 6 i 6 k, of V , denoted by B = [B1, B2, . . . , Bk]. In this definition,
Bi, 1 6 i 6 k, are called the blocks and the term list is used to allow the repetition
and the ordering of the blocks. A bipartite graph, called Tanner graph TG(H), is
associated to an LDPC code with the parity-check matrix H. It collects variable
nodes and check nodes corresponding to the columns and rows of H, respectively,
and each edge connects a check node to a bit node if nonzero entry exists in the
intersection of the corresponding row and column of H. The girth of a code with a
given parity-check matrix H, denoted by g(H), is the length of a shortest cycle in
TG(H) which is always an even number.

Protograph codes [25] are a class of structured LDPC codes, constructed from
a bipartite graph with relatively small number of variable nodes and check nodes,
called a protograph. In the construction, the first step is to choose a protograph
with a near capacity decoding threshold as a building block and then to make copies
of the chosen protograph and permute the edges of copies according to certain rules
to connect them into a Tanner graph of larger size. The parity-check matrix of
a protograph code can be obtained from the incidence matrix of protograph with
the replacement of each 1 and 0 by some m ×m permutation and zero matrices,
respectively. By considering such permutations as circulant permutation matrices
(CPM) or affine permutation matrices (APM), two classes of protograph codes,
called (Type I) QC-LDPC codes and APM-LDPC codes, respectively, can be defined.
For some integersm, s and a, satisfying in 0 6 s < m, 1 6 a < m and gcd(a,m) = 1,
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by the APM Is,am with slope s and shift a, briefly Is,a when m is known, we mean a
m×m binary matrix (ei,j)06i,j<m in which ei,j = 1 if and only if i = aj+s mod m.
In fact, Is,a is the m ×m binary permutation matrix for which the only non-zero
element in the first column occurs in position s, and each other column is shifted
down by a positions, regard to the previous column. In particular, if a = 1, Is,am is
denoted by Ism which is called a CPM of size m and slope s. Hence, APM LDPC
codes can be considered as a generalization of QC-LDPC codes.

Based on the evidence obtained that connecting the performance of a code and
the properties of its associated graphical model, characterizing the cycle structure
of a graphical model is of great interest. The difficulty in enumerating and counting
cycles and paths in arbitrary graphs may prevent an efficient search of good LDPC
codes with small short cycles. To solve the problem, we first present a new recursive
algorithm for counting short cycles in QC LDPC codes based on analyzing the TBC
walks in protograph having less complexity rather than the other existing methods.
Then, we use a modified version of this algorithm to count the cycles in APM-LDPC
codes.

3. Cycles in QC & APM LDPC codes

As QC-LDPC codes can be embraced in the class of APM LDPC codes and for
simplicity of notations, we first set up the notations and terminologies for the case
of APM-LDPC codes, then we apply them for QC-LDPC codes. For some positive
integers v, k, v < k, let B be a v × k binary matrix and B = [B1, B2, . . . , Bk] be
the corresponding (v, k) block-design with blocks Bi ⊆ V = {1, 2, . . . , v}, where
each Bi is the row-indices of non-zero elements of the ith column of B. For positive
integer m, by a (m,B)-slope vector and a (m,B) shift vector, we mean two finite
sequences S = (si,j)16i6v,j∈Bi and A = (ai,j)16i6v,j∈Bi , respectively, such that
each si,j belongs to Zm and ai,j belongs to Z∗m, where Zm is the ring of integers
modulo m and Z∗m = {a ∈ Z : gcd(a,m) = 1}. Now, for given (m,B)-slope vector
S and (m,B)-shift vector A, let Hm,B,S,A be the vm × km parity-check matrix of
an APM-LDPC code with APM size m obtained by replacing each zero and (i, j)
non-zero element of B by the m×m zero matrix and Isi,j ,ai,j , respectively. For the
case of QC-LDPC codes, i.e. when A is a fully one matrix, we just use Hm,B,S to
denote the corresponding parity-check matrix. Now, the following theorem is very
useful to verify the cycles in the Tanner graph of each APM-LDPC code.

Theorem 3.1. ([8]) Each 2l−cycle in TG(Hm,B,S,A) corresponds to a finite chain
(i0, j0, i1, j1, . . . , il−1, jl−1), il = i0, such that for each 1 6 k 6 l, {ik−1, ik} ⊆
Bjk−1

, ik−1 ̸= ik, jk−1 ̸= jk, and for A =
∑l−1

k=0(pksik,jk − pk+1sik+1,jk
), where

ph =
∏l−1

k=h aik+1,jka
−1
ik,jk

mod m, 0 6 h 6 l− 1, one of the following relations holds:

1. p0 = 1 and A = 0.

2. gcd(p0 − 1,m)|A.
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Fig. 3.1: An unallowable 14-cycle sequence.

Especially, for QC-LDPC codes, Theorem 3.1 can be simplified as follows.

Theorem 3.2. ([6]) Each 2l−cycle in TG(Hm,B,S) corresponds to a 2l-cycle chain

(i0, j0, i1, j1, . . . , il−1, jl−1) in which
∑l−1

k=0(sik,jk − sik+1,jk
) = 0 (mod m).

Hereinafter, each finite chain (i0, j0, i1, j1, . . . , il−1, jl−1) satisfying in Theorem 3.1
for APM-LDPC codes (or Theorem 3.2 for QC LDPC codes) is called a 2l-cycle
chain.

The converse of Theorem 3.1 is not true in general. In other words, each 2l−cycle
chain may be induces a cycle in the Tanner graph with length less than 2l. In this
case, this cycle chain contains a 2k-cycle chain, for some k < l and some middle
points in the cycle return on their owns. This situation describes a non-allowable
cycle chain, otherwise, i.e. if the cycle chain doesn’t contain smaller cycle chain, we
say that the cycle chain is allowable. For example, Fig. 3.1 shows the cycle chain
(2, 2, 0, 1, 1, 2, 0, 1, 1, 0, 2, 2, 1, 0) which is non-allowable, because it contains smaller
cycle chain (2, 2, 0, 1, 1, 0, 2, 2). For non-allowable cycle chains, it is noticed that the
elements of the proper sub-chain are not essentially successive in the parent cycle
chain.

In the next section, we give a necessary and sufficient condition for a cycle-chain
in a APM LDPC code to be allowable. Let L = (i0, j0, i1, j1, . . . , il−1, jl−1) be a
2l-cycle chain in a APM LDPC code with (m,B)-slope vector S = (si,j)16i6v,j∈Bi

and (m,B) shift vector A = (ai,j)16i6v,j∈Bi
where B = [B1, B2, . . . , Bk] is a (v, k)

block-design for some v, k. Now, for a given 0 6 r 6 m − 1, define the sequences
(δ→,t)l−1t=0 and (δ↑,t)l−1t=0 recursively, as follows:δ→,0 = r, δ→,t+1 = ait+1,jta

−1
it,jt

(δ→,t − sit,jt) + sit+1,jt mod m,

δ↑,0=a−1
i0,j0

(r−si0,j0) mod m, δ↑,t+1=a−1
it+1,jt+1

(ait+1,jtδ
↑,t+sit+1,jt−sit+1,jt+1) mod m

Lemma 3.1. L is allowable if and only if for each p, q, r, 0 6 p < q 6 l − 1,
0 6 r 6 m− 1, we have δ→,q ̸= δ→,p when ip = iq, and δ↑,q ̸= δ↑,p when jp = jq.
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Fig. 3.2: An allowable 16−cycle chain (1, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0) in H.

Proof. Corresponding to the cycle chain L = (i0, j0, i1, j1, . . . , il−1, jl−1), let Pr =
v1v2 . . . v2lv2l+1, v1 = v2l+1, be the closed path starting from the point v1 having
row-index r in the block (i0, j0) of the parity-check matrix H. Without loss of
generality, let v2 be the point having the same column-index with v1, therefore
each vertex vk, 1 6 k 6 2l, with the odd or even index k belongs to the block
(ip, jp) or (ip, jp−1), respectively, where p = ⌊k2 ⌋. Clearly, the column-index of v1 is

a−1i0,j0
(r − si0,j0) mod m. Moreover, for each 1 6 k 6 2l, it can be seen easily that

δ→,k and δ↑,k are the row and column indices of the point vk, respectively. Now,
if L in not allowable, then for some 0 6 r 6 m − 1 and 1 6 k + 1 < k′ 6 2l, two
middle (not successive) points vk and vk′ belong to the same column-block of H,
whereas they have the same column-indices, i.e. δ↑,p = δ↑,q and jp = jq, where

p = ⌊k2 ⌋ < q = ⌊k
′

2 ⌋, or vk and vk′ belong to the same row-block of H, while
their row-indices are the same, i.e. δ→,p = δ→,q and ip = iq. Now, the proof is
completed.

For QC-LDPC codes, allowability of cycle-chains in Lemma 3.1 can be simplified
as follows.

Lemma 3.2. Let L = (i0, j0, i1, j1, . . . , il−1, jl−1) be a 2l-cycle chain in a QC
LDPC code with (m,B)-slope vector S = (si,j)16i6v,j∈Bi , where B = [B1, B2,. . ., Bk]
is a (v, k) block-design for some v, k. Then, L is allowable if and only if for each
p, q, 0 6 p < q 6 l − 1, if we define ∆→p,q =

∑q
k=p(sik+1,jk − sik,jk) mod m and

∆↑p,q =
∑q

k=p(sik+1,jk+1
− sik+1,jk) mod m, then for each 0 6 p < q < l− 1, we have

∆→p,q ̸= 0 when ip = iq, and ∆↑p,q ̸= 0, when jp = jq.

Example 3.1. Let H be the parity-check matrix of a QC LDPC code shown in
Fig. 3.2 with (10,B)-slope vector (s0,0, s1,0, s0,1, s1,1, s0,2, s1,2) = (0, 0, 0, 1, 0, 4),
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where B = [{1, 2}, {1, 2}, {1, 2}]. The dash lines indicates the 16−cycle chain
(1, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0) in H which corresponds to the relation (s1,2 −
s0,2)+ (s0,0− s1,0)+ (s1,1− s0,1)+ (s0,0− s1,0)+ (s1,2− s0,2)+ (s0,0− s1,0)+ (s1,1−
s0,1) + (s0,0 − s1,0) = 10 = 0 (mod 10).

Hereinafter, we just consider allowable cycle chains, unless stated otherwise.
By Theorem 3.2, cycles in the Tanner graph of a QC-LDPC code can be enumerated
from cycle-chains. For this purpose, it is enough to count the whole number of cycles
in the Tanner graph which corresponds to a given cycle-chain. First, we define the
following relation on the set of cycle-chains.

Definition 3.1. Two 2l-cycle chains L1 and L2 are called isomorph if and only
if there exist some k ∈ Z, such that π2k(L1) = L2, where π is the cyclic permu-
tation (1, 2, . . . , 2l) and for each permutation σ ∈ Sk, σ(i1, i2, . . . , ik) is defined as
(iσ(1), iσ(2), . . . , iσ(k)). In fact, each two cycle chains are isomorph if and only if
they traverse the same blocks of the parity-check matrix by reading the chains by
starting from different points in directions left-to-right or right-to-left. For exam-
ple, two 12-cycle chains (1, 2, 0, 0, 1, 2, 0, 1, 1, 0, 0, 1) and (1, 2, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0)
in Fig. 3.3 are isomorphic.

Clearly, the isomorph relation in Definition 3.1 is an equivalence relation, which
defines isomorph classes. For counting the cycles, we just consider non-isomorph
cycle-sequences, which are not included in the same class.

Definition 3.2. Let (i0, j0, i1, j1, . . . , il−1, jl−1) be a 2l-cycle sequence. For each
0 6 q 6 l−1, p = q or q+1, define A(ip, jq) to be the set of all values

∑t
k=0(sik,jk−

sik+1,jk
) mod m, in which the index t is a nonnegative integer less than l satisfied

in (it, jt) = (ip, jq). In fact, A(ip, jq) is the row-index set of all points of the cycle
when it pass from the (ip, jq) block of the parity-check matrix. For example, in
Fig. 3.2, A(0, 0) = A(1, 0) = {0, 4, 5, 9}, A(0, 1) = A(1, 2) = {4, 9} and A(0, 2) =
A(1, 1) = {0, 5}.

Definition 3.3. For positive integerm, the period of each subsetA ⊆ Zm, denoted
by pm(A), is defined as the smallest positive number T with A + T = A, where
A + T := {a + T (mod m) : a ∈ A}. For example, {0, 2, 4} is a subset of Z6 of
period 2.

Lemma 3.3. If A ⊆ Zm is of period pm(A), then A can be written as the union of
disjoint sets < ai >, for some a1, . . . , ak ∈ A, where < a >= {a+ ipm(A) mod m :
1 6 i 6 t} in which t is the smallest non-negative integer satisfying tpm(A) =
0 mod m.

Proof. For each a ∈ A, we have a+ pm(A) (mod m) ∈ A, because A = A+ pm(A),
so < a >⊆ A. On the other hand, a ∈< a >, so A = ∪a∈A < a >. Now, for each
two elements a, b ∈ A, we have < a >=< b > or < a > ∩ < b >= Ø. Because, if
c ∈< a > ∩ < b >, then c = a + i1pm(A) = b + i2pm(A), for some 1 6 i1, i2 6 t.
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Hence, a = b+ (i2 − i1)pm(A) ∈< b > or equivalently < a >⊆< b >. Similarly, we
have < b >⊆< a >, so < a >=< b >. Finally, A can be written as union of disjoint
sets < ai >, for some a1, . . . , ak ∈ A.

It is noticed that the elements ai, 1 6 i 6 k in Lemma 3.3 are not necessarily unique.
For example, for m = 6 and A = {0, 2, 4}, we have A =< 0 >=< 2 >=< 4 >. Now,
let us mention two important consequences of the above lemma.

Remark 3.1. For each A ⊆ Zm, pm(A)|m and for each a ∈ A, if t = | < a > |,
then we have pm(A)t = m and t| gcd(m, |A|). Moreover, A =< a >, for some a ∈ A,
if and only if pm(A)|A| = m.

Proof. If pm(A) ̸ |m, then there are some q ∈ Z and 0 < r < pm(A) such that m =
pm(A)q+r. Now, we have A+r = A−qpm(A) = A, since A+pm(A) = A, which is a
contradiction with definition of pm(A). Now, t is the smallest positive number with
tpm(A) = 0 mod m, which implies that tpm(A) = m, because pm(A)|m. Similarly,
for t = | < a > |, if t ̸ |m, then m = tq + r, for some q ∈ Z and 0 < r 6 t. Now,
rpm(A) = (m−tq)pm(A) = 0 mod m which is a contradiction with definition of t, as
the smallest positive integer satisfying tpm(A) = 0 mod m. So, t|m. On the other

hand, |A| =
∑k

i=1 | < ai > | =
∑k

i=1 t = kt, so t | |A|, then, we have t| gcd(m, |A|).
On the other hand, A =< a >, for some a ∈ A, if and only if |A| = | < a > | = t,
or |A|pm(A) = m.

Remark 3.2. If m is prime and A ⊆ Zm, then by Remark 3.1, we have pm(A)|m,
so pm(A) = 1 or pm(A) = m. However, pm(A) = 1 if and only if A = Zm, in this
case A =< a >, for each a ∈ A.

Proof. If pm(A) = 1, then t = m, because tpm(A) = m. So in this case, for each
a ∈ A, < a >= {a+ 1 mod m, a+ 2 mod m, . . . , a+m mod m} = Zm.

Definition 3.4. Let L = (i0, j0, i1, j1, . . . , il−1, jl−1) be a 2l-cycle chain. If e,
1 6 e 6 l − 1, is the first number such that (ie+p, je+p) = (ip, jp), for all 0 6
p 6 l − 1, where all indices e + p are reduced in modulo of l, then define I(L) =
{(ik, jk), (ik+1, jk) : 0 6 k 6 e − 1}. Otherwise, if no such e exists, then define
I(L) to be the empty set. In fact, I(L) is the set of all pairs (ik, jk), 1 6 k 6 l − 1
such that the cycle chain L which starts from (i0, j0) traverses the same points if
it starts from (ik, jk). Clearly, if I(L) ̸= Ø, then e|l, so n(L) := l/e is defined as
the number of occurrence of I(L) in the chain L, otherwise, we set n(L) = 1. In
fact, each 2l−cycle C = v1v2 . . . v2l+1 (v2l+1 = v1) in the Tanner graph (of the QC
LDPC code with the parity-check matrix H) corresponding to the 2l−cycle chain
L, can be decomposed to n(L) distinct paths Pk = v2e(k−1)+1v2e(k−1)+2 . . . v2ek+1,
1 6 k 6 n(L), such that for each 1 6 i 6 2e, all of the vertices vi, v2e+i, . . .,
v2(n(L)−1)e+i are in the same block of H.
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Fig. 3.3: Two allowable 8-cycles in the parity-check matrix of Example 3.2.

Example 3.2. Let H be the parity-check matrix of a QC LDPC code shown
in Fig. 3.3 with (6,B)-slope vector (s0,0, s1,0, s0,1, s1,1, s0,2, s1,2) = (0, 5, 0, 5, 0, 2),
where B = {{1, 2}, {1, 2}, {1, 2}}. The dash lines in parts (a) and (b) indicate two
8−cycle chains L1 = (1, 2, 0, 1, 1, 2, 0, 1) and L2 = (1, 2, 0, 0, 1, 2, 0, 1), respectively.
It can be seen easily that I(L1) = {(1, 2), (0, 2), (0, 1), (1, 1)} and I(L2) = Ø. For
the chain L1, we have n(L1) = 2, because L1 includes two copy of the subchain
C = (1, 2, 0, 1), i.e L1 = (C|C), moreover, n(L2) = 1.

We are now thus led to a theorem which gives the number of all distinct cycles in
the Tanner graph of a QC-LDPC code corresponding to a given cycle-chain. First,
we have two following lemmas.

Lemma 3.4. Let m, s be two positive integers such that s 6 m. Then, Zm, under
the equivalence relation a ∼ b⇔ s|b− a, can be partitioned to a disjoint classes [0],
[1], . . ., [a− 1], a = gcd(s,m), each class has m/a elements.

Proof. Clearly, the equivalence classes from the partition of integer ring under the
given relation are [0], [1], . . ., [s − 1]. On the other hand, in ring of the integers
modulo ofm, for each i, 0 6 i 6 a−1, a = gcd(s,m), we have [i] = [a+i] = [2a+i] =
. . ., because a = αs+ βm, for some integers α, β, so a+ i = αs+ βm+ i = αs+ i
in Zm. Hence, a is divisible by s in Zm and so [i] = [a + i]. Therefore, all of the
disjoint classes in Zm are [0], [1], . . ., [a− 1].

Lemma 3.5. For each 2l-cycle chain L, we have n(L)|m and if I(L) ̸= Ø, for each
(i, j) ∈ I(L), the set A(i, j) has the period m/n(L).

Proof. Let L = (i0, j0, · · · ) be n(L) copy of the subchain C = (i0, j0, · · · ), i.e.
L = (C|C| . . . |C) and C be the cycle in the Tanner graph corresponding to the
chain L. Moreover, let Pk, 1 6 k 6 n(L), be the segment of C corresponding
to the kth copy C of L which is a path in C with the starting and ending points
in the (i0, j0)th block. It can be seen easily that the row-index difference of the
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end points in each path Pk is fixed, say the value s ∈ Zm. However,
∪n(L)

k=1 Pk

is the cycle C with the same endpoints, so n(L)s = 0 (mod m). On the other
hand, s ̸= 0 and n(L) is the smallest number satisfying in n(L)s = 0 (mod m), so
n(L)s = m which indicates n(L)|m. Now, for each (i, j) ∈ I(L) and each path Pk,

1 6 k 6 n(L), let {r(i,j)1 , · · · , r(i,j)l } be the set of the row-indices of the points in the

(i, j)th block. Clearly, A(i, j) =
∪l

k=1[r
(i,j)
k ], where [r

(i,j)
k ] = {r(i,j)k + ts mod m :

0 6 t < n(L)}, because among the points of C belong to the (i, j)th block, s is the
row-index difference of each point in Ck with the corresponding point in Ck+1, for
each 1 6 k 6 n(L) (clearly, the amount of s is independent from k and the selected

points of Ck). Now, the period of each [r
(i,j)
k ] is s, so A(i, j) = A(i, j) + s mod m.

However, by the first part of the proof, we have n(L)s = m, so s = m/n(L). Now, if
p = pm(A(i, j)) < s, then p is divisible by s, and the chain composing of p subchain
C is a 2k−cycle chain in L, for some k < l, which is a contradiction.

Example 3.3. For L = (1, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0) in Fig .3.2, we have I(L) =
{(i, j) : 0 6 i 6 1, 0 6 j 6 2} and n(L) = 2 which is divisible by m = 10. On the other
hand, A(0, 0) = A(1, 0) = {0, 4, 5, 9}, A(0, 1) = A(1, 2) = {4, 9} and A(0, 2) = A(1, 1) =
{0, 5}, so p10(A(i, j)) = 5 = m/n(L), for each (i, j) ∈ I(L).

Theorem 3.3. Each allowable 2l-cycle chain L = (i0, j0, i1, j1, . . . , il−1, jl−1) cor-
responds to r = r(L) cycles of length 2l in the Tanner graph, where r = m/n(L).

Proof. Let C1, C2, . . . , Cr be the all different 2l-cycles in the Tanner graph corre-
sponding to the cycle chain L. Moreover, let L = (C|C| . . . |C) be n(L) copy of

the subchain C and for each 1 6 t 6 r and 1 6 k 6 n(L), let path P(t)
k =

v
(t)
2(k−1)e+1v

(t)
2(k−1)e+2 . . . v

(t)
2ke+1, e = l/n(L), be the segment of Ct = v

(t)
1 v

(t)
2 . . . v

(t)
2l v

(t)
2l+1,

v
(t)
1 = v

(t)
2l+1, corresponding to the k’th copy C of L. Now, providing that I(L) ̸= Ø,

for each point (i, j) ∈ I(L) = {(ik, jk), (ik+1, jk) : 0 6 k 6 l − 1}, let v
(t)
f ,

1 6 t 6 r, be the first point of P(t)
1 belong to the (i, j)’th block of H and R(t)(i, j)

be the row indices of the points v
(t)
f , v

(t)
f+2e, . . ., v

(t)
f+2(n(L)−1)e. Now, for each

1 6 t 6 r, pm(R(t)(i, j)) = m/n(L), for each 1 6 t 6 r. On the other hand,
Zm =

∪r
t=1 R

(t)(i, j), otherwise, there is a new 2l−cycle corresponding to the chain
L starting from the point with the row index in Zm \

∪r
t=1 R

(t)(i, j). Hence, if we
define s := pm(R(t)(i, j)) = m/n(L), then Zm can be partitioned to r disjoint classes
R(t)(i, j), 1 6 t 6 r, therefore, by Lemma 3.4, we have r = gcd(m, s) = m/n(L).
On the other hand, I(L) = Ø, then each cycle Ct, 1 6 t 6 r, can be uniquely
determined from the starting point of the cycle in the block (i0, j0) of H. Hence, if
the starting points change, we have different cycles, so in this case r = m = m/n(L)
and the proof is completed.

To clarify the proof of Theorem 3.3, we give the following example.
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(1)

1v

(1)

2v
(1)

3v

(1)

4v (1)

5v

(1)

6v(1)

7v

(1)

8v
(1)

9v

(1)

10v

(1)

11v

(1)

12v

(1)

13v

(1)

14v
(1)

15v

(1)

16v
(2)

1v

Fig. 3.4: The 16-cycle chain (1, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0) with A(0, 0) = A(1, 0) =
{0, 4, 5, 9}, A(0, 1) = A(1, 2) = {4, 9} and A(0, 2) = A(1, 1) = {0, 5} of period 5.

Example 3.4. In Fig. 3.4, the 16-cycle C1 = v
(1)
1 v

(1)
2 . . . v

(1)
16 is given which corre-

sponds to the 16-cycle chain L = (1, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0). In fact, C1
can be partitioned to paths P(1)

1 = v
(1)
1 v

(1)
2 . . . v

(1)
9 and P(1)

2 = v
(1)
9 v

(1)
10 . . . v

(1)
16 v

(1)
1 .

Then, R(1)(0, 0) = R(1)(1, 0) = {0, 5}, R(1)(0, 1) = {9}, R(1)(1, 2) = {4} and

R(1)(0, 2) = R(1)(1, 1) = {0}. Similarly, for the cycle C2 starting from the v
(2)
1 ,

we have R(2)(0, 0) = R(2)(1, 0) = {1, 6}, R(1)(0, 1) = {0}, R(1)(1, 2) = {5} and
R(1)(0, 2) = R(1)(1, 1) = {1}. Counting this process, R(t)(i, j) = R(1)(i, j) +

t mod 10, for each (i, j) ∈ I(L) and 1 6 t 6 5, therefore, Z10 =
∪5

t=1 R
(t)(0, 0).

Now, the following result can be obtained obviously from Theorem 3.3.

Remark 3.3. If m is prime, then r = 1 or r = m (in Theorem 3.3). In this case,
if m > l, then n(L) < m, so r = m. Therefore, the number of 2l−cycles in the
QC LDPC code with CPM-size m (m is a prime not less than l), is m times of the
number of corresponding 2l−cycle chains in the base matrix.

Hereinafter, to simplify the notations, by the cycle distribution of an LDPC
code with girth 2g, we mean the polynomial λ(x) =

∑∞
i=g λ2ix

2i, in which λ2i is
the number of 2i-cycles in the Tanner graph of the code.

Example 3.5. Let H be the following parity-check matrix corresponding to a (3,4)
QC-LDPC code with girth 12 and CPM-size 100.

H =

 I I I I
I I1 I7 I30
I I3 I19 I75


Using the algorithm given in next section, the cycle distribution of the code is
λ(x) = 6000x12 + 24400x14 + 99825x16 + 550500x18 + 3052200x20 + 12793400x22 +
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num 12 − cycle chain

1 (2, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 0)

2 (2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0)

3 (1, 2, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1)

4 (1, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1)

5 (2, 2, 0, 0, 1, 2, 2, 0, 0, 2, 1, 0)

6 (2, 2, 0, 0, 2, 1, 0, 2, 2, 0, 0, 1)

7 (2, 2, 0, 1, 1, 2, 2, 1, 0, 2, 1, 1)

8 (2, 2, 1, 0, 0, 1, 2, 0, 0, 2, 1, 1)

9 (2, 2, 1, 0, 0, 2, 1, 1, 2, 0, 0, 1)

10 (2, 2, 1, 0, 2, 1, 1, 2, 2, 0, 1, 1)

11 (2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0)

12 (2, 2, 1, 1, 2, 0, 0, 2, 1, 0, 0, 1)

13 (1, 3, 0, 0, 1, 1, 0, 3, 1, 0, 0, 1)

14 (1, 3, 0, 0, 1, 2, 0, 3, 1, 0, 0, 2)

15 (1, 3, 0, 1, 1, 2, 0, 3, 1, 1, 0, 2)

16 (1, 3, 0, 1, 1, 2, 2, 0, 0, 2, 2, 1)

17 (1, 3, 0, 2, 1, 0, 0, 2, 2, 1, 0, 2)

18 (1, 3, 0, 2, 2, 0, 0, 1, 1, 2, 2, 1)

19 (1, 3, 0, 2, 2, 1, 0, 2, 1, 0, 0, 2)

20 (1, 3, 0, 2, 2, 1, 1, 2, 2, 0, 0, 1)

num 12 − cycle chain

21 (2, 3, 0, 0, 1, 1, 0, 2, 2, 3, 1, 1)

22 (2, 3, 0, 0, 1, 1, 2, 0, 1, 3, 0, 1)

23 (2, 3, 0, 0, 1, 1, 2, 3, 1, 1, 0, 2)

24 (2, 3, 0, 0, 1, 3, 0, 1, 2, 0, 1, 1)

25 (2, 3, 0, 0, 1, 3, 2, 0, 0, 3, 1, 0)

26 (2, 3, 0, 0, 2, 1, 0, 3, 2, 0, 0, 1)

27 (2, 3, 0, 0, 2, 1, 1, 3, 0, 2, 1, 0)

28 (2, 3, 0, 0, 2, 2, 0, 1, 1, 2, 0, 0)

29 (2, 3, 0, 0, 2, 2, 0, 3, 2, 0, 0, 2)

30 (2, 3, 0, 1, 1, 0, 0, 1, 1, 3, 0, 1)

31 (2, 3, 0, 1, 1, 0, 0, 2, 2, 3, 1, 0)

32 (2, 3, 0, 1, 1, 0, 2, 3, 1, 0, 0, 2)

33 (2, 3, 0, 1, 1, 2, 0, 0, 2, 2, 0, 0)

34 (2, 3, 0, 1, 1, 3, 0, 1, 1, 0, 0, 1)

35 (2, 3, 0, 1, 1, 3, 2, 1, 0, 3, 1, 1)

36 (2, 3, 0, 1, 2, 0, 1, 3, 0, 0, 1, 1)

37 (2, 3, 0, 1, 2, 2, 0, 1, 2, 2, 1, 0)

38 (2, 3, 0, 1, 2, 2, 0, 3, 2, 1, 0, 2)

39 (2, 3, 0, 1, 2, 2, 1, 0, 2, 2, 0, 1)

40 (2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 2)

num 12 − cycle chain

41 (2, 3, 0, 2, 1, 0, 2, 1, 1, 3, 0, 0)

42 (2, 3, 0, 2, 1, 3, 0, 0, 2, 1, 1, 0)

43 (2, 3, 0, 2, 1, 3, 2, 2, 0, 3, 1, 2)

44 (2, 3, 0, 2, 2, 0, 1, 2, 2, 3, 0, 2)

45 (2, 3, 0, 2, 2, 3, 1, 0, 0, 1, 1, 0)

46 (2, 3, 0, 2, 2, 3, 1, 1, 0, 0, 1, 1)

47 (2, 3, 1, 0, 0, 1, 2, 0, 0, 3, 1, 2)

48 (2, 3, 1, 0, 0, 3, 1, 2, 2, 0, 0, 1)

49 (2, 3, 1, 0, 2, 1, 0, 3, 1, 1, 0, 2)

50 (2, 3, 1, 0, 2, 1, 1, 3, 2, 0, 1, 1)

51 (2, 3, 1, 0, 2, 2, 1, 0, 2, 3, 1, 1)

52 (2, 3, 1, 0, 2, 2, 1, 1, 2, 3, 1, 0)

53 (2, 3, 1, 0, 2, 2, 1, 3, 2, 0, 1, 2)

54 (2, 3, 1, 0, 2, 3, 1, 1, 2, 2, 1, 0)

55 (2, 3, 1, 1, 0, 2, 2, 1, 0, 3, 1, 0)

56 (2, 3, 1, 1, 0, 3, 1, 0, 2, 1, 0, 2)

57 (2, 3, 1, 1, 2, 2, 1, 3, 2, 1, 1, 2)

58 (2, 3, 1, 2, 0, 3, 1, 2, 2, 1, 1, 2)

59 (2, 3, 1, 2, 2, 0, 0, 3, 1, 0, 0, 1)

60 (2, 3, 1, 2, 2, 1, 1, 2, 0, 3, 1, 2)

Table 3.1: All of the (non-isomorph) allowable 12-cycle chains in Example 3.5

21587550x24 + · · · . As it can be seen from Theorem 3.3, to find the cycle distri-
bution, first we must find all of the allowable (non-isomorph) cycle chains. For
example, all of the 12-cycle chains in H are provided in Table 3.1. Although,
for each 12-cycle chain L, we have r(L) = m = 100, this is not true in gen-
eral for cycle chains with greater length. For example, we have 1000 allowable
(non-isomorph) 16-cycle chains which just there of them have r < m, i.e. L1 =
(2, 3, 0, 0, 2, 3, 0, 0, 2, 3, 0, 0, 2, 3, 0, 0), L2 = (2, 3, 0, 2, 1, 1, 0, 2, 2, 3, 0, 2, 1, 1, 0, 2) and
L3 = (2, 3, 1, 2, 0, 0, 1, 1, 2, 3, 1, 2, 0, 0, 1, 1), with r(L1) = 25, r(L2) = 50 and r(L3) =
50.

In the following section, using Theorem 3.3, an algorithm is proposed which
efficiently finds the cycles (with arbitrary lengths not less than the girth) in the
Tanner graph of a QC-LDPC code by investigating the cycle chains. To do this,
first we pursue the cycle chains in the parity-check matrix column by column, from
the top to the bottom, then Theorem 3.3 is used to find the number of cycles
corresponding to each cycle chain.

4. An Efficient Algorithm for Counting the Cycles

For given positive integers b, v and k, let B be a v × k binary matrix with the
corresponding (v, k)−design B = [B1, . . . , Bk]. Moreover, let m > 1 be an integer
and S be a (m,B)−slope vector such that the girth of the QC LDPC code with the
parity-check matrix Hm,B,S is 2g. Here, we propose a deterministic algorithm to
enumerate all of the cycles in TG(Hm,B,S) up to 2l in which l is an arbitrary positive
integer not less than g. It is noticed that, unlike the known counting algorithms
which count the cycles up to length at most 2g − 2, the proposed algorithm is
capable to count cycles of length 2l, for each l > 2. In the algorithm, to classify
non-isomorphic cycle chains and in order to speed up the process, for a given cycle
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chain L = (i0, j0, i1, j1, · · · , il−1, jl−1), we use the functions b→(L) and b←(L) to
be the k-adic representation of L to the right and left, respectively, i.e. b→(L) =∑l−1

t=0(it+ jtk)k
2t = i0+ j0k+ i1k

2+ j2k
3+ · · ·+ il−1k

2l−2+ jl−1k
2l−1 and b←(L) =∑l−1

t=0(il−t + jl−t−1k)k
2t = i0 + jl−1k+ il−1k

2 + jl−2k
3 + · · ·+ j0k

2l−1. Now, it can
be seen easily that two 2l-chains L1 and L2 are isomorphic if and only if b→(L1) =
k2tb→(L2) (mod k2l − 1) or b→(L1) = k2tb←(L2) (mod k2l − 1), for some 0 6
t 6 l − 1. In the algorithm, by B(e), 1 6 e 6

∑k
i=1(|Bi| − 1), we mean the

first e elements of B, when the elements in the blocks (except the first element in
each block) are enumerated one by one from the left to the right. On the other
hand, B(e) = [B1, · · · , Bp−1, B

′
p], where p is the largest positive integer satisfying in∑p−1

i=1 (|Bi| − 1) < e, and B′p is the first e+ 1−
∑p−1

i=1 (|Bi| − 1) elements of Bp. For

example, if B = [{1, 2, 3}, {3, 4, 5, 6}], then B(1) = [{1, 2}], B(2) = [{1, 2, 3}], B(3) =
[{1, 2, 3}, {3, 4}], B(4) = [{1, 2, 3}, {3, 4, 5}] and B(5) = [{1, 2, 3}, {3, 4, 5, 6}] = B.
Now, the outline of the algorithm is as follows.

Algorithm 4.1. n←
∑k

i=1(|Bi| − 1) and A ← Ø
for e from 1 to n do
Let B(e) = [B1, · · · , Bp−1, B

′
p], where B′p = {b0, b1, · · · , bu} ⊆ Bp, for u =

e−
∑p−1

i=1 (|Bi| − 1).
for i from 0 to u do
for j from i+ 1 to u do

Let L = (bi, p, bj , · · · ) be a 2l−alowable cycle chain in B(e) starting from
(bi, p, bj).
if L is not isomorphic with elements of A then
A ← A∪ {L}.

end if
end for

end for
end for
return

∑
L∈A

r(L) as the number of 2l cycles.

In fact, Algorithm 4.1 counts the cycles of length 2l by 2l−cycle chains sequen-
tially from the first e, 1 6 e 6 n, elements of B, denoted by B(e). For this, first,
Lemma 3.2 is used to investigate allowability of the constructed cycle chain. Then,
each of the previousely constructed allowable 2l−cycle chains is compared with L to
be non-isomorphic. This process is the only part of the algorithm which needs some
times for running, causing a complexity. For this problem, as mentioned above,
b→(L) and b←(L) can be useful to speed up this process of the algorithm. Finally,
Theorem 3.3 is used to find 2l−cycles corresponding to each 2l−cycle chain. It is
noticed that in eth step of the algorithm, to find the allowable cycle chains and
corresponding 2l cycles, we just consider the parity-check matrix H(e), which is a
submatrix of H constructed in step e based on the design B(e).

Example 4.1. In this example, we use Algorithm 4.1 to count the short cycles in the
Tanner graph of some standard QC-LDPC codes. The outputs were obtained by a C♯
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Code Length N4 N6 N8 N10 N12

A 1296 108 7830 237627 6884028 198486018
B 1944 81 6399 251667 7071624 211628106

Table 4.1: Cycle multiplicities of codes A and B in Example 4.1.

programming applied on a computer with a 2.2-GHz CPU and 6 GB of RAM. Consider
two LDPC codes adopted in IEEE 802.11 standard [26] with rate-2/3. These codes are two
irregular (1296, 432) and (1944,648) QC-LDPC codes denoted by A and B, respectively.
Applying Algorithm 4.1, Table 4.1 provides the multiplicity of 2l−cycles, 2 6 l 6 6,
denoted by N2l. Moreover, the running time is compared with the time of a counting
algorithm in [15]. While the algorithm in [15] can only compute N4, N6 and N8, the
proposed algorithm can enumerate 2l−cycle multiplicities, for each l > 2. Moreover, the
running time of Algorithm 4.1 is remarkably less than the time of Algorithm in [15]. In
fact, for codes A and B, the running times of Algorithm 4.1 are 0.046 and 0.048 seconds,
respectively, while the consumed time in [15] are about 0.5 and 1 seconds, respectively.

4.1. The Complexity of The Algorithm

There is a main problem to verify the complexity of Algorithm 4.1 as the main
conclusion of the paper. First, let L =

∑k
i=1(|Bi|−1) be the number of steps which

must be passed to reach the solution. In fact, L is the number of 1’s in the base
matrix except the first ones in the columns when traversing the base matrix from up
to down. In step e, we must find all non-isomorphic chains starting from (bi, p, bj),
inquires checking all (allowable) chains (i0, j0, i1, j1, · · · , il−1, jl−1) with (il, jl) =
(i0, j0) = (bi, p), i1 = bj and {ik, ik+1} ⊆ Bjk , 1 6 k 6 l− 1. In this case, if bmax =
max16i6k |Bi|, then such chains can be examined in at most (bmax−1)l−2(p−1)l−1

which are compared with at most 2l
∑p

p′=1(bmax − 1)l−2(p′ − 1)l−1 chains to verify
the non-isomorphic relation. Thus, the overall complexity to find all non-isomorphic
chains are at most 2l

∑k
p=1(bmax − 1)l−2(p− 1)l−1

∑p
p′=1(bmax − 1)l−2(p′ − 1)l−1 =

2l
∑k

p=1

∑p
p′=1(bmax−1)2l−4(p−1)l−1(p′−1)l−1 ∈ O(lb2lmaxk

2l) which is polynomial
by k, i.e. the number of blocks, if l and bmax are given.

5. Conclusion

In this paper, an efficient algorithm for counting short cycles in the Tanner graph of
a QC-LDPC code is presented. Although, the known counting algorithms can enu-
merate cycles up to 2g− 2, where g is the girth of the code, the proposed algorithm
is capable of counting any (even) cycles of length at least g in the Tanner graph.
Interestingly, for QC-LDPC codes lifted from a protograph G, the complexity of
the algorithm is based on the number of edges in G, independent from the lifting
degree of the constructed codes. Finally, applying the proposed algorithm for some
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standard codes, the overall complexity improves rather than the known algorithms,
in terms of computational complexity and memory requirements.
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