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Abstract. In the year 2019, Guler and Crasmareanu [6] conducted an investigation
into another geometric flow known as the Ricci-Yamabe map. This map is nothing
but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective
of the current paper is to provide a characterization of a Ricci Yamabe soliton on a
para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold
admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold
is shrinking, expanding, or steady. Subsequently, we generalize these findings to Ricci-
Yamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric
connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian
manifold admitting a Ricci-Yamabe soliton which satisfies our results.
Keywords: Ricci-Yamabe soliton, Para-Sasakian manifold, Quasi-Einstein manifold.

1. Introduction

In differential geometry, the Ricci flow represents an intrinsic flow of geometry.
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© 2024 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND

PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE
SOLITONS WITH QUARTER SYMMETRIC METRIC

CONNECTION

Vandana1, Rajeev Budhiraja1, Kamran Ahmad2

and Aliya Naaz Siddiqui2

1 Department of Mathematics and Humanities

Maharishi Markandeshwar (Deemed to be University), Mullana

133207, Ambala-Haryana, India
2 Division of Mathematics, School of Basic Sciences

Galgotias University, Greater Noida, Uttar Pradesh 203201, India

ORCID IDs:   Vandana
Rajeev Budhiraja      
Kamran Ahmad
Aliya Naaz Siddiqui

https://orcid.org/0009-0005-6302-5533    
https://orcid.org/0000-0003-4869-6193  
https://orcid.org/0000-0001-6080-8966 
https://orcid.org/0000-0003-3895-7548



494 Vandana et al.

Similar to formal terms of the heat diffusion process, the Ricci flows hold a signifi-
cant position and play a crucial role in theoretical physics. The concept of the Ricci
flow was initially introduced by R.S. Hamilton in 1982. This flow constitutes an
evolutionary equation for the metric denoted as g on a Riemannian manifold M ,
defined as follows:

∂

∂t
(g(t)) = −2S,(1.1)

where S indicates the Ricci curvature tensor of M .

In Differential Geometry, the concept of a Ricci soliton arises when considering
solutions to the Ricci flow, or self-similar solutions to it, which are characterized
by evolving solely through a one-parameter family of diffeomorphisms and scaling
transformations.
A Ricci soliton (g, U, λ) on a Riemannian manifold (M, g) is a generalization of
an Einstein metric. For a Riemannian manifold (M, g) admitting Ricci soliton, it
requires the existence of a smooth non-zero potential vector field U along with a
constant, denoted as Λ. These satisfy the following equation [7]:

£Ug + 2S + 2Λg = 0,(1.2)

where £U represents the Lie derivative along the direction of U . The nature of the
Ricci soliton’s behavior, whether it is shrinking, steady, or expanding, depends on
the sign of λ. Ricci solitons find application across diverse fields such as economics,
physics, and biology, sparking growing interest due to their versatile utility.

Following the introduction of the Ricci flow concept, Hamilton [7] introduced the
Yamabe flow, a new concept designed to construct the Yamabe metric on a compact
Riemannian manifold (M, g). For such a manifold, a time-dependent metric g(·, t)
is said to evolve under the Yamabe flow if the metric g satisfies the equation [11]:

∂

∂t
(g(t)) = −rg(t), g(0) = g0,(1.3)

where r signifies the scalar curvature of M .

While the Yamabe flow is equivalent to the Ricci flow in 2-dimensional spaces,
they diverge in higher dimensions. The Yamabe flow preserves the conformal class
of the metric, unlike the Ricci flow.

A Yamabe soliton [2], representative of a self-similar solution to the Yamabe
flow, is characterized on a Riemannian manifold (M, g) by a vector field ξ that
follows the equation:

1

2
£Ug = (r − Λ)g,(1.4)

where £Ug denotes the Lie derivative of the metric g along the vector field U , r
denotes the scalar curvature, and Λ is a constant. The soliton’s behavior corresponds
to expanding (Λ < 0), steady (Λ = 0), or shrinking (Λ > 0).

In 2019, S. Guler and M. Crasmareanu [6] introduced a novel geometric flow
named the Ricci-Yamabe map, which combines the Ricci and Yamabe flows. This
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flow, also referred to as the (ρ, q)-Ricci-Yamabe flow, gives rise to the notion of a
Ricci-Yamabe soliton if it evolves solely through a one-parameter group of diffeo-
morphisms and scaling. A manifold’s metric is classified as a Ricci-Yamabe soliton
(RYS) (g, U,Λ, ρ, q) in n > 2 dimensions if it satisfies the equation [12]:

£Ug + 2ρS + [2Λ− qr] g = 0,(1.5)

where £Ug denotes the Lie derivative of the metric g along the vector field U , and
Λ, ρ, and q are real scalars. Similar to other soliton types, the RYS behavior is
categorized as expansion, steadiness, or shrinkage based on the sign of Λ.

Moreover, the authors in [6] established a correspondence between the (ρ, q)-
Ricci-Yamabe flow and well-known geometric flows:

1. If ρ = 1 and q = 0, the (ρ, q)-Ricci-Yamabe flow becomes the Ricci flow.

2. If ρ = 0 and q = 1, it becomes the Yamabe flow.

3. If ρ = 1 and q = −1, it becomes the Einstein flow.

Yamabe and Ricci solitons represent special solutions of Hamilton’s Yamabe and
Ricci flows, respectively. Inspired by Hamilton’s work, many mathematicians have
explored generalizations of such solitons in recent years, often considering Λ as a
variable.

Very recently, the ∗-η-Ricci-Yamabe soliton was introduced by S. Roy, S. Dey, A.
Bhattacharyya, and M.D. Siddiqi [12] as a novel extension of the RYS. Additionally,
A.N. Siddiqui and M.D. Siddiqi [14] presented a study concerning the geometric
aspects of relativistic perfect fluid spacetime and GRW-spacetime in terms of almost
Ricci-Bourguignon solitons with a torse-forming vector field. The introduction of
these geometric flows has become a great centre of interest among geometers, leading
to innovative approaches for understanding the geometry of diverse Riemannian
manifolds and their submanifolds [16].

Furthermore, the concept of a quarter-symmetric connection in a differentiable
manifold with an affine connection was introduced by S. Golab in [5]. A linear
connection is characterized as a quarter symmetric connection if its torsion tensor
T takes the form:

T (U, V ) = η(V )ϕU − η(U)ϕV,(1.6)

where U and V represent vector fields on M , η is a 1-form, and ϕ is a tensor of
type (1, 1). This notion generalizes semi-symmetric connections; when ϕ = I, a
quarter symmetric connection becomes a semi-symmetric connection. Additionally,
a quarter symmetric connection ∇ is identified as a quarter symmetric metric con-
nection for a Riemannian metric g if it satisfies ∇g = 0, otherwise referred to as
non-metric. Quarter symmetric metric connections have been extensively studied
by various authors from multiple perspectives [1].

Motivated by these discussions, this paper delves into the examination of para-
Sasakian manifolds admitting RYS, as well as RYS on para-Sasakian manifolds
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equipped with a quarter symmetric metric connection. The paper’s structure un-
folds as follows: Section 2 provides preliminary information and formulas related
to para-Sasakian manifolds. Section 3 explores RYS on para-Sasakian manifolds,
evaluating the value of Λ and revealing that if (g, ξ,Λ, ρ, q) represents an RYS on a
para-Sasakian manifold M , then M determines as a nearly quasi-Einstein manifold.
Furthermore, it is established that an RYS (g, ξ,Λ, ρ, q) on a para-Sasakian mani-
fold is always expanding. Section 4 delves into the study of RYS on para-Sasakian
manifolds within the context of a quarter symmetric metric connection, deducing
the value of Λ. This section also proves that RYS on a para-Sasakian manifold with
a quarter symmetric metric connection can be characterized as a pseudo η-Einstein
manifold and always demonstrated expansion. Finally, the last section offers an
example to validate the presented results.

2. Preliminaries

An n-dimensional differentiable manifold M is said to be an almost paracontact
manifold [17] if it satisfies an almost para-contact structure (ϕ, ξ, η) where ϕ is a
(1, 1)-tensor, ξ a global vector field and η a 1-form, such that

ϕ2U = U − η(U)ξ,(2.1)

η(ξ) = 1, ϕ(ξ) = 0, η(ϕξ) = 0.(2.2)

If g is a compatible pseudo-Riemannian metric with (ϕ, ξ, η), that is,

g(ϕU, ϕV ) = g(U, V )− η(U)η(V ), η(U) = g(U, ξ),(2.3)

g(ϕU, V ) = g(U, ϕV ),(2.4)

Φ(U, V ) = g(ϕU, V ) = g(U, ϕV ) = Φ(V,U),(2.5)

for all vector fields U, V on M , then M becomes an almost paracontact Riemannian
manifold with an almost paracontact Riemannian structure (ϕ, ξ, η, g). Here Φ is
the fundamental 2-form associated to the almost paracontact Riemannian structure.

The normality property of a paracontact metric manifold (M, ξ, η, g) is synony-
mous with the nullification of the (1, 2)-torsion tensor denoted by

Nϕ(U, V ) = [ϕ, ϕ](U, V )− 2dη(U, V )ξ,

where
[ϕ, ϕ](U, V ) = ϕ2[U, V ] + [ϕU, ϕV ]− ϕ[U, ϕV ]− ϕ[ϕU, V ],

for any vector fields U and V defined on the manifold M . A paracontact metric
manifold is dubbed para-Sasakian metric manifold when it possesses this property
of normality. Alternately, an almost paracontact Riemannian connection manifold
earns the label of para-Sasakian if it satisfies the following conditions:

∇Uξ = ϕU,(2.6)
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and

(∇Uϕ)V = 2η(U)η(V )ξ − g(U, V )ξ − η(V )U,(2.7)

where ∇ denotes the Riemannian connection of g.

Furthermore, on an n-dimensional para-Sasakian manifold M , the subsequent
relationships are valid:

η(R(U, V )W ) = η(V )g(U,W )− η(U)g(V,W ),(2.8)

R(U, V )ξ = η(U)V − η(V )U,(2.9)

R(ξ, U)V = η(V )U − g(U, V )ξ,(2.10)

S(U, ξ) = −(n− 1)η(U), Qξ = −(n− 1)ξ.(2.11)

These relationships are applicable for any vector fields U , V , and W on M . In these
equations, R represents the Riemannian curvature tensor, and S is the Ricci tensor
of type (0, 2) defined as

g(QU, V ) = S(U, V ),

where Q denotes the Ricci operator.

In the work presented in [4], De and Gazi introduced the concept of a nearly
quasi-Einstein manifold. They established this notion within the framework of para-
Sasakian manifolds. Specifically, a para-Sasakian manifold M is labeled as nearly
quasi-Einstein when its Ricci tensor S is non-trivial and fulfills the condition:

S(U, V ) = ag(U, V ) + bD(U, V ),(2.12)

where a and b stand as non-zero scalar coefficients, and D denotes a symmetric
non-zero (0, 2)-tensor.

Taking inspiration from the concept of a pseudo quasi-Einstein manifold intro-
duced by A. Shaikh in [13], Hui and Chakraborty [9] extended the idea to define a
”pseudo η-Einstein manifold” within the context of a para-Sasakian manifold M .
According to their definition, a para-Sasakian manifold M qualifies as a pseudo
η-Einstein manifold when its Ricci tensor S of type (0, 2) is non-trivial and satisfies
the following condition:

S(U, V ) = ag(U, V ) + bη(U)η(V ) + cD(U, V ).(2.13)

Here, a, b, and c are scalar coefficients, with the condition that c cannot be equal
to zero, and D represents a symmetric non-zero (0, 2)-tensor. Moreover, the tensor
D adheres to the additional constraint D(U, ϕ) = 0 for a given vector field U .
When these conditions are met, the manifold M is denoted as a pseudo η-Einstein
manifold.
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3. Results on Para-Sasakian Manifolds Admitting Ricci-Yamabe
Soliton

In this section, we state some interesting results on para-Sasakian manifold
admitting RYS. So, we consider a RYS (g, ξ,Λ, ρ, q) on a para-Sasakian manifold
then from (1.5), we have

(£ξg)(U, V ) + 2ρS(U, V ) + (2Λ− qr)g(U, V ) = 0.(3.1)

From (2.5) and (2.6), we get

(£ξg)(U, V ) = g(∇Uξ, V ) + g(U,∇V ξ)

= g(ϕU, V ) + g(ϕV,U) = 2Φ(U, V ).(3.2)

Substituting (3.2) into (3.1), we have

S(U, V ) = − 1

2ρ
(2Λ− qr)g(U, V )− 1

ρ
Φ(U, V ).(3.3)

Taking V = ξ and using (2.5), (2.11) in (3.3), we have

Λ = ρ(n− 1)− qr

2
.(3.4)

Thus, equation (3.4) leads the following:

Theorem 3.1. If the metric of an n-dimensional para-Sasakian manifold M ad-
mits a RYS then the soliton constant Λ is given by (3.4).

From equation (3.3), we can state the following:

Theorem 3.2. A para-Sasakian manifold M is nearly quasi-Einstein if M admit-
ting RYS.

In particular, we take ρ = 1 and q = 0 in (3.3), then we have

S(U, V ) = −Λg(U, V )− Φ(U, V ),(3.5)

which implies that the manifold is a nearly quasi-Einstein manifold.

Putting V = ξ in (3.5), we have

S(U, ξ) = −Λη(U).(3.6)

From (2.11) and (3.6), we get Λ = (n− 1) > 0.

Thus we can conclude the following:
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Theorem 3.3. A RS on a para-Sasakian manifold M is always expanding.

Remark 3.1. In the work by Hui and Chakraborty [9], it was demonstrated that a RS
on the same manifold M always displays an expanding behavios.

Example 3.1. In the example put forth in [2], the authors examined the Euclidean space
M = R3 utilizing standard Cartesian coordinates (u, v, w).

They established the definition of vector fields as follows:

E1 = eu
∂

∂v
, E2 = eu

(
∂

∂v
− ∂

∂w

)
, E3 = − ∂

∂u
.(3.7)

These vector fields are linearly independent at each point of M .

The Riemannian metric g is then defined as follows:

g(Ei, Ej) = 0, i ̸= j, i, j = 1, 2, 3, g(E1, E1) = g(E2, E2) = g(E3, E3) = 1.(3.8)

Similarly, the 1-form η is defined by

η(W ) = g(W, E3),

where W is a vector field on M . The (1, 1) tensor field ϕ is given by

ϕ(E1) = E2, ϕ(E2) = E1, ϕ(E3) = 0

with ξ = E3. Hence, the set (ϕ, ξ, η, g) establishes an almost paracontact structure on M .

The Levi-Civita connection ∇ corresponding to the metric g leads to the following
relations:

[E1, E2] = 0, [E1, E3] = E1, [E2, E3] = E2.(3.9)

By setting E3 = ξ and applying Koszul’s formula, the following expressions are ob-
tained:

∇E1E2 = 0, ∇E1E3 = E1, ∇E1E1 = −E3,

∇E2E3 = E2, ∇E2E2 = −E3, ∇E2E1 = 0,

∇E3E3 = 0, ∇E3E2 = 0, ∇E3E1 = 0.(3.10)

Based on the above results, it becomes evident that the manifold M is indeed para-
Sasakian.

Additionally, the expressions for the curvature tensor and the Ricci tensor are deduced
as follows:

R(E1, E2)E2 = −E1, R(E1, E3)E3 = −E1, R(E2, E1)E1 = −E2,

R(E2, E3)E3 = −E2, R(E3, E1)E1 = −E3, R(E3, E2)E2 = −E3,

R(E1, E2)E3 = 0, R(E3, E2)E3 = E2, R(E3, E1)E2 = 0.(3.11)

The Ricci tensor is computed as:

S(E1, E1) = −2, S(E2, E2) = −2, S(E3, E3) = −2,

S(E1, E2) = 0, S(E1, E3) = 0, S(E2, E3) = 0.(3.12)
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The scalar curvature is found to be r = −6. Substituting these values into the expres-
sion (3.3), the following relation is obtained:

S(E1, E1) = −Λ

ρ
− qr

2ρ
, S(E2, E2) = −Λ

ρ
− qr

2ρ
, S(E3, E3) = −Λ

ρ
− qr

2ρ
.(3.13)

Combining equations (3.12) and (3.13), it yields:

Λ = 2ρ− qr

2
.(3.14)

This relation satisfies the condition in equation (3.4). Consequently, it is evident that
Theorem 3.1 is valid. Also, (3.14) can be rewritten as Λ = 2ρ + 3q. As we can see that
distinct values of Λ emerge as ρ and q vary. However, when substituting ρ = 1 and q = 0
into equation (3.14), then Λ = 2 > 0. This confirms that the three-dimensional manifold
M is perpetually expanding. Hence, it is established that g characterizes a Ricci soliton
on a three-dimensional para-Sasakian manifold M , confirming the validity of Theorem 3.3.

4. Results on Para-Sasakian Manifolds with Quarter Symmetric
Metric Connection Admitting Ricci-Yamabe Soliton

In this section, we study para-Sasakian manifold with quarter symmetric metric
connection admitting RYS. Let ∇ be a linear connection on n-dimensional differen-
tiable manifold M which is known as quarter symmetric connection [5] if its torsion
tensor T of the connection ∇ is the form of

T (U, V ) = ∇UV −∇V U − [U, V ]

= η(V )ϕU − η(U)ϕV,(4.1)

where ϕ is a tensor of type (1, 1) and η is a 1-form.
Also, if the quarter symmetric connection ∇ satisfies the following condition:

(∇Ug)(V,W ) = 0,(4.2)

for all vector fields U, V,W on M , then ∇ is said to be a quarter symmetric metric
connection.

Now, a quarter symmetric metric connection ∇ on a para-Sasakian manifold is
defined by

∇UV = ∇UV +H(U, V ),(4.3)

where H is a tensor of type (1, 1).

For ∇ to be a quarter-symmetric metric connection on M such that

H(U, V ) =
1

2

[
T (U, V ) + T

′
(U, V ) + T

′
(V,U)

]
,(4.4)

where the tensor T
′
and T are related by

g(T
′
(U, V ),W ) = g(T (W,U), V ).(4.5)
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From (4.1) and (4.5), we have

T
′
(U, V ) = η(U)ϕV − g(ϕU, V )ξ.(4.6)

Using (4.1) and (4.6) in (4.4), we obtain

H(U, V ) = η(V )ϕU − g(ϕU, V )ξ.(4.7)

Hence, a quarter symmetric metric connection on M is given by

∇UV = ∇UV + η(V )ϕU − g(ϕU, V )ξ.(4.8)

Now, suppose that R and R are the curvature tensor of Levi-Civita connection
∇ and the quarter symmetric metric connection ∇ on a para-Sasakian manifold,
respectively

R(U, V )W = R(U, V )W + 3g(ϕU,W )ϕV − 3g(ϕV,W )ϕU

+ [η(U)V − η(V )U ] η(W )

− [η(U)g(V,W )− η(V )g(U,W )] ξ.(4.9)

From above equation, we get

S(U, V ) = S(U, V ) + 2g(U, V )− (n+ 1)η(U)η(V )

−3trace(ϕ)g(ϕU, V ),(4.10)

where S and S defined as the Ricci tensor of para-Saskian manifold with respect to
Levi-Civita connection and quarter symmetric metric connection, respectively.

Also, we have
S(U, ξ) = −2(n− 1)η(U).(4.11)

Contracting (4.10), we obtain

r = r + (n− 1)− 3(trace(ϕ))2,(4.12)

where r and r are the scalar curvature of para-Saskian manifold with respect to
Levi-Civita connection and quarter symmetric metric connection, respectively.

Now, let (g, ξ,Λ, ρ, q) be a RYS on a para-Sasakian manifold M with respect to
∇. Then we have

(£ξg)(U, V ) + 2ρS(U, V ) + (2Λ− qr)g(U, V ) = 0.(4.13)

Now, from (2.2), (2.5) and (4.8), we obtain

(£ξg)(U, V ) = g(∇Uξ, V ) + g(U,∇V ξ)

= g(∇Uξ, V ) + η(ξ)g(ϕU, V )− g(ϕU, ξ)g(ξ, V )

+g(∇V ξ, U) + η(ξ)g(ϕV,U)− g(ϕV, ξ)g(ξ, U)

= (£ξg)(U, V ) + 2Φ(U, V ).(4.14)
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Use (4.14), (3.2), (4.12) and (4.10) in (4.13), we have

ρS(U, V ) = −
[
Λ− qr

2
− (n− 1)q

2
+

3q

2
(trace(ϕ))2

]
g(U, V )(4.15)

−2Φ(U, V ),(4.16)

and

S(U, V ) =
1

ρ

[
−Λ +

qr

2
+

(n− 1)q

2
− 3q

2
(trace(ϕ))2 − 2ρ

]
g(U, V )

+(n+ 1)η(U)η(V ) +
1

ρ
(3ρ trace(ϕ)− 2)Φ(U, V ).(4.17)

Putting U = ξ and using (2.5), (2.11) in (4.17), we obtain

Λ = 2(n− 1)ρ+
qr

2
+

(n− 1)q

2
− 3q

2
(trace(ϕ))2.(4.18)

Thus, (4.18) leads the following:

Theorem 4.1. If the metric of an n-dimensional para-sasakian manifold admits
a RYS with quarter symmetric metric connection then soliton constant Λ is given
by (4.18).

We conclude from (4.17):

Theorem 4.2. A para-Sasakian manifold M with quarter symmetric metric con-
nection is a pseudo η-Einstein manifold if M admits RYS.

If we take ρ = 1 and q = 0 in (4.17), then we have

S(U, V ) = −(Λ + 2)g(U, V ) + (n+ 1)η(U)η(V )

+(3 trace(ϕ)− 2)Φ(U, V ).(4.19)

which shows that the manifold is a pseudo η-Einstein.

Substitute V = ξ in (4.19), we get

S(U, ξ) = (−Λ + n− 1)η(U).(4.20)

From (2.11), (2.6) and (4.20), we have

Λ = 2(n− 1) > 0.(4.21)

Thus, from (4.21) we can state that

Theorem 4.3. A RS on a para-Sasakian manifold M with quarter symmetric
metric connection is always expanding.
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Example 4.1. In the example [10], the authors examined the Euclidean space M = R5

utilizing standard Cartesian coordinates (u1, u2, u3, u4, u5).

They define the vector fields as follows:

E1 =
∂

∂u1
, E2 = e−u1

∂

∂u2
, E3 = e−u1

∂

∂u3
,

E4 = e−u1
∂

∂u4
, E5 = e−u1

∂

∂u5
.(4.22)

These vector fields are linearly independent at each point of M .
The Riemannian metric g is then defined as follows:

g(Ei, Ej) = 0, i ̸= j, i, j = 1, 2, 3, 4, 5

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1

g(E4, E4) = g(E5, E5) = 1.(4.23)

Similarly, the 1-form η is defined by

η(W ) = g(W, E1),

where W is a vector field on M . The (1, 1) tensor field ϕ is given by

ϕ(E1) = 0, ϕ(E2) = E2, ϕ(E3) = E3, ϕ(E4) = E4, ϕ(E5) = E5

with ξ = E1. Hence, the set (ϕ, ξ, η, g) establishes an almost paracontact structure on M .

Then they define the following relations:

[E1, E2] = −E2, [E1, E3] = −E3, [E1, E4] = −E4, [E1, E5] = −E5

[E2, E3] = [E2, E4] = [E2, E5] = [E3, E4] = [E3, E5] = [E4, E5] = 0.(4.24)

By taking E1 = ξ and applying Koszul’s formula, the following expressions are obtained:

∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0, ∇E1E4 = 0,∇E1E5 = 0,

∇E2E1 = E2, ∇E2E2 = −E1, ∇E2E3 = 0, ∇E2E4 = 0, ∇E2E5 = 0,

∇E3E1 = E3, ∇E3E2 = 0, ∇E3E3 = −E1, ∇E3E4 = 0, ∇E3E5 = 0,

∇E4E1 = E4, ∇E4E2 = 0, ∇E4E3 = 0, ∇E4E4 = −E1, ∇E4E5 = 0,

∇E5E1 = E5, ∇E5E2 = 0, ∇E5E3 = 0, ∇E5E4 = 0, ∇E5E5 = −E1.(4.25)

Using the above equations in (4.8), we have

∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0, ∇E1E4 = 0,∇E1E5 = 0,

∇E2E1 = 2E2, ∇E2E2 = −2E1, ∇E2E3 = 0, ∇E2E4 = 0, ∇E2E5 = 0,

∇E3E1 = 2E3, ∇E3E2 = 0, ∇E3E3 = −2E1, ∇E3E4 = 0, ∇E3E5 = 0,

∇E4E1 = 2E4, ∇E4E2 = 0, ∇E4E3 = 0, ∇E4E4 = −2E1, ∇E4E5 = 0,

∇E5E1 = 2E5, ∇E5E2 = 0, ∇E5E3 = 0, ∇E5E4 = 0, ∇E5E5 = −2E1.(4.26)
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Additionally, the components of the curvature tensor with respect to Levi-Civita con-
nection and quarter symmetric metric connection are obtained as follows:

R(E1, E2)E1 = E2, R(E1, E2)E2 = −E1, R(E1, E3)E1 = E3, R(E1, E3)E3 = −E1,

R(E1, E4)E1 = E4, R(E1, E4)E4 = −E1, R(E1, E5)E1 = E5, R(E1, E5)E5 = −E1,

R(E2, E3)E2 = E3, R(E2, E3)E3 = −E2, R(E2, E4)E2 = E4, R(E2, E4)E4 = −E2,

R(E2, E5)E2 = E5, R(E2, E5)E5 = −E2, R(E3, E4)E3 = E4, R(E3, E4)E4 = −E3,

R(E3, E5)E3 = E5, R(E3, E5)E5 = −E3, R(E4, E5)E4 = E5, R(E4, E5)E5 = −E4.(4.27)

and

R(E1, E2)E1 = 2E2, R(E1, E2)E2 = −2E1, R(E1, E3)E1 = 2E3,

R(E1, E3)E3 = −2E1, R(E1, E4)E1 = 2E4, R(E1, E4)E4 = −2E1,

R(E1, E5)E1 = 2E5, R(E1, E5)E5 = −2E1, R(E2, E3)E2 = 2E3,

R(E2, E3)E3 = −2E2, R(E2, E4)E2 = 2E4, R(E2, E4)E4 = −2E2,

R(E2, E5)E2 = 2E5, R(E2, E5)E5 = −2E2, R(E3, E4)E3 = 2E4,

R(E3, E4)E4 = −2E3, R(E3, E5)E3 = 2E5, R(E3, E5)E5 = −2E3,

R(E4, E5)E4 = 2E5, R(E4, E5)E5 = −2E4.(4.28)

The Ricci tensor for Levi-Civita connection and quarter symmetric metric connection are
computed by using above expression:

S(E1, E1) = −4, S(E2, E2) = S(E3, E3) = S(E4, E4) = S(E5, E5) = 2,(4.29)

and
S(E1, E1) = S(E2, E2) = S(E3, E3) = S(E4, E4) = S(E5, E5) = −8.(4.30)

The scalar curvature is found to be r = 4 and r = −40, which can be verified by (4.12).
Substituting these values into the expression (4.17), the following relation is obtained:

S(Ei, Ei) = −1

ρ
[Λ + 20q] g(Ei, Ei)−

2

ρ
g(ϕEi, Ei).(4.31)

For ξ = E1, the above relation reduces to S(ξ, ξ) = − 1
ρ
[Λ + 20q]. Since, S(E1, E1) =

S(ξ, ξ) = −8, then we have Λ = 8ρ − 20q, which satisfies our relation (4.18). Thus,
Theorem 4.1 exists. For ρ = 1 and q = 0, Theorem 4.3 is satisfied.
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